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Abstract 

Cathepsins are an important category of enzymes that have attracted great attention for the 

delivery of drugs to improve the therapeutic outcome of a broad range of nanoscale drug delivery 

systems. These proteases can be utilized for instance through actuation of polymer-drug 

conjugates (e.g., triggering the drug release) to bypass limitations of many drug candidates. A 

substantial amount of work has been witnessed in the design and the evaluation of Cathepsin-

sensitive drug delivery systems, especially based on the tetra-peptide sequence (Gly-Phe-Leu-

Gly, GFLG) which has been extensively used as a spacer that can be cleaved in the presence of 

Cathepsin B. This Review Article will give an in-depth overview of the design and the biological 

evaluation of Cathepsin-sensitive drug delivery systems and their application in different 

pathologies including cancer before discussing Cathepsin B-cleavable prodrugs under clinical 

trials. 
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1. Introduction 

 

Cathepsins are widely known proteolytic enzymes whose main function is to degrade proteins or 

peptides [1]. Nevertheless, this perception has changed over the past many years as they are 

being considered as important signaling molecules playing different crucial roles [2, 3]. There 

are dozens of Cathepsins which are classified according to their structure, catalytic mechanism 

and substrate. Based on the human genome draft sequence, the main Cathepsin categories are 

serine (Cathepsin A and G), aspartic (Cathepsin D and E) and lysosomal cysteine proteases 

(Cathepsin B,C,F,H,K,L1,L2/V,O,S,W,X/Z) [4, 5]. They have multiple functions, as one finds 

digestive proteases (present in saliva, stomach and intestines) for food processing inside the 

gastrointestinal tract (GIT), lysosomal proteases for intracellular housekeeping or caspases for 

transduction of one-way signal in apoptosis [6-8]. Interestingly, lysosomal Cathepsins (i.e., 

intracellular enzymes) have been widely involved in drug targeting as they require a slightly 

acidic environment to exhibit optimal enzymatic activity [9-11]. Given the features of disease-

associated proteolysis (i.e., cleavage of amide bond), different types of prodrugs, nanocarriers, 

biomaterials or probes, have been designed and synthesized to exert their activity in 

endosomal/lysosomal compartments [12-14]. For instance, Cathepsins can induce the release of 

active ingredients from nanocarriers, chemically or physically, leading to enhanced therapeutic 

activity or in situ imaging sensitivity [15]. Kopecek, Duncan and others have shown the 

importance of protease-cleavable linkers, especially those sensitive to Cathepsin B, in polymer-

based, nanoscale drug delivery constructs for enhancing the in vivo delivery of drugs to tumor 

tissues [16-18]. 

Cysteine cathepsins and their substrate interaction have been well-identified on the basis 

of papain (Carica papaya) used as a model of lysosomal proteases, as first introduced by 

Schechter and Berger [19]. In this model, the substrate residues (P) as well as the subsites (S) 

were given nomenclature based on their position bonded to the protease surface. Later, this 

model was revisited by Turk et al. [20]who showed that the subsites were positioned on the left-

hand side (i.e., S2’, S1 and S3) along with right-hand side of the active site (i.e., S1’ and S2), and 

further composed of two L-domain loops consisting of Gln-19–Cys-25 as well as Arg-59–Tyr-67 
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residues and two R-domain loops consisting of Leu-134–His-159 as well as Asn-175–Ser-205 

residues (Figure 1) [5]. 

 

Figure 1.Schematic representation of the revised papain model showing different subsites based 

on substrate-mimicking inhibitors bonded to the active-site cleft. Reproduced with permission 

from Ref. [5]. 

Among the different pathologies, Cathepsins have been largely employed as leverage to treat 

cancer from various Cathepsin-sensitive drug delivery systems because of its overexpression at 

the tumor sites. For instance, cysteine proteases have increased activity as well as aberrant 

localization within the tumour microenvironment, which contributes to cancer progression, 

proliferation and metastasis [21]. Such findings led to the development of the glycyl-

penylalanyl-leucyl-glycine (GFLG) sequence that is hydrolyzed by Cathepsin B. In this area, 

poly(N-(2-hydroxypropyl)methacrylamide-doxorubicin (PHPMA-Dox, also called PK1) were 

the first clinically investigated conjugates for anticancer therapy that comprised Cathepsin-

sensitive degradable GFLG sequences [22]. Since PK1, several PHPMA-drug conjugates have 

entered clinical trials [23, 24], which confirmed the great potential of these systems. Some of the 

structures of the different drug delivery conjugates are gathered in Figure 2 along with their 

cathepsin cleavable sites for better understanding [25-27]. 
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Figure 2. Structure of different cathepsin-sensitive drug-linker bioconjugates along with their 

indicated cleavable sites. 
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Whereas several reviews have already been published on targeted polymer-based drug delivery 

systems [28-31], cysteine Cathepsins as imaging probes [32-35], ageing and neurodegeneration 

[36], disease management [37] and other protease functions [38, 39], the dynamic involvement 

of Cathepsins in targeted drug delivery systems including their role in various diseased states and 

their clinical prospects have never been covered in a single Review Article. 

 

2. Cathepsin-sensitive drug delivery systems 

2.1 Anticancer drug delivery systems 

In the past few decades, anticancer drug delivery has attracted extensive interest from both 

academia and industry. A considerable effort is being spent on the design of nanoscale systems 

having suitable properties for drug delivery purposes such as stealthiness, non-immunogenicity, 

biocompatibility as well as biodegradability. The fate of stealth nanoscale systems is governed, 

at least in part, by the enhanced permeability and retention (EPR) effect (also called passive 

targeting). It allows for their preferential accumulation at the tumor site because of leaky 

vasculatures and lack of lymphatic drainage [40, 41]. Interestingly, a variety of different 

Cathepsins have been reported to be overexpressed in many types of cancers; mostly found in 

cancer cells but also in cancer-associated leukocytes, fibroblasts, osteoclasts, myoepithelial cells 

as well as endothelial cells [42]. The list of cancer overexpressing Cathepsins is given below 

(Table 1). Hence, the intimate relationships between Cathepsins and cancer stimulated the 

conception of (macro)molecules sensitive to the presence of Cathepsins for enhanced therapeutic 

effect. 
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Table 1. List of Cathepsin Overexpressing Cancer Types. 

