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Abstract:
The interactions between a tumor and the immune system are modelled at cell scale in the
framework of thermostatted kinetic theory. Cell activation and learning are reproduced by
the increase of cell activity during interactions. The second moment of the activity of the
whole system is controlled by a thermostat which reproduces the regulation of the learning
process and memory loss through cell death. An algorithm inspired from the direct
simulation Monte Carlo (DSMC) method is used to simulate stochastic trajectories for the
numbers of cells and to study the sensitivity of the dynamics to various parameters. The
nonintuitive role played by the thermostat is pointed out. For inefficient thermalization,
the divergence of the number of cancer cells is obtained in spite of favored production
of immune system cells. Conversely, when the activity fluctuations are controlled, the
development of cancer is contained even for weakened immune defenses. These results

may be correlated to unexpected clinical observations in the case of different cancers, such



as carcinoma, lymphoma, and melanoma.



1 Introduction

The treatment of cancer by boosting the immune system is a recent and promising ther-
apeutic strategy [1, 2, 3]. Analogously to the immune system response to an infection,
specific white blood cells are activated in the presence of antigens located on the sur-
face of cancer cells [4, 5]. Recently, the role of dendritic cells as antigen presenting cells
(APC) has been established. Usually an APC ingests and decomposes a non-self cell (e.g.
pathogens, mushrooms) by isolating an antigen and presenting it to an immune system
cell, a T lymphocyte [6]. The presentation process of the antigen to the T cell triggers
the activation and then the proliferation of the T cells, thus allowing them to rid the
human body of harmful cells. During the learning process developed by the T cells, the
cancer cells can develop the ability to blend into the surrounding tissue and mislead the
immune system cells [7, 8]. Thus the normal activation process of the T cells may not be
sufficient to stop the onset and growth of the tumor. In particular, mutation processes
can allow the cancer cells to avoid the surveillance of the immune system. An apparent
elimination of the tumor may precede a long period of equilibrium, eventually followed by
the proliferation of the cancer cells, according to a process identified as ”the three E’s”

of immunoediting, for ”Elimination, Equilibrium and Escape” [9].

Kinetic theory appears as a suitable framework to model cancer and immune system
competition at the cell scale [10]. Originally designed to model dynamics of dilute gases
[11, 12, 13, 14, 15], kinetic theory has been applied to granular materials [10] and biolog-
ical systems [16]. The thermostatted kinetic theory has been proposed to model complex
biological systems [17, 18, 19, 20, 21]. Accordingly, the activation and the learning of
a cell are mimicked by increasing a quantity called activity and related to each cell. A
thermostat term is introduced to account for the regulation of cell activity, in the spirit
of the control of energy fluctuations in a dissipative system. Activity dissipation by the
thermostat during the process of cell learning can be related to the action of regulatory T

cells and natural cell death, which removes high activity cells from the system as well. Re-



cently the thermostatted kinetic theory has been employed to develop a minimal model
involving three types of cells. The results showed that the model is able to reproduce
the elimination of cancer cells, the equilibrium, and the escape from the immune system
surveillance [22]. From the perspective of cancer immunotherapy optimization, the aim of
the present paper is to perform a numerical sensitivity analysis, i.e. to study the impact
of changes in each parameter on the cancer-immune system competition [2]. In particular

the crucial role played by the thermostat term is pointed out.

The paper is organized as follows. Section 2 deals with the presentation of the model
and the simulation method inspired from direct simulation Monte Carlo (DSMC) [13, 23].
Sections 3 to 7 are devoted to the results of a numerical sensitivity analysis. Specifically,
the effect of the field of the thermostat is presented in Section 3, the total initial number of
cells in Section 4, the rate constants associated with the interactions between a cancer cell
and an immune system cell in Section 5, the initial numbers of cancer cells and immune
system cells in Section 6, and the rate constant associated with the interactions between
a cancer cell and a normal cell in Section 7. Finally, in section 8, we sum up the favorable
conditions in which the model predicts tumor control by the immune system and draw

conclusions in the context of cancer treatment.

2 The model

This section deals with the details of the model and the biological assumptions. Specif-
ically, three types of cells are commonly involved in the immune response, the antigen-
presenting cells, the T cells, and the B cells [4, 5]. A T cell is activated when it interacts
with an antigen-presenting cell [6]. A subset of activated T cells transforms the B cells
into plasma cells which secrete a large volume of antibodies. The antibodies then block
antigen sites on the surface of cancer cells. Activated T cells may also mutate into T-killer
cells, which destroy the cancer cells. When a cancer cell is killed, additional antigens are

released, stimulating activation and learning of new T cells and B cells. While the T



cells are activated, cancer cells also mutate and develop the ability to avoid detection and
destruction by the immune system. In particular, cancer cells may express proteins on
their surface that induce immune cell inactivation and promote cancer cell proliferation.
Finally, the regulatory T cells control the response of the immune system: They recognize
anti-body coated cancer cells and adapt the level of antibody secretion, i.e. the regulation
of the B-cell and the T-cell production and activation. In addition, cells have a limited

lifespan leading to some memory loss of the global activation process.

