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Abstra
t:

The intera
tions between a tumor and the immune system are modelled at 
ell s
ale in the

framework of thermostatted kineti
 theory. Cell a
tivation and learning are reprodu
ed by

the in
rease of 
ell a
tivity during intera
tions. The se
ond moment of the a
tivity of the

whole system is 
ontrolled by a thermostat whi
h reprodu
es the regulation of the learning

pro
ess and memory loss through 
ell death. An algorithm inspired from the dire
t

simulation Monte Carlo (DSMC) method is used to simulate sto
hasti
 traje
tories for the

numbers of 
ells and to study the sensitivity of the dynami
s to various parameters. The

nonintuitive role played by the thermostat is pointed out. For ineÆ
ient thermalization,

the divergen
e of the number of 
an
er 
ells is obtained in spite of favored produ
tion

of immune system 
ells. Conversely, when the a
tivity 
u
tuations are 
ontrolled, the

development of 
an
er is 
ontained even for weakened immune defenses. These results

may be 
orrelated to unexpe
ted 
lini
al observations in the 
ase of di�erent 
an
ers, su
h
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as 
ar
inoma, lymphoma, and melanoma.
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1 Introdu
tion

The treatment of 
an
er by boosting the immune system is a re
ent and promising ther-

apeuti
 strategy [1, 2, 3℄. Analogously to the immune system response to an infe
tion,

spe
i�
 white blood 
ells are a
tivated in the presen
e of antigens lo
ated on the sur-

fa
e of 
an
er 
ells [4, 5℄. Re
ently, the role of dendriti
 
ells as antigen presenting 
ells

(APC) has been established. Usually an APC ingests and de
omposes a non-self 
ell (e.g.

pathogens, mushrooms) by isolating an antigen and presenting it to an immune system


ell, a T lympho
yte [6℄. The presentation pro
ess of the antigen to the T 
ell triggers

the a
tivation and then the proliferation of the T 
ells, thus allowing them to rid the

human body of harmful 
ells. During the learning pro
ess developed by the T 
ells, the


an
er 
ells 
an develop the ability to blend into the surrounding tissue and mislead the

immune system 
ells [7, 8℄. Thus the normal a
tivation pro
ess of the T 
ells may not be

suÆ
ient to stop the onset and growth of the tumor. In parti
ular, mutation pro
esses


an allow the 
an
er 
ells to avoid the surveillan
e of the immune system. An apparent

elimination of the tumor may pre
ede a long period of equilibrium, eventually followed by

the proliferation of the 
an
er 
ells, a

ording to a pro
ess identi�ed as "the three E's"

of immunoediting, for "Elimination, Equilibrium and Es
ape" [9℄.

Kineti
 theory appears as a suitable framework to model 
an
er and immune system


ompetition at the 
ell s
ale [10℄. Originally designed to model dynami
s of dilute gases

[11, 12, 13, 14, 15℄, kineti
 theory has been applied to granular materials [10℄ and biolog-

i
al systems [16℄. The thermostatted kineti
 theory has been proposed to model 
omplex

biologi
al systems [17, 18, 19, 20, 21℄. A

ordingly, the a
tivation and the learning of

a 
ell are mimi
ked by in
reasing a quantity 
alled a
tivity and related to ea
h 
ell. A

thermostat term is introdu
ed to a

ount for the regulation of 
ell a
tivity, in the spirit

of the 
ontrol of energy 
u
tuations in a dissipative system. A
tivity dissipation by the

thermostat during the pro
ess of 
ell learning 
an be related to the a
tion of regulatory T


ells and natural 
ell death, whi
h removes high a
tivity 
ells from the system as well. Re-
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ently the thermostatted kineti
 theory has been employed to develop a minimal model

involving three types of 
ells. The results showed that the model is able to reprodu
e

the elimination of 
an
er 
ells, the equilibrium, and the es
ape from the immune system

surveillan
e [22℄. From the perspe
tive of 
an
er immunotherapy optimization, the aim of

the present paper is to perform a numeri
al sensitivity analysis, i.e. to study the impa
t

of 
hanges in ea
h parameter on the 
an
er-immune system 
ompetition [2℄. In parti
ular

the 
ru
ial role played by the thermostat term is pointed out.

The paper is organized as follows. Se
tion 2 deals with the presentation of the model

and the simulation method inspired from dire
t simulation Monte Carlo (DSMC) [13, 23℄.

Se
tions 3 to 7 are devoted to the results of a numeri
al sensitivity analysis. Spe
i�
ally,

the e�e
t of the �eld of the thermostat is presented in Se
tion 3, the total initial number of


ells in Se
tion 4, the rate 
onstants asso
iated with the intera
tions between a 
an
er 
ell

and an immune system 
ell in Se
tion 5, the initial numbers of 
an
er 
ells and immune

system 
ells in Se
tion 6, and the rate 
onstant asso
iated with the intera
tions between

a 
an
er 
ell and a normal 
ell in Se
tion 7. Finally, in se
tion 8, we sum up the favorable


onditions in whi
h the model predi
ts tumor 
ontrol by the immune system and draw


on
lusions in the 
ontext of 
an
er treatment.

2 The model

This se
tion deals with the details of the model and the biologi
al assumptions. Spe
if-

i
ally, three types of 
ells are 
ommonly involved in the immune response, the antigen-

presenting 
ells, the T 
ells, and the B 
ells [4, 5℄. A T 
ell is a
tivated when it intera
ts

with an antigen-presenting 
ell [6℄. A subset of a
tivated T 
ells transforms the B 
ells

into plasma 
ells whi
h se
rete a large volume of antibodies. The antibodies then blo
k

antigen sites on the surfa
e of 
an
er 
ells. A
tivated T 
ells may also mutate into T-killer


ells, whi
h destroy the 
an
er 
ells. When a 
an
er 
ell is killed, additional antigens are

released, stimulating a
tivation and learning of new T 
ells and B 
ells. While the T
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ells are a
tivated, 
an
er 
ells also mutate and develop the ability to avoid dete
tion and

destru
tion by the immune system. In parti
ular, 
an
er 
ells may express proteins on

their surfa
e that indu
e immune 
ell ina
tivation and promote 
an
er 
ell proliferation.