Family Cathepsin Location Tumour site Reference 

Cysteine 

Proteases 

General 
Intracellular, 

lysosomes 
Most [42-44] 

Cathepsin K Extracellular Breast, bone [45-49] 

Cathepsin B 

Extracellular and 

pericellular 

under 

pathological 

conditions 

Breast, cervix, 

colon, colorectal, 

gastric, head and 

neck, liver, lung, 

melanoma, 

ovarian, 

pancreatic, 

prostate, thyroid 

[50-61] 

 

Cathepsin L  Breast, colorectal [62-65] 

Aspartic 

Proteases Cathepsin E 

Endosomal 

structures, ER, 

Golgi bodies 

Cervical, gastric, 

lung, pancreas 

adenocarcinomas 

[61, 66-70] 

Cathepsin D Lysosomes 

Breast, 

colorectal, 

ovarian 

[71-77] 

 

In the following, we have covered Cathepsin-sensitive drug delivery systems for anticancer 

therapy, by distinguishing five different types of systems: (i) polymeric; (ii) inorganic; (iii) 

dendritic/comb-like; (iv) lipidic and (v) protein-based/peptidic.  

 

2.1.1 Polymeric systems 

Different types of polymeric systems have been utilized to develop drug-polymer conjugates for 

anticancer drug delivery [28, 78-85]. Given Cathepsin B is a lysosomal cysteine protease 

overexpressed in the microenvironment of advanced tumors [86], this feature has been widely 

exploited in cancer therapy using polymer-based drug delivery systems bearing the Cathepsin B-

sensitive GFLG sequence [87]. This area was pioneered by Kopeck who developed PHPMA-

based drug conjugates containing GFLG sequences on the polymer backbone as well as on the 

side-chains,giving enhanced therapeutic efficacy while still maintaining their biocompatibility. 
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This system was further extended to a two-drug combination approach using gemcitabine (Gem, 

unstable in vivo) and paclitaxel (Ptx, poorly water soluble) linked to either diblock, tetrablock or 

hexablock PHPMA copolymers obtained by a combining RAFT polymerization and “click” 

chemistry (Figure 3). The diblock copolymer (Mn~100 kDa) was found to be the most efficient 

one in vivo on A2780 human ovarian carcinoma xenografts in nude mice. It indeed showed a 

more pronounced synergistic antitumor effect compared to other structures, thus overcoming the 

limitations of the free drug. 

 

Figure 3. Illustration of GFLG-containing PHPMA prodrugs. Adapted with permission from ref. 

[87]. 

 

The strongest synergistic interactions in acute myeloid leukemia (AML) was also observed as 

assessed in HL-60 human AML cells when cytarabine and GDC-0980 were linked to similar 

GFLG-bearing PHPMA copolymers, conversely to daunorubicin or JS-K [88]. Similarly, another 

study reported on the combination of GDC-0980 (P13K/mTOR inhibitor) and docetaxel against 

prostate cancer and showed promising results (Figure 4) [89]. Several other combinations 

directed against cancer have also been explored from PHPMA copolymer bearing GFLG 

sequences [90-94]. 
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Figure4. GFLG-containing PHPMA prodrugs for combination therapy (GDC-0980 and 

docetaxel) for prostate cancer exhibiting effective anti-Cancer Stem Cell (CSC) effect and in 

vitro increased anti-bulk tumor effect. Adapted with permission from Ref. [89]. 

 

In a more mechanistic study, two PHPMA-based multiblock S-CMP (small copolymer block 

size) and L-CMP (long copolymer block size) have been synthesized [95]. Both the copolymer 

blocks and the peptide linkers were tagged with 
125

I and 
177

Lu, respectively (Figure 5). S-CMP 

showed increased cleavage rates by Cathepsin S compared to L-CMP resulting from the lower 

steric hindrance as assessed by in vitro studies. The cleavage and clearance of the different 

blocks were both greater inside the tumor and the liver, as observed from radioisotopic ratios. 
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Figure5. Chemical structure of PHPMA-based, dual-labeled small copolymer block size (S-

CMP) and long copolymer block size (L-CMP) showing cleavage sites for CathepsinS [95]. 

 

Dox has been conjugated to different polymeric architectures via Cathepsin-sensitive linkers. For 

instance, Dox was linked to an octa-guanidine-based peptide sequence (Phe-Lys) via 4-

aminobenzyloxy carbonyl (PABC) as a self-immolative linker, resulting in a G8-PP1-FK-PABC-

Doxprodrug. It was able to be cleaved by lysosomal Cathepsin B and inducing selective toxicity 

against HeLa cells without affecting healthy cells [96].On the contrary, small-molecule 

(MW<500 g.mol
-1

) self-assemblies have also been utilized to develop a generic cross-linked 

micellar drug delivery system based on gemcitabine (Gem) prodrugs (Figure 6a). This system 

proved to be advantageous as compared to well-known polymeric micellar systems in terms of 

composition, colloidal stability, drug payload (~58 wt.%), biosafety, as well as ease of synthesis, 

functionalization and in vitro/in vivo anticancer activity [97-99]. Infact, nearly 60% of the drug 

was released from the micelles by Cathepsin B in phosphate buffer saline (PBS) at pH 5.5 for 

240 h conversely to <7% without Cathepsin B because of the amide bond in between the drug 

and the promoiety (Figure 6b) [100]. 
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Figure6. Chemical structure of the gemcitabine prodrug (a) and in vitro drug release profile from 

the gemcitabine prodrug micellar system (b). Adapted with permission from Ref. [100]. 

 

Another report focused on the construction of PEGylated, enzyme-sensitive,macrocyclic 

pillar[5]arene amphiphiles which self-assembled in water into micelles with high Dox loading 

capacity [101]. The micelles had enzyme-cleavable amide bonds that were cleaved by L-

asparaginase (L-ASP) used here as a mimic of intracellular Cathepsin B because it can catalyze 

the hydrolysis of asparagine to aspartic acid (Figure 7). The Dox-loaded micelles led to 

significant cytotoxicity on MCF-7 and multidrug-resistant MCF-7/ADR cells, comparatively to 

drug-free micelles. 

 

Figure 7. Structure of Dox-loaded, PEGylated, enzyme-sensitive, macrocyclic pillar[5]arene 

amphiphiles and their self-assembly into micelles. Adapted with permission from Ref. [101]. 

 

(b)  (a)  
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Folic acid (FA) surface-functionalized, biodegradable poly(ethylene oxide)-b-poly(L-glutamic 

acid) (FA-PEG-b-PLG) block copolymer vesicles loaded with cisplatin were also reported [102]. 