In order to take into account the immune system response to cancer cells, we have
recently proposed a minimal model of cell interactions and activation [19, 20, 21, 22].
Specifically, only three cell types are taken into consideration: Normal cells n, cancer
cells ¢, and immune system cells 7. Activation of both immune system cells and cancer
cells is reasonably assumed to occur during binary interactions, like for example during
the efficient contacts between a T cell and a dendritic cell with large surface-to-volume
ratio. In the model, the level of activation is translated into the value reached by a
quantity, u, accordingly named activity and carried by each cell. For an immune system
cell, activity measures the degree of learning, gained by exposure to antigen. For a cancer
cell, activity measures the degree of invisibility reached by mutation at the contact with
immune system cells. The system is assumed to be spatially homogeneous and initial cell
heterogeneity is reproduced by allocating to each cell an activity distributed according to

a sufficiently large Gaussian distribution

Plu) = — e‘<_f) (1)

o\ 21

of mean value p and standard deviation o.

For the sake of simplicity, we consider that, regardless of cell types, all the interactions
between two cells of different types systematically increase the activity by a same amount
e, for the cell with the largest activity u before interaction. The model introduces the

following processes with rates that are assumed to depend on the difference of activities



between the interacting cells:

ken(u —u')H(u —u')
c(u) +n(u') — c(u +€) + c(u)

S — n(u")
kic(u —u')H(u — u')
i(u) + e(u) — i(u+e€)+i(u) (3)

kei(u —uYH (u — u')
c(u) +i(u) — c(u+e)+c(u) (4)

where k.,, k;. and k. are rate constants. The two indices of a rate constant refer to
the two types of interacting cells, the first index corresponding to the type of the cell
with the largest activity. The Heaviside step function H(u — '), which is equal to 1 if
u > u' and otherwise vanishes, is introduced to ensure that only cell interactions with
appropriate activities are considered. Hence, cancer cells proliferation may result from
the interaction between a weakly activated cancer cell and a normal cell, as stated in Eq.
(2). The system is supposed to be open and in contact with a source S of normal cells
which maintains the number of normal cells constant. In order to mimic the strategy of
cancer cells to avoid detection by the immune system, the autocatalytic production of
cancer cells may also result from the interaction between a properly activated cancer cell
and a less activated immune system cell, according to Eq. (4). Equation (3) expresses
the attack of an activated killer T cell against a cancer cell and the subsequent T-cell

proliferation and activation.

Regulation of immune system response and memory loss of activation through cell
death are accounted for by a thermostat, so called by analogy with dissipation of energy
in a system maintained at constant temperature [17, 18]. Usually, mathematical models
for cancer-immune system competition derived within the kinetic theory framework are
proposed under the assumption that the system is not at equilibrium [24]. In order
to account for out-of-equilibrium conditions, the introduction of a thermostat term is

fundamental.



The thermostat is associated with a field F, aiming at controlling the second moment

(u?) of the activity of the total number of cells:
e E — au (5)

where the coefficient o reads:
_ Wk
- (u?)

The kinetic equations governing the time evolution of the distribution functions associ-

(6)

ated with the three kinds of cells j = n, i, ¢ are given in the appendix [22].

In order to numerically solve the kinetic equations and additionally reproduce the
internal fluctuations inherent to small systems, we have adapted the direct simulation
Monte Carlo (DSMC) method, originally designed to solve the Boltzmann equation for
dilute gases [13, 23]. The aim of the simulation is to follow the evolution of a small part
of an organ in which some cancer cells already appeared. The initial state of the system
is defined by the total number of cells N, the initial number, N?, of cancer cells, and the
initial number, N?, of immune system cells. The number N,, = N° — N — N? of normal
cells remains constant but the total number N of cells may increase. Time is discretized.
During the time step At, interactions between different types of cells and between the
cells and the thermostat are successively performed.