Finally, the regulatory T 
ells 
ontrol the response of the immune system: They re
ognize

anti-body 
oated 
an
er 
ells and adapt the level of antibody se
retion, i.e. the regulation

of the B-
ell and the T-
ell produ
tion and a
tivation. In addition, 
ells have a limited

lifespan leading to some memory loss of the global a
tivation pro
ess.

In order to take into a

ount the immune system response to 
an
er 
ells, we have

re
ently proposed a minimal model of 
ell intera
tions and a
tivation [19, 20, 21, 22℄.

Spe
i�
ally, only three 
ell types are taken into 
onsideration: Normal 
ells n, 
an
er


ells 
, and immune system 
ells i. A
tivation of both immune system 
ells and 
an
er


ells is reasonably assumed to o

ur during binary intera
tions, like for example during

the eÆ
ient 
onta
ts between a T 
ell and a dendriti
 
ell with large surfa
e-to-volume

ratio. In the model, the level of a
tivation is translated into the value rea
hed by a

quantity, u, a

ordingly named a
tivity and 
arried by ea
h 
ell. For an immune system


ell, a
tivity measures the degree of learning, gained by exposure to antigen. For a 
an
er


ell, a
tivity measures the degree of invisibility rea
hed by mutation at the 
onta
t with

immune system 
ells. The system is assumed to be spatially homogeneous and initial 
ell

heterogeneity is reprodu
ed by allo
ating to ea
h 
ell an a
tivity distributed a

ording to

a suÆ
iently large Gaussian distribution

P (u) =

1

�

p

2�

e

�

�

u��

�

p

2

�

2

(1)

of mean value � and standard deviation �.

For the sake of simpli
ity, we 
onsider that, regardless of 
ell types, all the intera
tions

between two 
ells of di�erent types systemati
ally in
rease the a
tivity by a same amount

�, for the 
ell with the largest a
tivity u before intera
tion. The model introdu
es the

following pro
esses with rates that are assumed to depend on the di�eren
e of a
tivities
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between the intera
ting 
ells:

8
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>
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>

>
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)
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(u� u

0
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0

)
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(u+ �) + 
(u

0

) (4)

where k


n

, k

i


and k


i

are rate 
onstants. The two indi
es of a rate 
onstant refer to

the two types of intera
ting 
ells, the �rst index 
orresponding to the type of the 
ell

with the largest a
tivity. The Heaviside step fun
tion H(u � u

0

), whi
h is equal to 1 if

u > u

0

and otherwise vanishes, is introdu
ed to ensure that only 
ell intera
tions with

appropriate a
tivities are 
onsidered. Hen
e, 
an
er 
ells proliferation may result from

the intera
tion between a weakly a
tivated 
an
er 
ell and a normal 
ell, as stated in Eq.

(2). The system is supposed to be open and in 
onta
t with a sour
e S of normal 
ells

whi
h maintains the number of normal 
ells 
onstant. In order to mimi
 the strategy of


an
er 
ells to avoid dete
tion by the immune system, the auto
atalyti
 produ
tion of


an
er 
ells may also result from the intera
tion between a properly a
tivated 
an
er 
ell

and a less a
tivated immune system 
ell, a

ording to Eq. (4). Equation (3) expresses

the atta
k of an a
tivated killer T 
ell against a 
an
er 
ell and the subsequent T-
ell

proliferation and a
tivation.

Regulation of immune system response and memory loss of a
tivation through 
ell

death are a

ounted for by a thermostat, so 
alled by analogy with dissipation of energy

in a system maintained at 
onstant temperature [17, 18℄. Usually, mathemati
al models

for 
an
er-immune system 
ompetition derived within the kineti
 theory framework are

proposed under the assumption that the system is not at equilibrium [24℄. In order

to a

ount for out-of-equilibrium 
onditions, the introdu
tion of a thermostat term is

fundamental.
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The thermostat is asso
iated with a �eld E, aiming at 
ontrolling the se
ond moment

hu

2

i of the a
tivity of the total number of 
ells:

du

dt

= E � �u (5)

where the 
oeÆ
ient � reads:

� =

huiE

hu

2

i

(6)

The kineti
 equations governing the time evolution of the distribution fun
tions asso
i-

ated with the three kinds of 
ells j = n; i; 
 are given in the appendix [22℄.

In order to numeri
ally solve the kineti
 equations and additionally reprodu
e the

internal 
u
tuations inherent to small systems, we have adapted the dire
t simulation

Monte Carlo (DSMC) method, originally designed to solve the Boltzmann equation for

dilute gases [13, 23℄. The aim of the simulation is to follow the evolution of a small part

of an organ in whi
h some 
an
er 
ells already appeared. The initial state of the system

is de�ned by the total number of 
ells N

0

, the initial number, N

0




, of 
an
er 
ells, and the

initial number, N

0

i

, of immune system 
ells. The number N

n

= N

0

�N

0




�N

0

i

of normal


ells remains 
onstant but the total number N of 
ells may in
rease. Time is dis
retized.

During the time step �t, intera
tions between di�erent types of 
ells and between the


ells and the thermostat are su

essively performed.

An upper bound for the number of binary intera
tions between N 
ells during �t is

given by r = N(N � 1)k

max

�u

max

�t, where k

max

is the maximum rate 
onstant among

k


n

, k

i


, k


i

and where �u

max

is the maximum positive di�eren
e between the a
tivities u

and u

0

of two 
ells. First, r intera
tions between 
ells are tempted and a

epted a

ord-

ing to their probability of o

urren
e. For example, in the 
ase of the pro
ess stated in

Eq. (2), the intera
tion between a randomly 
hosen 
ell of 
an
er type 
(u) and a ran-

domly 
hosen 
ell of normal type n(u

0

) is reje
ted if u

0

> u and a

epted proportionally

to

k


n

(u�u

0

)

k

max

�u

max

if u > u

0

. On
e the mutation of a normal 
ell n(u

0

) into a 
an
er 
ell 
(u

0

)

o

urred, a normal 
ell n(u

00

) is simultaneously introdu
ed in the system with an a
tivity

u

00

randomly 
hosen a

ording to the probability P (u) given in Eq. (1). Hen
e, the total
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number N

n

of normal 
ells remains 
onstant. After an intera
tion has been a

epted, the

a
tivities of the intera
ting 
ells and the numbers of 
ells of ea
h type are updated as

required by the 
onsidered pro
ess. The maximum di�eren
e of a
tivities, �u

max

, is also

updated.