The drug was released intracellularly from the rigid block due to overexpressed Cathepsin B 

which cleaved the nanostructure because of the increased activity of this proteolytic enzyme in 

metabolizing PLG acid residues. The enzyme was also responsible for the higher activity in 

metabolizing polyglutamate (PGA) residues. The nanovesicles exhibited surface-positioned FA 

moieties for active targeting via selective cell binding and led to enhanced cytotoxicity towards 

HeLa cells. 

PGA was also used as a polymer scaffold to link both Ptxand an integrin-targeted ligand 

(E-[c(RGDfK)2]) on the side chains, to give PGA-Ptx-E-[c(RGDfK)2]). The resulting conjugate 

gave significant enhancement in anticancer activity compared to free Ptx [103]. As assessed by 

the in vitro drug release profile, Ptx was released in the presence of Cathepsin B but PGA-Ptx-E-

[c(RGDfK)2] was found to be stable in plasma. Interestingly, incorporation of a targeting ligand 

towards integrin expressing cells led to anti-angiogenic mechanism to overcome multi-drug 

resistance. 

Another targeted drug delivery system was reported and consisted in a heterobifunctional 

oligomeric PEG chains embedding octreotide as a ligand for the targeting of somatostatin 

receptors and either an anticancer drug (Dox) tethered via a dipeptidic substrate for Cathepsin B, 

or a fluorescent dye [104]. This oligomeric prodrug system was suitable for tumor cell imaging 

expressing both Cathepsin B and somatostatin receptors and led to selective cytotoxicity towards 

cancer cells.  

 

 

2.1.2 Inorganic systems 

Inorganic materials (e.g., silica, gold, iron oxide, quantum dots, etc.)is also an attractive family 

of materials that have been extensively investigated for anticancer drug delivery [105-111]. In 

this area, a Cathepsin B-induced tumor targeted drug delivery system loaded with Dox was 

developed by immobilizing cleavable rotaxanes onto mesoporous silica nanoparticles (MSNs) 

[112]. Nano-constructs comprising a rotaxane moiety and a GFLG sequence linked to the RGDS 

peptide were used as Cathepsin B-cleavable stoppers for the cyclodextrin valves by means of 

“click” chemistry (Figure 8). Thanks to the targeting ligand displayed at its surface, such system 
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demonstrated efficient receptor-mediated tumor cell uptake and selective enzymatic digestion of 

GFLG peptide.  

 

 

Figure 8. (A)Mesoporous silica nanoparticle (MSN) functionalization. (B) Cathepsin-sensitive 

Dox-loaded MSNs. (C) Cell integrin receptor-mediated targeting by RGDS (Arg-Gly-Asp-Ser). 

(D) Endocytosis. (E) Drug release mediated by Cathepsin B. (F) Tumor cell death. Adapted with 

permission from Ref. [112]. 

 

MSNs were also coated with Cathepsin B-sensitive peptide sequences (alkynyl-

GIVRAKEAEGIVRAK-OH) through triazole rings and led to efficient Dox release (Figure 9). 

The study also proved that this peptide sequence was selectively cleaved by Cathepsin B as 

assessed by in vitro experiments [113]. 
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Figure 9. Synthesis of gatekeeper-supported functionalization with 3-

(azidopropyl)triethoxysilane capped with peptide sequence and further delivery of Doxby action 

of Cathepsin B. Adapted with permission from Ref. [113]. 

 

This peptide sequence was also anchored onto silica supports to develop nanoparticles with 

prevented release the loaded [Ru(bipy)3]
2+

 dye unless specific proteases are present [114]. In 

another study, an enzyme-cleavable peptide precursor conjugated to Dox was further linked onto 

the surface of silica-coated magnetic nanoparticles by using “click” chemistry (Figure 10) [115]. 

The nanocarriers exhibited efficient Dox release and selective intracellular Dox delivery into 

tumors with high Cathepsin B expression together with imaging of cancer cells.  
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Figure10. Synthesis of Dox-peptide-coated, magnetic silica nanoparticles cleaved by Cathepsin 

B for Dox release inside cancer cells. Adapted with permission from Ref. [115]. 

 

A dual enzymatic responsive nanoconstruct for pancreatic cancer therapy was engineered and 

relied on surface functionalization of CdSe/ZnS quantum dots (QDs) by an amphiphilic PEG-

GGPLGVRGK-NH2 polymer sensitive to matrix metalloproteinases (MMP-9), and by Gem via a 

GELG Cathepsin B substrate sequence [116]. Some of the PEG chains were also functionalized 

by cyclo-RGD as a tumor-homing ligand. The nanocarrier exhibited long circulating features and 

increased drug accumulation at tumor sites, resulting in successful delivery of Gem in BxPD-3 

cells because of their inherently elevated concentrations of Cathepsin B (Figure 11).  
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Figure11. Synthesis of Gem-loaded, decorated QDs and their dual enzymatic behavior. Adapted 

with permission from Ref. [116]. 

 

2.1.3 Dendrimeric/comb-like systems 

Dendrimers, which are perfectly monodisperse and highly branched 3D macromolecules, have 

been the topic of great attention especially as drug carriers [117-119]. For example, peptide 

dendrimers surface-functionalized by methoxy polyethylene glycol (mPEG) and Dox through the 

GFLG sequence have been designed [120]. The resulting enzyme-responsive dendrimer-GFLG-

Dox nanocarrier gave greater accumulation and retention in ovarian tumor cells(SKOV-3), 

leading to improved anticancer effect and no obvious systemic toxicity. Similarly, mPEG-

PAMAM dendrimers of different chain lengths for the formation of Dox-loaded magnetite 

nanoparticles have also been reported [121]. In this system, Cathepsin B was used to selectively 

degrade the dendritic shell to trigger sustained Dox release near the tumor cells. The concept of 

enzymatic breakdown of the nanocarrier may represent a new approach for controlled drug 

delivery systems. Also, Cathepsin B-responsive and amphiphilic PEGylated dendritic polymer-

drug conjugates (PEGylated dendron-GFLG-Dox) were obtained by “click” chemistry and led to 

enhanced antitumor efficacy (Figure 12). 



17 
 

 

Figure 12. Synthesis of amphiphilic PEGylated dendron-GFLG-Dox conjugate followed by its 

self-assembly into NPs. Adapted with permission from Ref. [121]. 