An upper bound for the number of binary interactions between N cells during At is
given by 7 = N(N — 1) ke Atimer At, where kg, is the maximum rate constant among
keny ki, ke; and where Ay, is the maximum positive difference between the activities u
and u' of two cells. First, r interactions between cells are tempted and accepted accord-
ing to their probability of occurrence. For example, in the case of the process stated in
Eq. (2), the interaction between a randomly chosen cell of cancer type c(u) and a ran-
domly chosen cell of normal type n(u') is rejected if v’ > u and accepted proportionally

Feen (u—u'

L if u > . Once the mutation of a normal cell n(u') into a cancer cell ¢(u)

to kmaz Atumaz

occurred, a normal cell n(u") is simultaneously introduced in the system with an activity

u” randomly chosen according to the probability P(u) given in Eq. (1). Hence, the total
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number N, of normal cells remains constant. After an interaction has been accepted, the
activities of the interacting cells and the numbers of cells of each type are updated as
required by the considered process. The maximum difference of activities, Aty,qz, 1S also

updated.

Then, each cell interacts with the thermostat associated with the field E. Following

Egs. (5,6), we perform the update of the activity of each cell at each time step:

u(t + At) = u(t) + AtE( — %u(t)) (7)

where (u) and (u?) are the mean value and the second moment of the activity of the whole
system, which are updated at each time step.

The direct simulation Monte Carlo algorithm of thermostatted cell interactions is
adapted to generate stochastic trajectories during a given total time t**? supposed to
mimic life expectancy of a patient. In most simulations, the total simulation time is set
to t*"®/At = 50000 and the time step, to At = 1. For large values of the thermalizing
field E ~ 1, we impose At = 1072, in order to satisfy the condition EAt < 1.

The Gaussian probability distribution P(u) of the initial cell activity stated in Eq.
(1) is characterized by the mean value ;= 0.5 and the standard deviation o = 0.2. The
increase of activity during the cell-cell interaction is equal to € = 1073, small compared
to the standard deviation o. As shown in Fig. 1, three different types of stochastic
trajectories are obtained for given parameter values, simply by changing the seed of the
random number generator. Figure 1a illustrates the case where the final number, N4 =
0, of the cancer cells vanishes and the final number, N, of immune system cells reaches
a stationary non-vanishing value. This case can be interpreted as cancer elimination by
the immune system. Figure 1b gives an example of coexistence, where N, (¢) and N;(t)
fluctuate around nonvanishing values until t**?: The immune system is said to control
the cancer during life expectancy. The paradoxical coexistence of cancer cells and T cells
remains a subject of debate [25]. In Fig. 1c, the final number, Nf"¢ = 0, of immune

system cells vanishes and the number of cancer cells diverges. This last case is typical of
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Figure 1: The three typical kinds of evolutions of the numbers, N, of cancer cells (red)
and numbers, N;, of immune system cells (blue) obtained for three different seeds of the
random number generator and N° = 103, N? = 100, N? = 100, £ = 2.5 x 1074, k;, =
1072 > ky = 1073, k., = 107%. (a) Fast elimination of the cancer cells: N¢*¢ = 0. (b)
Coexistence: The immune system controls the tumor for the duration of the simulation:
NendNend £ (), (¢) Escape of cancer from immunosurveillance: N = 0 and the number
of cancer cells diverges.

cancer escape from immune system control.

In the next sections, we provide a comprehensive overview of the effect of all the rele-
vant parameters on the evolution of the number, N., of cancer cells and, IV;, of immune
system cells, in order to propose a possible optimization strategy of cancer immuno-
surveillance. The rate constant k.,, which controls the interaction between cancer cells
and normal cells, is fixed at a lower value than k;. and k.; except otherwise stated. Indeed,
small values of k., prevent the proliferation of the total number of cells and better reveal

the sensitivity of the system to the other parmeters. The effect of k., variation is studied

in section 7.



3 Effect of the field E of the thermostat

The field E controls the activity dissipation related to the memory loss in the process of
cell learning. The effect of the thermostat mimics natural cell death, which removes high
activity cells from the system as well. The role of moderator played by the thermostat in
the model also reproduces the action of regulatory T cells, able to modulate the immune
system by downregulating proliferation and activation of T cells. The probabilities of
occurrence of the three different behaviors shown in Fig. 1 are given in Fig. 2 for variable
different values of E.