Then, ea
h 
ell intera
ts with the thermostat asso
iated with the �eld E. Following

Eqs. (5,6), we perform the update of the a
tivity of ea
h 
ell at ea
h time step:

u(t+�t) = u(t) + �tE

�

1�

hui

hu

2

i

u(t)

�

(7)

where hui and hu

2

i are the mean value and the se
ond moment of the a
tivity of the whole

system, whi
h are updated at ea
h time step.

The dire
t simulation Monte Carlo algorithm of thermostatted 
ell intera
tions is

adapted to generate sto
hasti
 traje
tories during a given total time t

end

supposed to

mimi
 life expe
tan
y of a patient. In most simulations, the total simulation time is set

to t

end

=�t = 50000 and the time step, to �t = 1. For large values of the thermalizing

�eld E ' 1, we impose �t = 10

�2

, in order to satisfy the 
ondition E�t� 1.

The Gaussian probability distribution P (u) of the initial 
ell a
tivity stated in Eq.

(1) is 
hara
terized by the mean value � = 0:5 and the standard deviation � = 0:2. The

in
rease of a
tivity during the 
ell-
ell intera
tion is equal to � = 10

�3

, small 
ompared

to the standard deviation �. As shown in Fig. 1, three di�erent types of sto
hasti


traje
tories are obtained for given parameter values, simply by 
hanging the seed of the

random number generator. Figure 1a illustrates the 
ase where the �nal number, N

end




=

0, of the 
an
er 
ells vanishes and the �nal number, N

end

i

, of immune system 
ells rea
hes

a stationary non-vanishing value. This 
ase 
an be interpreted as 
an
er elimination by

the immune system. Figure 1b gives an example of 
oexisten
e, where N




(t) and N

i

(t)


u
tuate around nonvanishing values until t

end

: The immune system is said to 
ontrol

the 
an
er during life expe
tan
y. The paradoxi
al 
oexisten
e of 
an
er 
ells and T 
ells

remains a subje
t of debate [25℄. In Fig. 1
, the �nal number, N

end

i

= 0, of immune

system 
ells vanishes and the number of 
an
er 
ells diverges. This last 
ase is typi
al of

8



Figure 1: The three typi
al kinds of evolutions of the numbers, N




, of 
an
er 
ells (red)

and numbers, N

i

, of immune system 
ells (blue) obtained for three di�erent seeds of the

random number generator and N

0

= 10

3

, N

0




= 100, N

0

i

= 100, E = 2:5 � 10

�4

, k

i


=

10

�2

> k


i

= 10

�3

, k


n

= 10

�6

. (a) Fast elimination of the 
an
er 
ells: N

end




= 0. (b)

Coexisten
e: The immune system 
ontrols the tumor for the duration of the simulation:

N

end




N

end

i

6= 0. (
) Es
ape of 
an
er from immunosurveillan
e: N

end

i

= 0 and the number

of 
an
er 
ells diverges.


an
er es
ape from immune system 
ontrol.

In the next se
tions, we provide a 
omprehensive overview of the e�e
t of all the rele-

vant parameters on the evolution of the number, N




, of 
an
er 
ells and, N

i

, of immune

system 
ells, in order to propose a possible optimization strategy of 
an
er immuno-

surveillan
e. The rate 
onstant k


n

, whi
h 
ontrols the intera
tion between 
an
er 
ells

and normal 
ells, is �xed at a lower value than k

i


and k


i

ex
ept otherwise stated. Indeed,

small values of k


n

prevent the proliferation of the total number of 
ells and better reveal

the sensitivity of the system to the other parmeters. The e�e
t of k


n

variation is studied

in se
tion 7.
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3 E�e
t of the �eld E of the thermostat

The �eld E 
ontrols the a
tivity dissipation related to the memory loss in the pro
ess of


ell learning. The e�e
t of the thermostat mimi
s natural 
ell death, whi
h removes high

a
tivity 
ells from the system as well. The role of moderator played by the thermostat in

the model also reprodu
es the a
tion of regulatory T 
ells, able to modulate the immune

system by downregulating proliferation and a
tivation of T 
ells. The probabilities of

o

urren
e of the three di�erent behaviors shown in Fig. 1 are given in Fig. 2 for variable

di�erent values of E.

In the limit of no dissipation, i.e. as E tends to 0, only the two extreme 
ases asso
iated

with either N

end




= 0 or N

end

i

= 0 are observed. For E < 10

�4

, 20% of the simulated 
ases

lead to 
an
er elimination, whereas 
an
er proliferates in 80% of the 
ases. The 
onditions

for modifying the respe
tive per
entages of 
an
er elimination and proliferation will be

dis
ussed in se
tion 6. As illustrated in Fig. 1a, the 
ases leading to N

end




= 0 are observed

as a 
u
tuation a

identally indu
es the vanishing of N




. The number of immune system


ells then remains equal to the value rea
hed at the time for whi
h N




vanishes. This

event may arise at short times, sin
e the number of 
an
er 
ells rapidly rea
hes small

values in the 
hosen 
onditions, in parti
ular, for k

i


> k


i

. The in
uen
e of the rate


onstant values on the behavior of the system will be studied in se
tion 5. As illustrated

in Fig. 1
, the 
ases 
orresponding to N

end

i

= 0 surprisingly o

ur after the in
rease

of the number of immune system 
ells. However, the in
rease of N

i

is asso
iated with

the in
rease of anti
orrelated 
u
tuations for N

i

and N




: A large 
u
tuation indu
ing a

large de
rease and vanishing of N

i

may o

ur before the end of the simulation. On
e N

i

vanishes, 
an
er 
ells proliferate and N




diverges. Figure 1
 gives an example of the three

E's of immunoediting [9℄: On a very short time s
ale, 
an
er seems to be eliminated, then

remains at quasiequilibrium, but �nally es
apes from immunosurveillan
e.