 

Another study reported on the combination of undecapeptide KKLFKKILKKL-NH2 with the 

GFLG sequence for the delivery of chlorambucil (CLB) [122]. The free drug was inactive (IC50 

= 73.7 to >100 μM) conversely to its prodrug (IC50 = 3.6 – 16.2 μM) on various cancer cell lines 

including MCF-7, PC-3, CAPAN-1, 1BR3G and SKMEL-28. CLB-Gly-OH was indeed released 

when Cathepsin B was present as evidenced by Cathepsin B enzymatic assays. Also, these 

studies supported the fact that CLB would be released in the lysosomal compartment. A 
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comparative study was reported between dendrimers based on mPEG conjugated to Dox via a 

Cathepsin B-cleavable Gly-Phe-Leu-Gly sequence and GFLG-free dendrimers [123]. The GFLG 

sequence-bearing nanoconstructs were formulated into nanoparticles exhibiting Cathepsin B-

sensitive drug delivery properties. The enhanced anticancer activity compared to that of free Dox 

was validated in vivo in a CT26 tumor xenograft mouse model. 

Asorbitol scaffold functionalized by octa-guanidine moieties and conjugated to Dox via a 

GLPG sequence, another peptidic substrate of Cathepsin B, was produced (Figure 13) [124]. 

This conjugate was efficiently taken up by the cells via electrostatic interaction between 

guanidine moieties and negatively-charged phospholipids/sulphates exposed at the surface of the 

cells. Dox was then released into lysosomes via selective cleavage by Cathepsin B. Enhanced 

cytotoxicity compared to that of free Dox was obtained on HeLa cells that are known to express 

Cathepsin B. 

 

 

Figure13. Schematic representation and proposed action mechanism of a sorbitol scaffold 

functionalized by octa-guanidine moieties and conjugated to Dox. Adapted with permission from 

Ref. [124]. 
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2.1.4 Lipidic systems 

A great amount of work is also currently been carried out to design lipid-based drug delivery 

systems either as drug-loaded lipidic nanocarriers or lipidic prodrug nanocarriers [125, 126]. 

However, examples of Cathepsin-sensitive lipidic drug delivery systems are rather scarce. For 

instance, when a lipidated Cathepsin B inhibitor (NS-629) was anchored into a liposome bilayer 

(Figure 14),its selective targeting and internalization into tumors and stromal cells was shown ex 

vivo and in vivo, confirming that using Cathepsin B as an efficient leverage for cancer diagnosis 

and treatment [127]. 

 

Figure14. Schematic representation showing conjugation of the lipidated Cathepsin B inhibitor 

(NS-629) at the surface of a liposome to target extracellular (EC) CathepsinB. Adapted with 

permission from Ref. [127]. 

 

Combination therapy, that relies on the simultaneous administration of at least two different 

drugs, is increasingly used to treat various diseases, including cancer [128, 129]. Combination 

therapy from cathepsin-sensitive lipidic systems was illustrated by the conception of 

methotrexate-methoxypoly(ethylene glycol)-1,2-distearoyl-snglycero-3-phosphoethanolamine 

(Mtx-MePEG-DSPE) prodrug micelles loaded with mitomycin C-soybean phosphatidylcholine 

(SPC-MMC) prodrugs [130]. This micellar system exhibited synergistic anticancer activity in 

presence of Cathepsin B because of the amide linker in between the polymer and the drugs, as 

opposed to the action of individual drugs. 
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2.1.5 Protein-based/peptidic systems 

Drug delivery systems based on proteins or peptides represent an appealing class of materials 

especially because of their biocompatibility [131-135]. For instance, proteinticles, which are 

proteins that can self-assemble inside cells into nanoscale particles, can be employed in many 

different biomedical applications owing to their enhanced biocompatibility, conversely to 

synthetic nanomaterials [136]. Conferring cathepsin-sensitivity to such systems have also been 

reported, especially for small interfering RNA (siRNA) delivery where it showed great potential 

against various cancers. For instance, proteinticles based on human ferritin were genetically 

engineered to display at their surface different functional peptides in a simultaneous manner, 

such as cationic peptides for self-assembling siRNA, cancer cell-targeting or cell penetrating 

peptide [137]. They led to enhanced siRNA capture, cancer cell targeting together with enhanced 

penetration into the cytoplasm of tumor cells. They were eventually cleaved by Cathepsin B for 

intracellular release of siRNA inside tumor cells, leading to efficient gene silencing. One of the 

greatest advantages of proteinticles is that such functional peptides of different nature can be 

evenly placed on their surface, depending on the tumor cell type through a simple genetic 

modification, thus making it a very versatile system for targeted siRNA delivery. Another study 

revealed the development of a polyglutamate amine (APA) nanocarriers containing miRNA and 

siRNA polyplexes which showed great accumulation into pancreatic tumor cells [138]. It was 

also shown that the release of miRNA occurred from APA-containing polyplex in the presence 

of Cathepsin B. 

Given the poor water-solubility of many anticancer drugs, a considerable amount of research has 

been done to improve their hydrophilicity by conjugation to hydrophilic moieties via Cathepsin-

sensitive linkers. For instance, Ptx has been conjugated to a highly water-soluble nucleolin 

aptamer (NucA) for the targeting of ovarian cancer with reduced off-site toxicity [139]. The 

resulting bioconjugate proved to be biologically stable as assessed by fluorescence resonance 

energy transfer (FRET) (Figure 15) and also inactive in the blood circulation. NucA was 

conjugated to the hydroxyl group at position 2’ of the drug via a dipeptide bond sensitive to 

Cathepsin B, which then got cleaved once inside the cells by Cathepsin B, thus triggering the 

anticancer mechanism. 
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Figure 15. Schematic illustration of the in vivo tracking of the degraded Cathepsin B-labile 

dipeptide bond linker exploiting FRET with fluorescein amidate (FAM) and dual-labeled 

rhodamine B (Rh) NucA-Ptx bioconjugate. Adapted with permission from Ref. [139]. 

 

The GFLG sequence was also embedded into a star-shaped peptidic prodrug structures that can 

be cleaved by Cathepsin B. This feature has been used to develop drug delivery vehicles for 2-

methoxyestradiol (2ME) which is a natural metabolite of estradiol with antiproliferative and anti-

angiogenic activities (Figure 16) [140]. 

 

 

Figure16. Representation of the degradation of star-shaped peptidic prodrug structures that can 

be cleaved by Cathepsin B.Adapted with permission from Ref. [140]. 
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In the context of combination therapy, a dual-functionalized linker bearing Dox and Ptx, and 

comprising a maleimide moiety for its subsequent coupling to albumin through its cysteine-34 

position, was designed [141]. Each drug was linked by a self-immolative para-aminobenzyloxy 

carbonyl linker and a cleavable dipeptide (Phe-Lys) sensitive to Cathepsin B, leading to drug 

release at the tumor site (Figure 17).A similar approach combining a polymer prodrug and a 

polymer-enzyme bioconjugate was used to selectively and rapidly deliver a cytotoxic drug to the 

target site [142]. 

