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Protection against Clostridium difficile infection in a hamster model by 

oral vaccination using flagellin FliC-loaded pectin beads. 
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Abstract 11 

Clostridium difficile flagellin FliC is a highly immunogenic pathogen-associated molecular pattern 12 

playing a key role in C. difficile pathogenesis and gut colonization. Here, we designed an oral vaccine 13 

against C. difficile with FliC encapsulated into pectin beads for colonic release. Bead stability and 14 

FliC retention was confirmed in vitro using simulated intestinal media (SIM), while bead degradation 15 

and FliC release was observed upon incubation in simulated colonic media (SCM). The importance 16 

of FliC encapsulation into pectin beads for protection against C. difficile was assessed in a 17 

vaccination assay using a lethal hamster model of C. difficile infection. Three groups of hamsters 18 

orally received either FliC-loaded beads or unloaded beads in gastro-resistant capsule to limit gastric 19 

degradation or free FliC. Two other groups were immunized with free FliC, one intra-rectally and the 20 
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other intra-peritoneally. Hamsters were then challenged with a lethal dose of C. difficile VPI 10463. 21 

Fifty percent of hamsters orally immunized with FliC-loaded beads survived whereas all hamsters 22 

orally immunized with free FliC died within 7 days post challenge. No significant protection was 23 

observed in the other groups. Only intra-peritoneally immunized hamsters presented anti-FliC IgG 24 

antibodies in sera after immunizations. These results suggest that an oral immunization with FliC-25 

loaded beads probably induced a mucosal immune response, therefore providing a protective effect. 26 

This study confirms the importance of FliC encapsulation into pectin beads for a protective oral 27 

vaccine against C. difficile. 28 

Keywords: Clostridium difficile; oral vaccination; flagellin; pectin beads; colonic delivery 29 

 30 

1 Introduction 31 

Clostridium difficile (Clostridioides) difficile [1] is a Gram-positive, anaerobic spore-forming 32 

bacterium and is the leading cause of antibiotic-associated diarrhea. Gut microbiota dysbiosis enables 33 

C. difficile colonization of the intestinal tract. After contamination, C. difficile spores germinate, 34 

vegetative forms multiply, and toxins are released, disrupting epithelium integrity and inducing an 35 

inflammatory response in the colon [2]. C. difficile is a non-invasive pathogen, thus, promoting local 36 

intestinal immunity could trigger early protection against C. difficile infection (CDI) [3]. Even 37 

though the intra-rectal route has shown promising results previously by inducing a protective 38 

immune response directed to C. difficile [4-6], developing the oral route of immunization 39 

represents a rational choice to induce a gut mucosal immune response with a better patient 40 

acceptance and comfort. To overcome the gastrointestinal barrier, antigen encapsulation is 41 

recommended to maintain its integrity and its immunogenicity. Biocompatible and biodegradable 42 

polymers are interesting materials for encapsulation. For instance, pectin, a non-toxic polysaccharide, 43 
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has previously shown promising capacity for protein encapsulation and colonic delivery [7, 8]. 44 

Indeed, pectin is not degraded by gastric or intestinal enzymes but is almost totally degraded by 45 

pectinolytic enzymes produced by the microbiota present in the colon [7, 9].  46 

Current strategies for vaccine development against C. difficile target either toxins or colonization 47 

factors. Systemic vaccines targeting toxins are currently being tested in clinical trials 48 

(NCT01887912; NCT03090191; NCT02316470) and have shown efficacy in protecting against CDI 49 

in animal models [10, 11]. However, targeting colonization factors could prevent C. difficile 50 

colonization, growth and symptomatic infection therefore limiting dissemination of the bacteria in 51 

the environment. Several vaccine candidates targeting colonization factors showed promising results 52 

[4, 8, 12]. For instance, flagellin which is highly immunogenic, harbors a unique pathogen-associated 53 

molecular pattern implicated in toll-like receptor-5 (TLR-5) recognition. However, the central 54 

domain of the flagellin is highly variable among different species [13, 14]. Regarding C. difficile 55 

flagellin, FliC is a 39 kDa structural protein of the flagellum. The central domain, the N- and C-56 

terminal domains of FliC are well conserved among the different strains of C. difficile. FliC 57 

antibodies have been detected in patient sera [15] and non-CDI patients presented significantly more 58 

anti-FliC serum antibodies than CDI patients [16]. Interestingly, the immunological properties of 59 

FliC enable it to act as adjuvant [17] and as antigen, so, FliC represents a promising vaccine 60 

candidate [12, 18]. Ghose et al. intraperitoneally immunized hamsters and mice with FliC and 61 

described the induction of a systemic IgG response protective against CDI [12]. 62 