In the limit of large dissipation, for E > 4�10

�4

, all the simulated traje
tories lead to

the same type of �nal state with nonvanishing numbers of 
an
er 
ells and immune system


ells, as shown in Fig. 2. For suÆ
iently large values of the �eld E, eÆ
ient thermalization

10



de
reases the 
u
tuation level of the a
tivity u: The risk of observing a large 
u
tuation

indu
ing either N




= 0 or N

i

= 0 during the simulation time is smaller. The system is

stabilized in an apparently stationary state with slightly 
u
tuating nonvanishing values

of N




and N

i

. The nondiverging �nal values of the numbers of 
an
er 
ells and immune

system 
ells and the maximum values rea
hed during the simulation time are displayed

in Fig. 2 for variable E values in the two most probable 
ases. The 
ases leading to

N

end




= 0 are omitted. In the limit of no dissipation, for E < 10

�4

, the maximum number

N

max

i

of immune system 
ells is large 
ompared to the �nal value N

end

i

= 0, whereas, for

large �eld values E > 4�10

�4

, the �nal number N

end

i

and the maximum number N

max

i

of

immune system 
ells nearly 
oin
ide. It is also 
lear in Fig. 2 that, for E > 4� 10

�4

and

k

i


> k


i

, the �nal number N

end

i

of immune system 
ells is larger than the �nal number

N

end




of 
an
er 
ells. This point will be addressed again in se
tion 5.

A

ording to Fig. 2, an abrupt bifur
ation o

urs for a 
riti
al value E


r

� 2:5� 10

�4

of the �eld: For small �eld values, E < E


r

, 80% of the 
ases end with N

end

i

= 0 and


an
er proliferates. For large �eld values, E > E


r

, all the 
ases lead to a 
ontrol of the

tumor. As expe
ted, the 
u
tuations are ampli�ed in the vi
inity of the bifur
ation and

N

max

i

in
reases 
lose to E


r

[26℄. Figure 3 gives the distributions of the waiting time t

i

for

rea
hing N

end

i

= 0 in the domain E < E


r

. The distributions be
ome larger as E ! E


r

and the in
rease of the mean waiting time ht

i

i is made expli
it in Fig. 3.

As a result, we 
on
lude that the e�e
t of thermalization, i.e. the 
ontrol of a
tivity


u
tuations, is favorable to 
an
er surveillan
e. For values of the �eld E larger than

a 
riti
al value, the 
an
er 
ells are not eliminated but their number remains bounded

during the simulation time, interpreted as the life expe
tan
y of the patient. The 
an
er

is 
ontrolled in a suÆ
iently dissipative system where the 
u
tuations of a
tivity are

regulated. Dissipation of a
tivity o

urs through 
ell death. Although regulatory T


ells are known to suppress T 
ell and hinder the immune response against 
an
er, their

thermalizing role 
ould explain why high levels of regulatory T 
ells may be asso
iated

with a positive prognosis, for example in the 
ase of 
olore
tal 
ar
inoma and folli
ular

11



lymphoma [27, 28℄.

4 E�e
t of the total initial number N

0

of 
ells

The initial number of normal 
ells, N

0

n

, mimi
s the size of the organ a�e
ted by the

tumor. Assuming that the initial numbers of immune system 
ells, N

0

i

, and 
an
er 
ells,

N

0




, are small 
ompared to N

0

n

, we vary the total number of 
ells N

0

= N

0

n

+N

0

i

+N

0




at


onstant N

0

i

and N

0




in order to evaluate the impa
t of the organ size on 
an
er evolution.

The spe
i�
 e�e
ts of N

0

i

and N

0




will be dis
ussed in se
tion 6. The sensitivity of the

system to N

0

is enhan
ed in the vi
inity of the bifur
ation, 
lose to the 
riti
al value

E


r

� 2:5 � 10

�4

of the thermalizing �eld. Figure 4 shows the in
uen
e of N

0

on the

behavior of the system for E � E


r

. The probability for observing a total elimination of

the 
an
er does not 
hange and remains equal to 20% regardless of the value of N

0

. A

bifur
ation o

urs for a 
riti
al value N

0;
r

� 10

3

of the initial number of 
ells: 80% of the


ases lead to 
an
er proliferation (N

end

i

= 0) for large initial numbers of 
ells, N

0

> N

0;
r

,

and to 
an
er 
ontrol (N

end

i

N

end

i

6= 0) for small initial numbers of 
ells, N

0

< N

0;
r

. This

result may seem 
ounterintuitive, sin
e the 
u
tuations usually regress in the so-
alled

thermodynami
 limit, asso
iated with large values of the total number of parti
les. For

small values of the rate 
onstant k


n

asso
iated with the 
ontamination of normal 
ells by


an
er 
ells, the �nal total number N of 
ells remains 
lose to the initial number N

0

. The

behavior observed in Fig. 4 for N

0

� N

0;
r

and E � E


r

is 
lose to the one obtained in

Fig. 2 for N

0

� N

0;
r

and E � E


r

. Analogously, the behavior observed for N

0

� N

0;
r

and E � E


r

is 
lose to the one obtained for N

0

� N

0;
r

and E � E


r

. Hen
e, de
reasing

the total initial number N

0

of 
ells has a similar e�e
t as in
reasing the thermalizing �eld

E. The same 
on
lusion holds when 
omparing the variation of the mean waiting time

ht

i

i for rea
hing N

end

i

= 0 in Fig. 3 and Fig. 5. A better thermalization and smaller


u
tuations are obtained in a small system, as 
on�rmed by the smaller maximum values

N

max

i

rea
hed as N

0

de
reases in Fig. 5. A better 
ontrol of the tumor is then a
hieved

when the number of 
ells that 
an be potentially damaged is smaller.
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(a)

(b)

Figure 2: (a) Probability of o

urren
e of the three 
ases shown in Fig. 1 for k

i


=

10

�2

> k


i

= 10

�3

versus 
ommon logarithm log

10

(E) of the �eld E asso
iated with the

thermostat. Solid line and solid squares: Elimination of the 
an
er 
ells (N

end




= 0).