In the limit of no dissipation, i.e. as F tends to 0, only the two extreme cases associated
with either N*"® = 0 or N = 0 are observed. For E < 107, 20% of the simulated cases
lead to cancer elimination, whereas cancer proliferates in 80% of the cases. The conditions
for modifying the respective percentages of cancer elimination and proliferation will be
discussed in section 6. Asillustrated in Fig. 1a, the cases leading to N"® = 0 are observed
as a fluctuation accidentally induces the vanishing of N.. The number of immune system
cells then remains equal to the value reached at the time for which N, vanishes. This
event may arise at short times, since the number of cancer cells rapidly reaches small
values in the chosen conditions, in particular, for k;,. > k.. The influence of the rate
constant values on the behavior of the system will be studied in section 5. As illustrated
in Fig. 1lc, the cases corresponding to Nf"? = ( surprisingly occur after the increase
of the number of immune system cells. However, the increase of N; is associated with
the increase of anticorrelated fluctuations for N; and N.: A large fluctuation inducing a
large decrease and vanishing of N; may occur before the end of the simulation. Once N;
vanishes, cancer cells proliferate and N, diverges. Figure 1c gives an example of the three
E’s of immunoediting [9]: On a very short time scale, cancer seems to be eliminated, then
remains at quasiequilibrium, but finally escapes from immunosurveillance.

In the limit of large dissipation, for £ > 4 x 10~%, all the simulated trajectories lead to
the same type of final state with nonvanishing numbers of cancer cells and immune system

cells, as shown in Fig. 2. For sufficiently large values of the field F, efficient thermalization
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decreases the fluctuation level of the activity u: The risk of observing a large fluctuation
inducing either N, = 0 or N; = 0 during the simulation time is smaller. The system is
stabilized in an apparently stationary state with slightly fluctuating nonvanishing values
of N. and N;. The nondiverging final values of the numbers of cancer cells and immune
system cells and the maximum values reached during the simulation time are displayed
in Fig. 2 for variable E values in the two most probable cases. The cases leading to
Nemd = () are omitted. In the limit of no dissipation, for £ < 10~*, the maximum number
N of immune system cells is large compared to the final value N4 = 0, whereas, for
large field values E > 4 x 104, the final number Nf"? and the maximum number N of
immune system cells nearly coincide. It is also clear in Fig. 2 that, for £ > 4 x 10~* and
ki. > k., the final number Nf"d of immune system cells is larger than the final number
Nt of cancer cells. This point will be addressed again in section 5.

According to Fig. 2, an abrupt bifurcation occurs for a critical value E" ~ 2.5 x 1074
of the field: For small field values, E < E, 80% of the cases end with N = 0 and
cancer proliferates. For large field values, £ > E all the cases lead to a control of the
tumor. As expected, the fluctuations are amplified in the vicinity of the bifurcation and
N™ increases close to E“" [26]. Figure 3 gives the distributions of the waiting time ¢; for
reaching N = ( in the domain £ < E". The distributions become larger as £ — E°
and the increase of the mean waiting time (#;) is made explicit in Fig. 3.

As a result, we conclude that the effect of thermalization, i.e. the control of activity
fluctuations, is favorable to cancer surveillance. For values of the field F larger than
a critical value, the cancer cells are not eliminated but their number remains bounded
during the simulation time, interpreted as the life expectancy of the patient. The cancer
is controlled in a sufficiently dissipative system where the fluctuations of activity are
regulated. Dissipation of activity occurs through cell death. Although regulatory T
cells are known to suppress T cell and hinder the immune response against cancer, their
thermalizing role could explain why high levels of regulatory T cells may be associated

with a positive prognosis, for example in the case of colorectal carcinoma and follicular
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lymphoma [27, 28].

4 Effect of the total initial number N° of cells

The initial number of normal cells, N?, mimics the size of the organ affected by the
tumor. Assuming that the initial numbers of immune system cells, N7, and cancer cells,
N?, are small compared to N, we vary the total number of cells N = N° + N? + N? at
constant N? and N? in order to evaluate the impact of the organ size on cancer evolution.
The specific effects of NP and N? will be discussed in section 6. The sensitivity of the
system to N is enhanced in the vicinity of the bifurcation, close to the critical value
E ~ 2.5 x 107* of the thermalizing field. Figure 4 shows the influence of N° on the
behavior of the system for £ ~ E“". The probability for observing a total elimination of
the cancer does not change and remains equal to 20% regardless of the value of N°. A
bifurcation occurs for a critical value N%" ~ 103 of the initial number of cells: 80% of the
cases lead to cancer proliferation (N4 = 0) for large initial numbers of cells, N* > N
and to cancer control (Nfm¢N £ 0) for small initial numbers of cells, N° < N%¢. This
result may seem counterintuitive, since the fluctuations usually regress in the so-called
thermodynamic limit, associated with large values of the total number of particles. For
small values of the rate constant k., associated with the contamination of normal cells by
cancer cells, the final total number N of cells remains close to the initial number N°. The
behavior observed in Fig. 4 for N < N% and E ~ E is close to the one obtained in
Fig. 2 for N® ~ N% and E > E". Analogously, the behavior observed for N > N0
and E ~ E° is close to the one obtained for N® ~ N% and F < E". Hence, decreasing
the total initial number N° of cells has a similar effect as increasing the thermalizing field
E. The same conclusion holds when comparing the variation of the mean waiting time
(t;) for reaching N¢"? = 0 in Fig. 3 and Fig. 5. A better thermalization and smaller
fluctuations are obtained in a small system, as confirmed by the smaller maximum values
N7 reached as N° decreases in Fig. 5. A better control of the tumor is then achieved