 

Figure17. Structure of Cathepsin B-sensitive, dual-functionalized linker bearing Dox and Ptx, 

and comprising a maleimide moiety for its coupling to albumin. Adapted with permission from 

Ref. [141]. 

 

Pep42, which is a cyclic 13-mer oligopeptide, specifically binds to glucose-regulated protein 78 

and translocates into the lysosomal compartment [143, 144]. In this context, Pep42 was 

advantageously used to efficiently deliver Ptx and Dox into cancer cells for enhanced 

cytotoxicity [145]. More specifically, Pep42-prodrug bioconjugates containing a Cathepsin B-

sensitive linker were synthesized and facilitated the uptake of both cytotoxic agents for their 

delivery into cancer cells. 

 Nanoconstructs with methotrexate (Mtx) linked to a tuftsin-like peptide carrier via a 

GFLG spacer and several copies of a chemotactic targeting agent were designed [146]. These 

conjugates led to greater cytotoxic effect than free Mtx and represented potential candidates for 
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the specific targeting of cancer cells. Similarly, Dox-based dipeptide conjugates were designed 

and tethered to monoclonal antibodies (mAbs) recognizing tumor associated antigens on renal 

cell carcinoma and anaplastic large cell lymphoma [147]. The dipeptides were substrates for 

Cathepsin B and got cleaved with comparable kinetics. Importantly, both prodrugs were 70-fold 

more potent than free Dox. 

In another study, cytotoxic drug-carrying filamentous bacteriophages were chemically 

modified to tunedifferent key parameters (e.g., pharmacokinetics, biodistribution, 

immunogenicity)and compared to bare phages [148]. Anti-ErbB2 and anti-ERGR antibodies 

were used as targeting entities, whereas Dox was tethered to phages through an amide linkage 

and also to genetically-engineered Cathepsin-B (Figure 18). In vitro studies explained the good 

penetration into tumors cells by their needle-like structure. This conjugate can be seen as a novel 

drug-delivery platform which might solve many issues related to the hydrophobicity of drugs at 

the target specific sites. 

 

 

Figure18. Genetically engineered Cathepsin B-modulated bacteriophage conjugated to Dox. 

Adapted with permission from Ref. [148]. 
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2.2 Bone-targeting drug delivery systems 

The most common skeleton disorders are arthritis, osteoporosis, osteomyelitis, osteosarcoma as 

well as metastatic bone cancer [37, 149]. Bone metastasis is one of the most devastating stages of 

cancer [150]. In addition, there are several limitations associated with the systemic 

administration of drugs for bone treatment and bone-related diseases such as poor drug uptake at 

the target site, potential systemic toxicity as well as suboptimal efficacy [149]. Interestingly, 

there are examples in the literature describing Cathepsin-sensitive polymer conjugates for bone 

targeting purposes [151-154]. Therefore, drug delivery systems targeted towards bones can be 

adapted to bone diseases where the drug can be selectively delivered with minimal side effects 

[155]. 

In a similar fashion to what has been reported for anticancer therapy, HPMA was 

conjugated to prostaglandin E1 (PGE1) via a spacer sensitive to Cathepsin K, which is an enzyme 

overexpressed in osteoclasts [156]. The Cathepsin K-sensitive spacer comprised Gly-Gly-Pro-

Nle as the tetrapeptide sequence and a self-eliminating 4-aminobenzyl alcoholmoiety. 

Copolymerization of the resulting PGE1-containing HPMA macromonomer with HPMA yielded 

the desired PHPMA-PGE1conjugates,that released unmodified PGE1 after incubation with 

Cathepsin K. PHPMA was also post-functionalized by a D-aspartic acid octapeptide targeting 

ligand. Therefore, this new drug delivery system might be a solution to treat osteoporosis and 

other bone-related pathologies.  

Targeting inflammatory joints in rheumatoid arthritis (RA) was achieved by AWO54, a 

new prodrug that binds to endogenous albumin and was composed of Mtx, a spacer based on 

lysine and an enzyme-sensitive peptide linker linked to a maleimide moiety for further linkage to 

albumin [157]. The prodrug was cleaved by two enzymes, Cathepsin B and plasmin, that exist in 

high concentrations in synovial effusion under RA condition, thus releasing Mtx lysine 

derivatives. The in situ coupling of endogenous albumin, AWO54 was found to be better in 

terms of dosage and efficacy than administration of the parent drug for treating collagen-induced 

arthritis. 
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2.3 Immune cell-targeting drug delivery systems     

Lysosomal peptidases are part of innate and adaptive immune responses [158-160]. Hence, 

modulation of such responses with Cathepsin-sensitive prodrugs can further enhance the 

immunological action and regulate cytotoxicity issues related to NK and T cells. For instance, 

influence of superparamagnetic iron oxide nanoparticles (SPIONs) from both a physiological and 

immunological point of view was investigated on cell function and their interaction with 

oxysterol laden cells [161]. Iron-loaded nanoparticles upregulated Cathepsin, membranous 

ferroportin (cellular efflux channel for iron) and ferritin degradation, which further altered 

cellular immune functions, resulting in secretion of pro- (TNF-α) and anti-inflammatory (IL-10) 

cytokines and ferritin. Importantly, this study highlighted a specific relationship between SPION 

metabolism and atheroma cellfunction that might conduct to innovative approaches to treat 

atherosclerotic plaques. 

Immunoconjugates were also prepared from cytotoxic agents using a valine-alanine-p-

aminobenzyl-amine linker which was well-adapted for the bioconjugation to monoclonal 

antibody and further specific cleavage by proteases [162]. The linker efficiently released amino-

geldanamycin and streptonigrin upon protease-mediated hydrolysis, emphasizing the activity and 

specificity of the conjugates in vitro and in vivo. In another study, different immunoconjugates 

comprising lysosomally cleavable peptides (i.e., Phe-Lys and Val-Cit), were synthesized [163]. 

The monoclonal antibody BR96 that is known to bind to Lewis
y
-related tumor-associated antigen 

expressed at the surface of cancer cells was linked to Dox via a p-aminobenzyloxycarbonyl 

(PABC) spacer. Interestingly, the conjugates bearing the Phe-Lys sequence exhibited a 30-fold 

greater drug release kinetics in the presence of Cathepsin B than its counterpart with the Val-Cit 

linker.  