Dotted line and 
rosses: Control of the 
an
er (N

end




N

end

i

6= 0). Dashed line and open

squares: Es
ape of 
an
er from immunosurveillan
e (N

end

i

= 0). (b) Final and maximum

values of di�erent numbers of 
ells versus 
ommon logarithm log

10

(E) in the two most

probable 
ases leading either to N

end




N

end

i

6= 0 or to N

end

i

= 0. Dashed line: Final values

of the number N

end

i

of immune system 
ells. Solid line: Final values of the number N

end




of 
an
er 
ells. Open squares: Maximum values of the number N

max

i

of immune system


ells. Solid squares: Maximum values of the number N

max




of 
an
er 
ells. The other

parameter values are given in the 
aption of Fig. 1.
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(a)

(b)

Figure 3: (a) Distributions of waiting times t

i

for rea
hing N

end

i

= 0 for di�erent values

of the �eld E asso
iated with the thermostat, E = 10

�5

(bla
k), E = 6 � 10

�5

(blue),

E = 10

�4

(
yan), E = 1:5� 10

�4

(green), E = 2� 10

�4

(magenta), and E = 2:5� 10

�4

(red). (b) Mean waiting time ht

i

i for rea
hing N

end

i

= 0 versus �eld E asso
iated with the

thermostat. The other parameter values are given in the 
aption of Fig. 1, in parti
ular,

N

0

= 10

3

.
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Figure 4: Probability of o

urren
e of the three 
ases shown in Fig. 1 versus 
ommon

logarithm log

10

(N

0

) of the total initial number of 
ells. Solid line and solid squares:

Elimination of the 
an
er 
ells (N

end




= 0). Dotted line and 
rosses: Control of the tumor

(N

end




N

end

i

6= 0). Dashed line and open squares: Es
ape of 
an
er from immunosurveil-

lan
e (N

end

i

= 0). The other parameter values are given in the 
aption of Fig. 1, in

parti
ular, E = 2:5� 10

�4

.

Hen
e, the results of the model for di�erent initial numbers N

0

of 
ells and 
lose to

the 
riti
al value of the thermalizing �eld satisfa
torily reprodu
e that a tumor, spe
i�


to an organ and without risk of dissemination, is more likely to be defeated. It is worth

noting that the sensitivity of the system to N

0

disappears for non
riti
al �eld values.

5 E�e
t of the rate 
onstants k

i


and k


i

The rate 
onstant k

i


is asso
iated with the auto
atalyti
 produ
tion of immune system


ells a

ording to Eq. (3) and the rate 
onstant k


i

is asso
iated with the auto
atalyti


produ
tion of 
an
er 
ells a

ording to Eq. (4). The 
omparison between Fig. 2, obtained

for k

i


= 10

�2

and k


i

= 10

�3

, and Fig. 6, obtained for k

i


= 10

�3

and k


i

= 10

�2

, reveals

that a bifur
ation o

urs for the same 
riti
al value E = E


r

of the �eld. The probabilities

for observing a �nal state with nonvanishing numbers of immune system 
ells and 
an
er


ells vary in the same way, regardless of the ex
hange of the values of k

i


and k


i

. For

suÆ
iently large values E � E


r

of the �eld, 
an
er 
ontrol is observed in 100% of the

15



(a)

(b)

Figure 5: (a) Mean waiting time ht

i

i for rea
hing N

end

i

= 0 versus total initial number

N

0

of 
ells. (b) Maximum value N

max

i

of the number of immune system 
ells rea
hed

during the evolution versus total initial number N

0

of 
ells. The other parameter values

are given in the 
aption of Fig. 1, in parti
ular, E = 2:5� 10

�4

.
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ases. For E � E


r

, the order relation between the �nal numbers of 
ells, N

end




and

N

end

i

, is intuitive: As shown in Fig. 6, a value of the rate 
onstant k


i

asso
iated with

the auto
atalyti
 produ
tion of 
an
er 
ells larger than k

i


leads to �nal values N

end




of


an
er 
ells larger than the �nal values N

end

i

of immune system 
ells. Without surprise,

the 
ase k

i


> k


i

studied in Fig. 2 is leading to the opposite result.

For small values, E � E


r

, of the �eld, the ex
hange between the values of k

i


and k


i

leads to the ex
hange between the probabilities of o

urren
e of N

end




= 0 and N

end

i

= 0.

In parti
ular, 20% of the 
ases lead to 
an
er elimination (N

end




= 0) if k

i


> k


i

and to

destru
tion of all immune system 
ells (N

end

i

= 0) if k

i


< k


i

. Similarly, for E � E


r

,

80% of the 
ases lead to N

end

i

= 0 if k

i


> k


i

and to N

end




= 0 if k

i


< k


i

. A larger

value of the rate 
onstant k


i

asso
iated with the produ
tion of 
an
er 
ells a

ording to

Eq. (4) is more favorable to 
an
er eradi
ation. This 
ounterintuitive result is obtained

for an ineÆ
ient thermostat, for whi
h larger 
ell numbers are 
orrelated with larger


u
tuations, i.e. larger N

max




values as shown in Fig. 6. Consequently, the probability

that an a

idental 
u
tuation leads to N

end




= 0 is larger for k

i


< k


i

. Similarly, the

probability that a 
u
tuation leads to N

end

i

= 0 is larger for k

i


> k


i

.

Hen
e, a larger produ
tion rate of immune system 
ells is favorable to 
an
er 
ontrol in

a well-regulated system. The �nal numbers of 
an
er 
ells remain smaller than the number

of immune system 
ells for k

i


> k


i

and E > E


r

: Can
er is well 
ontrolled during life

expe
tan
y when immune system 
ells rapidly form. If the e�e
t of the regulatory T


ells is small or, more generally, if dissipation is too weak, stimulating the produ
tion of

immune system 
ells may be 
ounterprodu
tive. Opposite results from those sought may

be a
hieved, due to large 
u
tuations of 
ell number and a
tivities, leading to probable

vanishing of the number of immune system 
ells and 
an
er proliferation.
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(a)

(b)

Figure 6: (a) Probability of o

urren
e of three typi
al evolutions versus 
ommon loga-

rithm log

10

(E) of the �eld E asso
iated with the thermostat. Solid line and solid squares:

Elimination of the 
an
er 
ells (N

end




= 0). Dotted line and 
rosses: Control of the tumor

(N

end




N

end

i

6= 0). Dashed line and open squares: Es
ape of 
an
er from immunosurveil-

lan
e (N

end

i

= 0). (b) Final and maximum values of di�erent number of 
ells versus


ommon logarithm log

10

(E) in the two most probable 
ases observed in the top sub�gure.