when the number of cells that can be potentially damaged is smaller.
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Figure 2: (a) Probability of occurrence of the three cases shown in Fig. 1 for k;, =
1072 > ke = 1072 versus common logarithm log,,(F) of the field F associated with the
thermostat. Solid line and solid squares: Elimination of the cancer cells (N = 0).
Dotted line and crosses: Control of the cancer (NN =£ (). Dashed line and open
squares: Escape of cancer from immunosurveillance (N = 0). (b) Final and maximum
values of different numbers of cells versus common logarithm log,,(F) in the two most
probable cases leading either to N"*N¢m? £ 0 or to N = 0. Dashed line: Final values
of the number N of immune system cells. Solid line: Final values of the number N
of cancer cells. Open squares: Maximum values of the number N;/"* of immune system
cells. Solid squares: Maximum values of the number N*** of cancer cells. The other
parameter values are given in the caption of Fig. 1.
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N = 103.
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lance (N = 0). The other parameter values are given in the caption of Fig. 1, in
particular, £ = 2.5 x 1074,

Hence, the results of the model for different initial numbers N° of cells and close to
the critical value of the thermalizing field satisfactorily reproduce that a tumor, specific

to an organ and without risk of dissemination, is more likely to be defeated. It is worth

noting that the sensitivity of the system to N° disappears for noncritical field values.

5 Effect of the rate constants k;. and k£,

The rate constant k;. is associated with the autocatalytic production of immune system
cells according to Eq. (3) and the rate constant k; is associated with the autocatalytic
production of cancer cells according to Eq. (4). The comparison between Fig. 2, obtained
for k;, = 102 and k, = 1073, and Fig. 6, obtained for k;, = 1072 and k. = 102, reveals
that a bifurcation occurs for the same critical value £ = E°" of the field. The probabilities
for observing a final state with nonvanishing numbers of immune system cells and cancer
cells vary in the same way, regardless of the exchange of the values of k;. and k.. For

sufficiently large values E' > FE° of the field, cancer control is observed in 100% of the
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cases. For E > E“ the order relation between the final numbers of cells, N and
N is intuitive: As shown in Fig. 6, a value of the rate constant k, associated with
the autocatalytic production of cancer cells larger than k;. leads to final values N4 of
cancer cells larger than the final values N of immune system cells. Without surprise,
the case k;. > k. studied in Fig. 2 is leading to the opposite result.

For small values, £ < E", of the field, the exchange between the values of k;. and k,;
leads to the exchange between the probabilities of occurrence of N = 0 and N = 0.
In particular, 20% of the cases lead to cancer elimination (N = 0) if k;. > k. and to
destruction of all immune system cells (N#¢ = 0) if k;. < k;. Similarly, for £ < E",
80% of the cases lead to N = 0 if ki, > ke and to N = 0 if k;, < ke A larger
value of the rate constant k. associated with the production of cancer cells according to
Eq. (4) is more favorable to cancer eradication. This counterintuitive result is obtained
for an inefficient thermostat, for which larger cell numbers are correlated with larger
fluctuations, i.e. larger N"** values as shown in Fig. 6. Consequently, the probability
that an accidental fluctuation leads to N*¢ = 0 is larger for k;. < k.. Similarly, the
probability that a fluctuation leads to Nf"d = 0 is larger for k;. > k.

Hence, a larger production rate of immune system cells is favorable to cancer control in
a well-regulated system. The final numbers of cancer cells remain smaller than the number
of immune system cells for k;. > k., and E > E°: Cancer is well controlled during life
expectancy when immune system cells rapidly form. If the effect of the regulatory T
cells is small or, more generally, if dissipation is too weak, stimulating the production of
immune system cells may be counterproductive. Opposite results from those sought may
be achieved, due to large fluctuations of cell number and activities, leading to probable

vanishing of the number of immune system cells and cancer proliferation.
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values of the number N of cancer cells. Open squares: Maximum values of the number
N of immune system cells. Solid squares: Maximum values of the number N*** of
cancer cells. Same parameter values as in Fig. 2 except k;. = 1073 < k, = 1072,
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6 Effect of the initial numbers N of cancer cells and