 

2.4 Cathepsins as probes for imaging and theranostic 
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Different types of enzymes (e.g., caspases, secretases, furinases, phosphatases, etc.) have been 

exploited for cancer diagnosis. Furthermore, imaging probes utilizing these proteases have 

rapidly evolved [164-167]. It has been shown that the monitoring of protease activity was closely 

related to cancer progression especially in case of Cathepsin B [168]. Among the numerous 

studies on proteases for such a purpose, hollow mesoporous silica nanoparticles loaded with Dox 

and conferred with a dual-enzyme sensitivity were conceived for the in situ imaging of Cathepsin 

B and the release of Dox mediated by proteases (Figure 19) [169]. The peptide-based 

satellite/shell structures secured Dox inside the nanoparticles thus acting as three-dimensional 

gatekeepers and Dox release subsequently occurred upon incubation with Cathepsin B. 

 

Figure 19. Illustration of Dox-loaded, hollow mesoporous silica nanoparticles for in situ imaging 

of Cathepsin B and protease-mediated Dox release. (a) Nanoparticle synthesis. (b) Nanoparticle 
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disassembly mediated by enzyme cascade reactions with acid hyaluronidase (HAase) and 

Cathepsin B (Cat B). (c) Specific delivery, controlled Dox release and intracellular imaging: (i) 

specific uptake via receptor-mediated endocytosis; (ii) accumulation in endosomes; (iii) 

endosomal escape and intracellular imaging of Cat B; (iv) Dox release triggered by enzymes. 

Adapted with permission from Ref. [169]. 

It was also recently discovered that indocyanine green (ICG)–containing PGA nanoparticles can 

be digested byCathepsin B and induce a sentization of the endo-lysosomal membrane mediated 

by the NIR properties of the released ICG (Figure 20) [170]. The system was combined with a 

ribosome-inactivating protein (saporin) which showed synergistic cytotoxicity because of the 

photo-induced release of saporin from endosomes or lysosomes. 

 

 

Figure 20. (a) Sentization of endo-lysosomal membrane in the presence of dye released by 

enzymatic digestion of the nanoparticles. (b) Endo-lysosomal disruption by NIR laser leading to 

saporinrelease. Adapted with permission from Ref. [170]. 

 

An enzymatically dependent FRET process was also used to monitor the payload release from 

PHPMA prodrug nanocarriers [171]. PHPMA was functionalized with donor Cy5 and acceptor 

Cy7, thus inducing FRET. However, since only Cy7 was linked to the polymer via the GFLG 
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sequence, presence of Cathepsin B was accurately measured because of the change in the FRET 

signal during the Cathepsin B-mediated Cy7 release (Figure 21). The in vitro results showed that 

the high level of expression of Cathepsin B in cancer cells induced effective release of the dye 

while in vivo observations resulted in a faster release in the ovarian tumor as compared to normal 

tissues.  

 

 

Figure 21. Structure of dual-functionalized PHPMA nanocarriers with Cy5 and Cy7 dyes for 

further Cathepsin B-mediated release of Cy7. Adapted with permission from Ref. [171]. 

 

Similarly, PHPMA was functionalized with Cy5 (acceptor fluorophore) and Cy3 (donor 

fluorophore) or epirubicin (EPI) through a GFLG linker and evaluated by FRET during cell 

uptake and intracellular drug delivery experiments (Figure 22) [172]. Thanks to the Cathepsin B-

sensitive linker, the conjugates bearing EPI (2P-EPI) led to a fourfold terminal half-life 

compared to first generation (P-EPI) conjugate and complete tumor remission with ~100 days 

inhibition of tumorigenesis in mice. 
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Figure22. Schematic structure of PHPMA functionalized by Cy5 and EPI for further FRET-

monitoring of the EPI release mediated by Cathepsin B. Adapted with permission from Ref. 

[172]. 

 

The specific presence of cysteine Cathepsins has also been exploited to perform radiolabeled 

drug delivery for nanoscale conjugates with the aim of inducing enhanced diagnostic and 

radiotherapeutic efficacy. For instance, PHPMA was radiolabeled with Lutetium-117 (
117

Lu) via 

a peptide sequence made of two consecutive metabolically active linkers (MALs) sensitive to 

Cathepsin B and S, that are overexpressed in the liver and the spleen [173]. The MALs were 

shown to be metabolized by enzymes into single metabolites. The 
117

Lu-peptide-PHPMA 

conjugate showed a substantial retention decrease in the long run in the liver and the spleen, 

compared to non-cleavable counterparts on human pancreatic adenocarcinoma xenograft mouse 

model. In another study, the Garrison’s group developed the synthesis of cathepsin S-susceptible 

177
Lu-labeled or FRET-capable multiblock PHPMA copolymers, which resulted into fast in vitro 

cleavage of both copolymers. Quicker clearance and lower non-target retention without reducing 

tumor targeting was also shown on pancreatic ductal adenocarcinoma mouse model [174]. This 

study therefore took benefit of the presence of Cathepsin S in MPS tissues to lower non-target 

accumulation. 

 

A targeted, theranostic prodrug relying on Cathepsin-B-sensitive Gem release and 

activation of a caspase-3 specific probe was designed (Figure 23) [175]. The targeting relied on 
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the RGD peptide for accumulation into pancreatic cancer cells with overexpressed αvβ3 integrin. 

The GFLG peptide was then hydrolyzed by Cathepsin B leading to Gem release as well as the 

apoptotic probe. This system showed promising properties as a platform for both pancreatic 

cancer cell targeting and real-time, non-invasive imaging. 

 

 

Figure23. Schematic structure of consecutive enzymatic reaction using a gemcitabine-based 

prodrug along with apoptotic probe for the killing and monitoring of pancreatic cancer cells. 

Adapted with permission from Ref. [175]. 

 

In tumor imaging, many proteases can be used for the activation of fluorescent probes including 

near-infrared emitting dyes. Therefore, in vivo molecular profiling of protease activity can be 

performed with such probes in endoscopy or tomographic optical imaging [176]. For instance, it 

has been reported the design of quenched activity-based probe (qABP) mediated by Cathepsin S 
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[177]. It showed high tumor-specific fluorescence in a syngeneic breast cancer model. Other 

activity-based probes targeting Cathepsin X have been designed [178]. Cathepsin X is involved 

in a many different biological mechanisms, such as aging, cancer, neurodegenerative disorders, 

inflammation, etc. [179-181]. These probes were successfully used for the selective labeling and 

imaging of Cathepsin X in vitro and in vivo, thus making them a valuable tool for examining 

protease activity and functions.  

Malarial parasites are known to generate significant concentrations of mobile ferrous iron [182]. 