Dashed line: Final values of the number N

end

i

of immune system 
ells. Solid line: Final

values of the number N

end




of 
an
er 
ells. Open squares: Maximum values of the number

N

max

i

of immune system 
ells. Solid squares: Maximum values of the number N

max




of


an
er 
ells. Same parameter values as in Fig. 2 ex
ept k

i


= 10

�3

< k


i

= 10

�2

.
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6 E�e
t of the initial numbers N

0




of 
an
er 
ells and

N

0

i

of immune system 
ells

The initial number N

0




of 
an
er 
ells mimi
s the size of the tumor at the instant where im-

munotherapy starts with N

0

i

immune system 
ells. Close to the 
riti
al value, N

0;
r

� 10

3

,

of the initial number of 
ells and for a small �eld value, E � E


r

, the probabilities of o
-


urren
e of the three 
ases, 
an
er elimination (N

end




= 0), 
an
er 
ontrol (N

end




N

end

i

6= 0),

and 
an
er proliferation (N

end

i

= 0), vary with the initial numbers N

0




of 
an
er 
ells and

N

0

i

of immune system 
ells, as shown in Fig. 7. More pre
isely, for the 
hosen param-

eter values, the probability for observing N

end




N

end

i

6= 0 remains equal to 0, regardless

of the values of N

0




and N

0

i

. The probability for obtaining N

end

i

= 0 monotoni
ally

de
reases as N

0

i

in
reases and N

0




de
reases. The probability for obtaining N

end




= 0

monotoni
ally in
reases as N

0

i

in
reases and N

0




de
reases. In the whole range of varia-

tion, 0 < N

0




< N

0

� N

0

i

and 0 < N

0

i

< N

0

� N

0




, of the initial 
ell numbers, very 
lose

values of the probabilities of o

urren
e of the di�eren
e 
ases are found for 
onstant

(N

0

i

)

2

=N

0




values. It means that, under ineÆ
ient regulation 
onditions, a �rst patient

with initially N

0





an
er 
ells and N

0

i

immune system 
ells and a se
ond patient, whi
h

has initially four times the number of 
an
er 
ells, have the same 
han
e to eradi
ate


an
er provided the initial number of immune system 
ells of the se
ond patient is twi
e

as large as N

0

i

.

As shown in Fig. 7 for the same parameter values but in a well-thermostatted system

with a large �eld E � E


r

, the probabilities of o

urren
e of the three di�erent 
ases

remain un
hanged as N

0




and N

0

i

vary. In the entire domain of explored (N

0

i

)

2

=N

0




values,

nearly 100% of the 
ases lead to 
an
er 
ontrol with N

end




N

end

i

6= 0. Figure 8 makes

expli
it how the �nal values N

end




and N

end

i

vary as N

0




and N

0

i

are 
hanged. We �nd

that the value of N

end

i

remains small and un
hanged whereas N

end




varies like N

0

i

+ N

0




.

Contrary to intuition, a larger initial value N

0

i

of immune system 
ells leads to a larger

�nal value N

end




of 
an
er 
ells. This result is a
tually obtained in the 
ase where the rate


onstant k

i


asso
iated with the produ
tion of immune system 
ells is smaller than the
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rate 
onstant k


i

asso
iated with the produ
tion of 
an
er 
ells, as already shown in Fig.

6 and dis
ussed in se
tion 5. For the same parameter values but k

i


> k


i

, N

end




remains

small and 
onstant as N

end




and N

end

i

vary and N

end

i

is 
lose to N

0

i

+N

0




.

7 E�e
t of the rate 
onstant k


n

The rate 
onstant k


n


ontrols the rate of the auto
atalyti
 produ
tion of 
an
er 
ells

from the intera
tion between a 
an
er 
ell and a normal 
ell. When the mutation o

urs,

the reservoir S is soli
ited to inje
t a new normal 
ell into the system, whi
h in
reases

the total number of 
ells. The results given in the previous se
tions are obtained for the

value k


n

= 10

�6

, smaller than the 
onsidered values of the rate 
onstants k

i


and k


i

. We

now examine the properties of the system for a larger value k


n

= 10

�3

, of the order of

magnitude of k

i


and k


i

. A

ording to Fig. 6 obtained for k


n

= 10

�6

and omitting the

less probable 
ase ending with N

end

i

= 0, we �nd that dynami
s is ending with N

end




= 0

for E < E


r

and with N

end




N

end

i

6= 0 for E > E


r

. Su
h a bifur
ation does not exist for

k


n

= 10

�3

and all the simulated traje
tories end with N

end




N

end

i

6= 0, regardless of the

�eld value. As shown in Fig. 9, a transition is nevertheless observed for E

tr

' 10

�2

, with

large values of N

end




andN

end

i

for E < E

tr

and small values of N

end




andN

end

i

for E > E

tr

.

Hen
e, large k


n

values lead to a 
onsiderable in
rease of the total number of 
ells N

for small �eld values, E < E

tr

. A priori, large values of k


n

may be suspe
ted of indu
ing

proliferation of 
an
er 
ells. However, large k


n

values favor the fast introdu
tion of new

normal 
ells with an a
tivity 
lose to the mean value and the fast destru
tion of low a
-

tivity normal 
ells. The de
rease of the relative a
tivity between 
an
er 
ells and immune

system 
ells 
ounterbalan
es the in
rease of k


n

, so that the produ
tion rate of 
an
er


ells remains bounded. Larger values of both N




and N

i

lead to smaller 
u
tuations of

these quantities and smaller risk that the evolution ends with vanishing or diverging N




values.
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(a)

(b)

Figure 7: (a) Probability of o

urren
e of three typi
al evolutions versus 
ommon log-

arithm log

10

((N

0

i

)

2

=N

0




) for N

0

= 10

3

, E = 10

�5

, k

i


= 10

�3

< k


i

= 10

�2

. Solid line

and solid squares: Elimination of the 
an
er 
ells (N

end




= 0). Dotted line and 
rosses:

Control of the tumor (N

end




N

end

i

6= 0). Dashed line and open squares: Es
ape of 
an
er

from immunosurveillan
e (N

end

i

= 0). (b) Same 
aption for ex
ept E = 10

�2

.
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Figure 8: Variation of the �nal numbers of 
an
er 
ells, N

end




, and immune system 
ells,

N

end

i

, versus the sum N

0




+ N

0

i

of the initial numbers of 
an
er 
ells, N

0




, and immune

system 
ells, N

0

i

in the 
ase where N

end




N

end

i

6= 0. The parameter take the following values

N

0

= 10

3

, E = 10

�2

, k

i


= 10

�3

< k


i

= 10

�2

.