N? of immune system cells

The initial number N? of cancer cells mimics the size of the tumor at the instant where im-
munotherapy starts with N immune system cells. Close to the critical value, N9 ~ 103,
of the initial number of cells and for a small field value, £ < E", the probabilities of oc-
currence of the three cases, cancer elimination (N = (), cancer control (N N¢nd £ (),
and cancer proliferation (N = 0), vary with the initial numbers N? of cancer cells and
N? of immune system cells, as shown in Fig. 7. More precisely, for the chosen param-
eter values, the probability for observing NN =£ () remains equal to 0, regardless
of the values of N2 and N?. The probability for obtaining N"* = 0 monotonically
decreases as N? increases and N decreases. The probability for obtaining N4 = 0
monotonically increases as N increases and N decreases. In the whole range of varia-
tion, 0 < N? < N® — N? and 0 < N? < N° — N?| of the initial cell numbers, very close
values of the probabilities of occurrence of the difference cases are found for constant
(N?)?/N? values. It means that, under inefficient regulation conditions, a first patient
with initially N? cancer cells and N? immune system cells and a second patient, which
has initially four times the number of cancer cells, have the same chance to eradicate
cancer provided the initial number of immune system cells of the second patient is twice
as large as N.

As shown in Fig. 7 for the same parameter values but in a well-thermostatted system
with a large field F > E, the probabilities of occurrence of the three different cases
remain unchanged as N? and N? vary. In the entire domain of explored (N?)?/N? values,
nearly 100% of the cases lead to cancer control with Ne"¥N¢d £ (. Figure 8 makes
explicit how the final values N and N vary as N? and N? are changed. We find
that the value of N remains small and unchanged whereas N varies like N? + N?.
Contrary to intuition, a larger initial value N of immune system cells leads to a larger
final value N of cancer cells. This result is actually obtained in the case where the rate

constant k;. associated with the production of immune system cells is smaller than the
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rate constant k.; associated with the production of cancer cells, as already shown in Fig.
6 and discussed in section 5. For the same parameter values but k. > k., N remains

c

small and constant as N and N vary and N¢™? is close to NP + N?.

7 Effect of the rate constant k.,

The rate constant k., controls the rate of the autocatalytic production of cancer cells
from the interaction between a cancer cell and a normal cell. When the mutation occurs,
the reservoir S is solicited to inject a new normal cell into the system, which increases
the total number of cells. The results given in the previous sections are obtained for the
value k., = 107, smaller than the considered values of the rate constants k;. and k.. We
now examine the properties of the system for a larger value k., = 1073, of the order of
magnitude of k;, and k.;. According to Fig. 6 obtained for k., = 107% and omitting the
less probable case ending with N = 0, we find that dynamics is ending with N"? = 0
for E < E and with NmdNend £ () for E > E°". Such a bifurcation does not exist for
ke = 1073 and all the simulated trajectories end with NN £ (0 regardless of the
field value. As shown in Fig. 9, a transition is nevertheless observed for £ ~ 102, with

large values of N* and N for E < E' and small values of N and N for E > E'.

Hence, large k., values lead to a considerable increase of the total number of cells N
for small field values, F < E'. A priori, large values of k., may be suspected of inducing
proliferation of cancer cells. However, large k., values favor the fast introduction of new
normal cells with an activity close to the mean value and the fast destruction of low ac-
tivity normal cells. The decrease of the relative activity between cancer cells and immune
system cells counterbalances the increase of k.,, so that the production rate of cancer
cells remains bounded. Larger values of both N, and N; lead to smaller fluctuations of
these quantities and smaller risk that the evolution ends with vanishing or diverging N,

values.
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Figure 7: (a) Probability of occurrence of three typical evolutions versus common log-
arithm log;,((N?)?/N?) for N* = 10*, E = 107°, k;. = 107% < k,; = 1072, Solid line
and solid squares: Elimination of the cancer cells (N = 0). Dotted line and crosses:
Control of the tumor (N N¢md =£ (). Dashed line and open squares: Escape of cancer
from immunosurveillance (N = 0). (b) Same caption for except E = 1072
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Figure 8: Variation of the final numbers of cancer cells, N°*¢, and immune system cells,
N versus the sum N2 + NP of the initial numbers of cancer cells, N2, and immune
system cells, N in the case where NN £ (. The parameter take the following values
N =103 E=10"2 ke =103 < ky,; = 1072,

On the contrary, the final number of cells remains close to the initial one N° for
E > E'. Then, the behavior is similar to the one observed in Fig. 6 for £ > E° and
ke = 1075 100% of the simulated trajectories end with Ne@Nend £ () Nfd < Nend
and Nce"d ~ NC0 + NZ-0 for k;. < k.;, regardless of the value of the rate constant k.,. In
addition, above E'", the symmetry between the exchange of k;, and k;, on the one hand,

and the exchange of N and N on the other hand is observed, for small as for large

k., values. Simply, as k., decreases, the transition occurs for a larger value E* of the field.