In this context, parasite-specific, Fe
II
-sensitive delivery of a potent dipeptidyl aminopeptidase 

inhibitor through Cathepsin C was demonstrated by using activity-based probes [183]. 

Production of Fe
II
 was triggered in the presence of 1,2,4-trioxolone moiety leading to instant 

drug release prior to the fragmentation of the aforesaid moiety. Further in vivo evaluation was 

performed using Plasmodium berghei model of murine malaria which showed selective drug 

targeting in parasitic infections.  

Cathepsin D-conjugated peptides were self-assembled into nanoparticles with the help of 

gelatin to bypass early nonspecific dissolution as well as off-target Dox release and is useful for 

optical imaging in animal models [184]. Cathepsin D is an enzyme for breast cancer cell 

secretion, which got triggered by degrading the nanoparticles coated with peptide strands 

through hydrolytic cleavage, thus releasing Dox. The nanoparticles were evaluated under 

ultrasound imaging both in vitro and in vivo, and were found to be localized in the bladder and 

the tumors of mice as a result of the fluorescent profile of Dox. Synthesis of Cathepsin B-

sensitive, near-infrared fluorescent probe was also carried out (Figure 24) [185]. The probe was 

found to be water-soluble but still self-assembled into nanoparticles having potential for tumor-

targeted imaging. A fluorescent molecule, DCPO (dicyanomethylene-4H-pyran), was released by 

Cathepsin B, leading to in vitro imaging Cathepsins of various tumor cells during incubation 

with different cell lines. 
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Figure24. Chemical structure of NIR fluorescent probe sensitive to CathepsinB [185]. 

 

Similarly, a Cathepsin B-sensitive nanoparticulate probe comprising a Cathepsin B substrate 

peptidic probe linked to chitosan nanoparticles was reported [186]. According to the study, this 

probe was successfully delivered into tumor cells after nanoparticle accumulation and exhibited 

fluorescent signals inside the cytosol in presence of Cathepsin B. It thus showed increased 

potential for the optical detection of biological activities especially related to tumor growth or 

metastasis (Figure 25).  

 

 

Figure25. Cathepsin B-sensitive nanoparticulate probes and tumor diagnosisin vivo. Adapted 

with permission from Ref. [186]. 

 

Recently, another strategy was used for Cathepsin imaging in breast cancer. It relied on a 

selective fluorogenic substrate and activity-based probe for the specific imaging of Cathepsin L 
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[63]. This approach enabled to differentiate Cathepsin L activity from that of other Cathepsins 

such as Cathepsin B. 

 

2.5 Miscellaneous 

As shown in the previous sections, Cathepsins have been exploited in targeted drug delivery 

systems and imaging. However, Cathepsin inhibitors can also be exploited in regard to their role 

in numerous diseased conditions, mainly cardiovascular diseases such as myocardial infarction, 

atherosclerosis, cardiac hypertrophy, cardiomyopathy and hypertension based on animal models 

[187]. Cathepsin inhibitors are also used against immune responses, osteoporosis, arthritis, 

inflammation and neurodegenrative disorders [36, 188-190]. A selection of representative 

examples is discussed below.  

Interestingly, peptide-based pseudosubstrates for Cathepsin G and elastase were 

developed. These substrates can decrease the activated interleukin-36 (IL-36) family cytokines 

especially in case of inflammatory diseases(e.g., psoriasis, arthritis)because such cytokines are 

proteolytically processed in the presence of Cathepsin G and other proteases [191]. In another 

study, it was proven that amodiaquine, an antimalarial drug, inhibited host Cathepsin B to protect 

host cells against infection with multiple toxins or viruses [192]. Cathepsin K has also been 

involved in diabetes-associated cardiac abnormalities. Wild-type as well as Cathepsin K 

knockout mice-induced diabetes exhibited severe cardiac dysfunctions in the form of dampened 

calcium handling intracellularly, cardiac morphology alterations and also increase in 

cardiomycyte apoptosis [193, 194]. Hence, Cathepsin K may be a suitable target in the afore-

mentioned conditions. One study also investigated cysteine Cathepsin inhibitors such as GB111-

NH2 (that blocks the activity of Cathepsin B, L and S) as trigger in macrophage cell death 

especially in case of tumor-associated macrophages (TAMs) [195]. 

 

3. Clinical data on cathepsins 

As seen throughout this review article, PHPMA has been extensively used for the design of 

Cathepsin-sensitive nanocarriers. This is explained by the favorable properties of PHPMA 
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regarding biomedical applications. PHPMA is indeed hydrophilic, non-immunogenic, chemically 

inert, non-toxic (even at the dose of 30 g/kg rat), biocompatible and exhibits relatively long 

circulation time which is dependent on its molar mass [196]. Among the different conjugates 

based on PHPMA that have been synthesized and evaluated so far, some of them entered clinical 

trials (Table 2). In particular,PK1 (Prague-Keele-1) has shown very promising results in 

oncology [197] and reached phase II trials in 2002 but clinical studies for both PK1 and PK2 

were discontinued in 2008 because of lack of efficacy [198]. Other polymeric systems also 

entered clinical trials (Table 2). For instance, XYOTAX (based on polyglutamate) has shown 

encouraging results in phase III trials in women with non-small-cell lung cancer [199-205]. 

Among the different PHPMA clinical candidates, PNU166945 is based on Ptx for the treatment 

of advanced breast cancer and PNU166148 is based on camptothecin for the treatment of 

metastatic solid tumors but both were stopped in Phase I trials because of severe neurotoxicity 

and lack of anticancer action, respectively [206, 207].Also, AP5280 prodrug has been introduced 

for PHPMA-carboplatinate and entered clinical phase II trial whereas PHPMA-oxiplatinate 

(ProLindac, also named AP5346) was in clinical phase II trial against ovarian cancer [208-210]. 

PHPMA polymer conjugated to Dox using GFLG linker has also been attempted with protein-

bound Ptx (abraxane), carbohydrate residues such as galactosamine, lactose and also amino acids 

like phenylalaninelysine (Phe-Lys), and are currently in preclinical studies [211-214].On the 

contrary, high molar mass PHPMA was investigated to enhance the anticancer efficacy which 

also reached preclinical settings [215]. A second series of blockbuster polymers that entered 

clinical trials are PEG-based conjugates, namely, EZ-246 conjugated to camptothecin but its 

phase II trials has been stopped due to lack of efficacy. However, NK911 in the form of 

PEGylated micelles with aspartic acid and Dox had showed promising efficacy against various 

solid malignancies likely thanks to the EPR effect and is currently in phase II [216-219]. 