On the 
ontrary, the �nal number of 
ells remains 
lose to the initial one N

0

for

E > E

tr

. Then, the behavior is similar to the one observed in Fig. 6 for E > E


r

and

k


n

= 10

�6

: 100% of the simulated traje
tories end with N

end




N

end

i

6= 0, N

end

i

� N

end




and N

end




' N

0




+ N

0

i

for k

i


< k


i

, regardless of the value of the rate 
onstant k


n

. In

addition, above E

tr

, the symmetry between the ex
hange of k

i


and k


i

, on the one hand,

and the ex
hange of N

end

i

and N

end




, on the other hand is observed, for small as for large

k


n

values. Simply, as k


n

de
reases, the transition o

urs for a larger value E

tr

of the �eld.

To sum up this se
tion, we note that the behavior of the system is not sensitive to

the value of the rate 
onstant k


n

, provided that the �eld is suÆ
iently large. For an

ineÆ
ient thermostat E < E

tr

and for k

i


< k


i

, small k


n

values may predominantly

lead to unexpe
ted re
overy as shown in Fig. 6, but large k


n

values result in the more

intuitive development of the tumor with �nal values N

end




of 
an
er 
ells mu
h larger than

the initial total number of 
ells, N

0

, as shown in Fig. 9. It is worth noting that, however,

N

end




does not diverge. Large k


n

values a
t as a thermostat with respe
t to the 
ontrol
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Figure 9: Final and maximum values of di�erent numbers of 
ells versus 
ommon loga-

rithm log

10

(E) for the same parameter values (N

0

= 10

3

, N

0




= 100, N

0

i

= 100, k

i


= 10

�3

,

k


i

= 10

�2

) as in Fig. 6 ex
ept k


n

= 10

�3

. The time step is set to �t = 0:01 for

E 2 [0:011℄. Dashed line: Final values of the number N

end

i

of immune system 
ells. Solid

line: Final values of the number N

end




of 
an
er 
ells. Open squares: Maximum values of

the number N

max

i

of immune system 
ells. Solid squares: Maximum values of the number

N

max




of 
an
er 
ells.

of the number of 
ells. Analogous 
on
lusions hold for k

i


> k


i

, provided N

end




and N

end

i

are ex
hanged. Large �eld values E > E

tr

are favorable to the 
ontrol of the tumor and

warrant small �nal numbers N

end




of 
an
er 
ells that are independent of k


n

.

8 Con
lusion

In this paper, the intera
tions between a tumor and the immune system are des
ribed at

the 
ell s
ale in the framework of thermostatted kineti
 theory. We 
hoose a model of 
ell

intera
tions having already given qualitative a

ount of the three 3E's of immunoediting

[9℄: Elimination, equilibrium, and es
ape from immune system 
ontrol are reprodu
ed [22℄.

Cell intera
tions may modify 
ell type and 
ell a
tivity, a quantity a

ounting for the level

of learning of immune system 
ells exposed to antigens as well as the degree of invisibility

rea
hed by 
an
er 
ells. Interestingly, memory loss related to 
ell death and regulation

of the immune system are reprodu
ed by the e�e
t of a "thermostat", whi
h regulates
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a
tivity 
u
tuations in an analogous way as an a
tual thermostat 
ontrols temperature


u
tuations. An algorithm inspired by the dire
t simulation Monte Carlo method [13, 23℄

is used to numeri
ally solve the kineti
 equations for the probability densities of normal


ells, 
an
er 
ells, and immune system 
ells. The simulations generate sto
hasti
 traje
-

tories for the numbers of 
ells and the a
tivity of the system. We study the e�e
t of the

various parameters of the model on the dynami
s of the system. The total initial number

of 
ells, the initial numbers of 
an
er 
ells and immune system 
ells, the rate 
onstants,

and the �eld of the thermostat are varied. The e�e
t on the �nal numbers of 
an
er 
ells

and immune system 
ells are dis
ussed.

A

ording to the results, the key parameters a

ounting for di�erent behaviors ob-

served in immunotherapy are the rate 
onstant k


n

asso
iated with the intera
tions be-

tween a 
an
er 
ell and a normal 
ell and the �eld E of the thermostat. These two

parameters have similar, nonintuitive e�e
ts, related to their 
ontrol of 
u
tuations. If

either k


n

or E is large, the �nal number of 
an
er 
ells N

end




never diverges. For large k


n

values, the total number of 
ells sensitively in
rease, due to the in
rease of the number

of either 
an
er 
ells if k


i

is large or immune system 
ells if k

i


is large. Then, the usual

de
rease of 
u
tuation level is observed in the presen
e of a large number of intera
ting

obje
ts. A large �eld E, i.e. an eÆ
ient thermostat, leads to a good 
ontrol of a
tivity

varian
e, suppresses large 
u
tuations of 
ell a
tivities and numbers. The probability to

a

identally observe a vanishing �nal number of immune system 
ells N

end

i

= 0 de
reases

and the �nal number of 
an
er 
ells N

end




unlikely diverges. The positive impa
t of the

thermostat on 
an
er 
ontrol 
ompares well with 
lini
al observations. Indeed, patients

with high levels of regulatory T-
ell expression have a better 
han
e of healing in the 
ase

of 
olore
tal 
ar
inoma and folli
ular lymphoma [27, 28℄. Although regulatory T 
ells

de
rease the number of immune system 
ells, their positive impa
t on the disease 
an be

interpreted as a 
ontrol over 
ell number and 
onsequently, a thermalizing role. For larger

values of E, the �nal state is less sensitive to the other parameters and even independent
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of the initial number of 
ells N

0

. Expe
ted results are then obtained: A more favorable

out
ome, i.e. a smaller �nal number of 
an
er 
ells N

end




, is obtained for (i) a larger rate


onstant k

i


asso
iated with the produ
tion of immune system 
ells than the rate 
onstant

k


i

asso
iated with the produ
tion of 
an
er 
ells, (ii) a smaller initial number of 
an
er


ells N

0




, (iii) a larger initial number of immune system 
ells N

0

i

provided N

0

i

in
reases as

p

N

0




.