To sum up this section, we note that the behavior of the system is not sensitive to
the value of the rate constant k.,, provided that the field is sufficiently large. For an
inefficient thermostat £ < E' and for k. < k., small k., values may predominantly
lead to unexpected recovery as shown in Fig. 6, but large k., values result in the more
intuitive development of the tumor with final values N of cancer cells much larger than
the initial total number of cells, N, as shown in Fig. 9. It is worth noting that, however,

Nce"d does not diverge. Large k., values act as a thermostat with respect to the control
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Figure 9: Final and maximum values of different numbers of cells versus common loga-
rithm log,,(E) for the same parameter values (N° = 103, N? = 100, N = 100, k;. = 1073,
ke; = 1072) as in Fig. 6 except k., = 107%. The time step is set to At = 0.01 for
FE €[0.011]. Dashed line: Final values of the number N¢ of immune system cells. Solid
line: Final values of the number N of cancer cells. Open squares: Maximum values of
the number N/*** of immune system cells. Solid squares: Maximum values of the number
N of cancer cells.

of the number of cells. Analogous conclusions hold for k. > ki, provided Ne*¢ and N

are exchanged. Large field values E > FE' are favorable to the control of the tumor and

warrant small final numbers Nf“d of cancer cells that are independent of k.,.

8 Conclusion

In this paper, the interactions between a tumor and the immune system are described at
the cell scale in the framework of thermostatted kinetic theory. We choose a model of cell
interactions having already given qualitative account of the three 3E’s of immunoediting
[9]: Elimination, equilibrium, and escape from immune system control are reproduced [22].
Cell interactions may modify cell type and cell activity, a quantity accounting for the level
of learning of immune system cells exposed to antigens as well as the degree of invisibility
reached by cancer cells. Interestingly, memory loss related to cell death and regulation

of the immune system are reproduced by the effect of a ”thermostat”, which regulates
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activity fluctuations in an analogous way as an actual thermostat controls temperature
fluctuations. An algorithm inspired by the direct simulation Monte Carlo method [13, 23]
is used to numerically solve the kinetic equations for the probability densities of normal
cells, cancer cells, and immune system cells. The simulations generate stochastic trajec-
tories for the numbers of cells and the activity of the system. We study the effect of the
various parameters of the model on the dynamics of the system. The total initial number
of cells, the initial numbers of cancer cells and immune system cells, the rate constants,
and the field of the thermostat are varied. The effect on the final numbers of cancer cells

and immune system cells are discussed.

According to the results, the key parameters accounting for different behaviors ob-
served in immunotherapy are the rate constant k., associated with the interactions be-
tween a cancer cell and a normal cell and the field E of the thermostat. These two
parameters have similar, nonintuitive effects, related to their control of fluctuations. If
either k., or E is large, the final number of cancer cells N°*? never diverges. For large k.,
values, the total number of cells sensitively increase, due to the increase of the number
of either cancer cells if k; is large or immune system cells if k;. is large. Then, the usual
decrease of fluctuation level is observed in the presence of a large number of interacting
objects. A large field F, i.e. an efficient thermostat, leads to a good control of activity
variance, suppresses large fluctuations of cell activities and numbers. The probability to
accidentally observe a vanishing final number of immune system cells N = 0 decreases
and the final number of cancer cells N unlikely diverges. The positive impact of the
thermostat on cancer control compares well with clinical observations. Indeed, patients
with high levels of regulatory T-cell expression have a better chance of healing in the case
of colorectal carcinoma and follicular lymphoma [27, 28]. Although regulatory T cells
decrease the number of immune system cells, their positive impact on the disease can be
interpreted as a control over cell number and consequently, a thermalizing role. For larger