Carboxymethyldextrans another synthetic polymer forming prodrugs with exatecan and 

camptothecin [220], and which entered Phase I clinical trials, showed prominent results 

especially against colon cancer [221, 222]. Polyglutamate has been conjugated using Ptx by Cell 

Therapeutics Inc. company and is currently in Phase II trials [199, 200]. Other Cathepsin-

sensitive drug delivery systems are under preclinical investigations, including polymeric 

dendritic systems containing Dox (KTB Tumorforschungs GmbH company) [223, 224]. 

 



35 
 

Table 2.List of Cathepsin B-Cleavable Prodrugs Evaluated inClinical Trials. 

Entry Name Composition Spacer Linker 

Clinical 

Trial 

status 

Company Refs 

1 
PK1; 

FCE28068 

PHPMA 

copolymer-

Doxorubicine 

Gly-Phe-Leu-

Gly 
Amide 

Phase II 

(discontinu

ed) 

Pfizer 

Inc., 

Cancer 

Research 

Campaign

, UK 

[196, 

225] 

2 
PK2; 

FCE28069 

PHPMA-Dox-

Galatosamine 

Gly-Phe-Leu-

Gly 
Amide 

Phase 

I/II(disconti

nued) 

Pfizer 

Inc., 

Cancer 

Research 

Campaign

, UK 

[226, 

227] 

3 
PNU166945/H

PMA-Ptx 

PHPMA 

copolymer- 

Paclitaxel 

Gly-Phe-Leu-

Gly 
Ester 

Phase 

I(discontinu

ed) 

Pharmacia [206] 

4 

PNU166148/H

PMA-

CPT/MAG-

CPT 

PHPMA 

copolymer-

Camptothecin 

Glycine 

residue/ 

Glycylaminoh

exanoyl 

spacer 

Ester 

Phase 

I(discontinu

ed) 

Pharmacia [207] 

5 

CT-2103/PGA-

Ptx-

XYOTAXTM/

OPAXIO® 

Polyglutamate-

Paclitaxel 

 

L-glutamic 

acid 
Ester Phase II/III 

Cell 

Therapeut

ics Inc. 

[199-

205] 

6 
CT-2106/PGA-

CPT 

Polyglutamate-

Camptothecin 

L-glutamic 

acid 
Ester 

Phase II 

discontinue

d 

Cell 

Therapeut

ics Inc. 

[228-

230] 

7 AP5280 

PHPMA 

copolymer- 

Carboplatinate 

Gly-Phe-Leu-

Gly 

Aminoma

lonate 
Phase I 

Access 

Pharmace

uticals 

Inc. 

[208, 

209] 

8 
AP5346/ 

ProlindacTM 

PHPMA 

copolymer-

DACH 

Oxiplatinate 

GGG-

carboxylate-Pt 

coordination 

Aminoma

lonate 
Phase II 

Access 

Pharmace

uticals 

Inc. 

[210] 

9 

EZ-246/PEG-

CPT/Pegamote

can/ProthecanT

M 

PEG-

Camptothecin 
Glycine Ester 

Phase II 

discontinue

d 

Enzon 

Pharmace

uticals, 

Inc. 

[216, 

217] 

10 NK911 

PEG-aspartic 

acid-

Doxorubicinmi

celle 

Aspartic acid Amide Phase II 

National 

Cancer 

Institute 

Japan 

[97, 

218, 

219] 

11 P-Dox 
PHPMA 

copolymer-

Gly-Phe-Leu-

Gly 
Amide Preclinical - 

[211, 

212] 
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Dox 

12 
P-(GFLG)-

Dox-Ab 

PHPMA 

copolymer-

Dox-abraxane 

Gly-Phe-Leu-

Gly 
Amide Preclinical - [213] 

13 
P-(GFLG-

Dox)-Ga IN 

PHPMA 

copolymer-

Dox-N-

acylated 

galactosamine 

Gly-Phe-Leu-

Gly 
Amide Preclinical - [214] 

14 
P-(GFLG-

Dox)-Lac 

PHPMA 

copolymer-

Dox-Lactose 

Gly-Phe-Leu-

Gly 
Amide Preclinical  [214] 

15 HMW1D 

PHPMA 

copolymer-

Dox (high 

molecular 

weight) 

Gly-Phe-Leu-

Gly 
Amide Preclinical - [215] 

16 TET1D 

PHPMA 

copolymer-

Dox (non-

targeted) 

Gly-Phe-Leu-

Gly 
Amide Preclinical - [215] 

17 
DOXO-EMCH 

(INNO-206) 

EMC-Arg-Arg-

Ala-Leu-Ala-

Leu-Dox 

Ala-Leu-Ala-

Leu 

Maleimid

e 
Preclinical 

CytRx 

Corporati

on 

[231] 

18 

EMC-Phe-Lys-

PABC-Dox 

PHPMA 

copolymer-

Phe-Lys-

PABC-Dox 

Phe-Lys Amide Preclinical 

KTB 

Tumorfor

schungs 

GmbH 

[223] 

19 
PG-Phe-Lys-

Dox 

Hyperbranched 

polyglycerol-

Phe-Lys-Dox 

Phe-Lys Amide Preclinical 

KTB 

Tumorfor

schungs 

GmbH 

[224] 

20 DE-310 

Carboxymethyl

dextran-

exatecan 

Gly-Phe-Leu-

Gly 
Amide Phase I 

Daiichi 

Pharmace

utical Co. 

Ltd. 

[221] 

21 

Delimotecan 

(MEN 4901/T-

0128) 

Carboxymethyl

dextran-

camptothecin 

Triglycine Ester Phase I 

Mitsubish

i 

Tanabe/M

enarini 

[222] 
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4. Conclusion 

As shown in this Review Article, Cathepsins could be very efficient tools, leverages or even 

actuators for the design of advanced drug delivery systems. It has been shown that these systems 

were sensitive to the presence of a broad spectrum of different Cathepsins, leading to enhanced 

therapeutic benefit and imaging capabilities. Among the numerous Cathepsin-sensitive 

conjugates reported so far, some of them have shown promising results and even reached 

advanced clinical trials. However, a great deal of work remains especially regarding the lack of 

site specificity and the still limited understanding of the biological roles of some proteases. 

These limitations must be resolved to develop optimized conjugates and offer more prominent 

clinical candidates. 

Also, it has been demonstrated that cysteine Cathepsin proteases can act as regulators for 

cancer progression as well as therapeutic response [232]. It means that they can either promote 

tumor growth or suppress tumor depending upon the environment. However, more clinical 

investigations must be performed to have a complete and accurate picture of the situation in vivo. 
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