On the 
ontrary, for small values of both the �eld E and the rate 
onstant k


n

, large


u
tuations develop. Contrary to usual �ndings, a smaller initial total number of involved


ells N

0

then leads to smaller 
u
tuations of the di�erent 
ell numbers and a smaller risk

to a

identally end with N

end

i

= 0. The 
ase k

i


> k


i

, although asso
iated with the faster

produ
tion of immune system 
ells, is unfavorable be
ause larger values of the number

N

i

of immune system 
ells 
orrelate with larger 
u
tuations of this quantity and, 
onse-

quently, an in
reased probability to observe a vanishing �nal number of immune system


ells N

end

i

= 0. Thermalization mimi
s dissipation of information and small thermaliza-

tion reprodu
es 
ells with long lifespan or eÆ
ient learning, for immune system 
ells but

also 
an
er 
ells. This last result may explain the poor performan
e of immunotherapy in

the 
ase of some patients, for whi
h mutations of 
an
er 
ells, all the more likely as 
ell

life is long, may indu
e adaptive resistan
e to the treatment [29℄.

In 
on
lusion, our model of 
ell intera
tions based on thermostatted kineti
 theory a
-


ounts for observed 
lini
al behaviors, in
luding unexpe
ted healing indu
ed by weakened

immune defenses as well as proliferation of the tumor in spite of favored produ
tion of

immune system 
ells.

Appendix: Kineti
 equations governing the evolution

of the distribution fun
tions asso
iated with the three

kinds of 
ells

Distribution fun
tions f

j

(t; u) depending on time and a
tivity for ea
h kind of 
ells j =

n; i; 
 are introdu
ed in the framework of kineti
 theory. A

ording to the thermostatted
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kineti
 approa
h introdu
ed in referen
es [19, 20, 21℄, the time evolution of the distribution

fun
tions f

j

(t; u) obey:

�

t

f

j

(t; u) + �

u

(F (u)f

j

) = I

j

(8)

where F (u) is asso
iated with the thermostat and I

j

is the intera
tion term a�e
ting the


ells of type j and resulting from the pro
esses given in Eqs. (2-4). Spe
i�
ally, the

intera
tion term I




related to the 
an
er 
ells is given by:

I




=

Z

R

+

k


n

(u� �� u

0

)H(u� �� u

0

)f




(t; u� �)f

n

(t; u

0

)du

0

(9)

+

Z

R

+

k


n

(u

0

� u)H(u

0

� u)f




(t; u

0

)f

n

(t; u)du

0

�

Z

R

+

k

i


(u

0

� u)H(u

0

� u)f




(t; u)f

i

(t; u

0

)du

0

+

Z

R

+

k


i

(u� �� u

0

)H(u� �� u

0

)f




(t; u� �)f

i

(t; u

0

)du

0

+

Z

R

+

k


i

(u

0

� u)H(u

0

� u)f




(t; u

0

)f

i

(t; u)du

0

The �rst and se
ond integrals refer to the auto
atalyti
 generation of 
an
er 
ells by Eq.

(2), the third integral refers to the destru
tion of 
an
er 
ells a

ording to Eq. (3), and

the fourth and �fth integrals refer to the auto
atalyti
 produ
tion of 
an
er 
ells by Eq.

(4). Similarly, the intera
tion term I

i

asso
iated with the immune system 
ells is:

I

i

=

Z

R

+

k

i


(u� �� u

0

)H(u� �� u

0

)f




(t; u

0

)f

i

(t; u� �)du

0

(10)

+

Z

R

+

k

i


(u

0

� u)H(u

0

� u)f




(t; u)f

i

(t; u

0

)du

0

�

Z

R

+

k


i

(u

0

� u)H(u

0

� u)f




(t; u

0

)f

i

(t; u)du

0

The �rst and se
ond integrals refer to the auto
atalyti
 produ
tion of immune system


ells due to the pro
ess given in Eq. (3) and the third integral is related to tumor


ounteratta
k of immune system 
ells a

ording to Eq. (4). Finally, the intera
tion term

I

n

for the normal 
ells reads:

I

n

= �

Z

R

+

k


n

(u

0

� u)H(u

0

� u)f




(t; u

0

)f

n

(t; u)du

0

(11)

+ P (u)

Z

R

+

Z

R

+

k


n

(u

0

� u)H(u

0

� u

00

)f




(t; u

0

)f

n

(t; u

00

)du

0

du

00
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The �rst integral originates from the mutation of normal 
ells by the pro
ess given in

Eq. (2) and the se
ond integral a

ounts for the e�e
t of the sour
e of normal 
ells with

a
tivities distributed a

ording to the normalized distribution P (u) given in Eq. (1). By

integrating Eq. (8) over u for j = n, we obtain �

t

R

R

+

f

n

(t; u)du = 0 and 
he
k that the

density �

n

=

R

R

+

f

n

(t; u)du of normal 
ells is a
tually kept 
onstant.

Due to the mutation of normal 
ells into 
an
er 
ells and the simultaneous re-inje
tion

of normal 
ells into the system through the pro
ess given in Eq. (2), the total number of


ells in
reases. Hen
e, the sum of the intera
tion terms does not vanish:

X

j=n;i;


I

j

6= 0 (12)

and the se
ond moment of the a
tivity,

hu

2

i =

Z

R

+

u

2

X

j=n;i;


f

j

(t; u)du (13)

is not stri
tly 
onserved. However, in order to prevent an explosion of a
tivity 
u
tuations

and for the sake of simpli
ity, we introdu
e the same thermostat, as if the total number

of 
ells was 
onserved. By analogy with the 
oeÆ
ient of fri
tion � introdu
ed in Eqs.

(5,6), we look for a thermostat term in the form F (u) = E � �u in Eq. (8) and obtain:

F (u) = E

"

1� u

Z

R

+

u

 

X

j=n;i;


f

j

(t; u)

!

du

#

(14)

The integration of the distribution fun
tion f

j

(t; u) asso
iated with 
ell type j over the

a
tivity u gives the density of j 
ells. Ma
ros
opi
 equations for the densities of 
ells have

been derived by performing either a low-�eld or a high-�eld s
aling and 
onsidering the

related 
onvergen
e when the s
aling parameter goes to zero. Spe
i�
ally, we have proven

that the ma
ros
opi
 equations show di�usion with respe
t to both spa
e and a
tivity

in the low-�eld limit [20, 21℄. The dire
t simulation of the kineti
 equations provides

sto
hasti
 traje
tories for the number of 
ells. The simulations not only give a

ess to the

deterministi
 evolution of the densities of 
ells but also in
lude the des
ription of their


u
tuations.
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