values of F, the final state is less sensitive to the other parameters and even independent
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of the initial number of cells N°. Expected results are then obtained: A more favorable
outcome, i.e. a smaller final number of cancer cells N is obtained for (i) a larger rate
constant k;. associated with the production of immune system cells than the rate constant
k.; associated with the production of cancer cells, (ii) a smaller initial number of cancer
cells N?, (iii) a larger initial number of immune system cells N provided N? increases as
NY.
On the contrary, for small values of both the field £ and the rate constant k., large
fluctuations develop. Contrary to usual findings, a smaller initial total number of involved
cells N? then leads to smaller fluctuations of the different cell numbers and a smaller risk
to accidentally end with Nf"d = 0. The case k;. > k.;, although associated with the faster
production of immune system cells, is unfavorable because larger values of the number
N; of immune system cells correlate with larger fluctuations of this quantity and, conse-
quently, an increased probability to observe a vanishing final number of immune system
cells N = (. Thermalization mimics dissipation of information and small thermaliza-
tion reproduces cells with long lifespan or efficient learning, for immune system cells but
also cancer cells. This last result may explain the poor performance of immunotherapy in
the case of some patients, for which mutations of cancer cells, all the more likely as cell
life is long, may induce adaptive resistance to the treatment [29].
In conclusion, our model of cell interactions based on thermostatted kinetic theory ac-
counts for observed clinical behaviors, including unexpected healing induced by weakened
immune defenses as well as proliferation of the tumor in spite of favored production of

immune system cells.

Appendix: Kinetic equations governing the evolution
of the distribution functions associated with the three

kinds of cells

Distribution functions f;(¢, ) depending on time and activity for each kind of cells j =

n, i, c are introduced in the framework of kinetic theory. According to the thermostatted
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kinetic approach introduced in references [19, 20, 21], the time evolution of the distribution
functions f;(t,u) obey:

0, fj(t, u) + 0u (F(u) fj) = I (8)

where F'(u) is associated with the thermostat and I; is the interaction term affecting the
cells of type j and resulting from the processes given in Eqs. (2-4). Specifically, the

interaction term I, related to the cancer cells is given by:

I, = / ken(u—e—uYH(u—¢e—u')fe(t,u—¢€)fp(t,u")du' (9)

R+

+ / oo (' — W) H (6 — ) Lot o) fo (1, )t
R+

[ bl = ) H = )t il
R+

+ / keif(u—e€—u)YH(u—€—u')fo(t,u—e)f;(t,u)du
R+

+ / il — w)H (i — u) fo(t, ') it )
R+

The first and second integrals refer to the autocatalytic generation of cancer cells by Eq.
(2), the third integral refers to the destruction of cancer cells according to Eq. (3), and
the fourth and fifth integrals refer to the autocatalytic production of cancer cells by Eq.

(4). Similarly, the interaction term I; associated with the immune system cells is:

I; = /1%4. ktc(u — € — u’)H(U — € — ul)fc(t’ u')fi(t, u— E)du' (10)
+ /R+ kic(u’ — U)H(ul B U)fc(t, U)fi(t, U/I)dU,I
_ /I%_,_ kci(u, _ U)H(u' o U)fc(t, U,)fi(t, U)du,

The first and second integrals refer to the autocatalytic production of immune system
cells due to the process given in Eq. (3) and the third integral is related to tumor
counterattack of immune system cells according to Eq. (4). Finally, the interaction term

1,, for the normal cells reads:
I, = —/ ken(u' — uw)H (u" — u) fo(t,u) fr (¢, w)du' (11)
R+
L P(u) / Foon (' — W)V H (6! — ") fu(t, o) o (2, u ) du”
R+ JR+
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The first integral originates from the mutation of normal cells by the process given in
Eq. (2) and the second integral accounts for the effect of the source of normal cells with
activities distributed according to the normalized distribution P(u) given in Eq. (1). By
integrating Eq. (8) over u for j = n, we obtain 9; [, f,(t,u)du = 0 and check that the

density p, = fR + fn(t,u)du of normal cells is actually kept constant.

Due to the mutation of normal cells into cancer cells and the simultaneous re-injection
of normal cells into the system through the process given in Eq. (2), the total number of
cells increases. Hence, the sum of the interaction terms does not vanish:

S I #£0 (12)
j=niisc
and the second moment of the activity,
()= [ Y it (13)
R e
is not strictly conserved. However, in order to prevent an explosion of activity fluctuations
and for the sake of simplicity, we introduce the same thermostat, as if the total number
of cells was conserved. By analogy with the coefficient of friction « introduced in Egs.
(5,6), we look for a thermostat term in the form F'(u) = E — au in Eq. (8) and obtain:

1- u/]R+u ( Z fj(t,u)> du] (14)

Jj=n,i,c

F(u)=FE

The integration of the distribution function f;(¢, u) associated with cell type j over the
activity u gives the density of j cells. Macroscopic equations for the densities of cells have
been derived by performing either a low-field or a high-field scaling and considering the
related convergence when the scaling parameter goes to zero. Specifically, we have proven
that the macroscopic equations show diffusion with respect to both space and activity
in the low-field limit [20, 21]. The direct simulation of the kinetic equations provides
stochastic trajectories for the number of cells. The simulations not only give access to the
deterministic evolution of the densities of cells but also include the description of their

fluctuations.
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