Developing a mucosal vaccine targeting C. difficile gut colonization could enable early 63 

protection against CDI. Oral vaccines can be expected to have much greater acceptability than 64 

injectable vaccines. Oral vaccine administration could also lead to simplified manufacturing 65 

vaccine, thereby increasing the potential for local vaccine production. Here we describe the 66 

development and the efficacy of a mucosal vaccine strategy with FliC against C. difficile virulence in 67 
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hamster. To this end, here we first assess the suitability of pectin beads to deliver FliC into the colon 68 

and we evaluate FliC-loaded pectin beads in gastro-resistant capsules as an oral vaccine candidate 69 

against C. difficile in a lethal hamster model of CDI.  70 

2 Material and methods 71 

2.1 Preparation of pectin beads 72 

Recombinant FliC was obtained and purified as previously described [13] with exception that the 73 

purified protein was dialyzed against TRIS buffer (25 mM, pH 7.5). Pectin beads were prepared as 74 

previously detailed [8], pectin solution was obtained with Unipectine
TM

 OG175C (Cargill) dissolved 75 

in TRIS buffer (25 mM, pH 7.5) at the concentration of 6% (w/V). Unloaded beads were prepared 76 

with the pectin solution only and FliC-loaded beads with pectin solution and recombinant FliC. The 77 

pectin solution containing FliC or not was then dropped into a cross-linking solution of Zn acetate 78 

(12%, w/V). Beads, formed instantaneously by contact with zinc ions, were left in the cross-linking 79 

solution for 30 minutes at room temperature under magnetic stirring. Beads were washed three times 80 

with distilled water and then dried 3 hours at 37°C. To determine encapsulation efficiency (EE), 81 

FliC-loaded beads were disintegrated in TRIS buffer (25 mM, pH 7.5) added with EDTA (50 mM). 82 

Then, proteins were dosed using Bradford dye-binding method. EE(%) was determined by the 83 

following formula : (actual amount of FliC encapsulated / theoretical amount of FliC 84 

encapsulated) *100. 85 

2.2 Analysis of protein release from beads in simulated digestive media 86 

Analysis of FliC release was carried out in two different simulated digestive media as previously 87 

described [8]: 5 h in Simulated Intestinal Medium (SIM, HEPES/NaCl buffer, pH 6.8) containing 88 

pancreatin (1% w/V) followed by 5 h in Simulated Colonic Medium (SCM, HEPES/NaCl buffer, pH 89 

6) containing ≥760 U/mL of pectinase from Aspergillus aculeatus (Sigma). Presence of FliC and 90 
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pectinase in the same medium makes difficult to dose proteins by Bradford dye-binding method. 91 

Therefore, loaded beads were prepared using rhodamine-labelled FliC. Labeling and release protocol 92 

were performed as previously described [8] and the amount of FliC released was determined by 93 

spectrofluorometry in duplicate. 94 

2.3 Gastro-resistant coating of capsules containing beads for oral immunization 95 

To protect beads from the harsh gastric acid environment, loaded and unloaded beads were placed 96 

into gelatin capsules (size 9, Harvard Apparatus) coated with a hydroxypropyl methylcellulose 97 

phthalate (HPMCP 50) film. Coating was performed by dipping capsules into a 10% (w/V) solution 98 

of HPMCP 50 in acetone/ethanol (1:1 v:v) and drying them at room temperature [8]. This process 99 

was repeated six times. The efficacy of the gastro-resistant coating was checked by a disintegration 100 

test according to European pharmacopoeia (capsules undamaged after 2 h in HCl 0.1 M) [8]. 101 

2.4 Animals 102 

The vaccination study was carried out in a model of infection using Mesocricetus auratus female 103 

hamsters (weight, 80–100 g, Janvier Laboratories). Protocols involving animals and their care were 104 

conducted in conformity with the institutional guidelines that are in compliance with national and 105 

international laws and policies. The protocol was approved by the Committee on the Ethics of 106 

Animal Experiments University of Paris-Sud and the French Minister of Research (APAFIS#4577-107 

2016020913152994 v4). All efforts were made to minimize animal suffering. 108 

2.5 Vaccination protocol 109 

Five groups of 6 animals were used. Each vaccinated animals received a total of 300 µg of FliC in 110 

three administrations of 100 µg of FliC every fifteen days (at day 0, day 15 and day 30). One group 111 

was immunized with FliC-loaded pectin beads given orally and a group orally received unloaded 112 
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beads. Three other groups were immunized with recombinant free FliC by oral, intra-rectal or intra-113 

peritoneal route. Fifteen days after the last immunization (at day 45) and before C. difficile 114 

challenge, hamsters were orally given clindamycin at a single dose of 50 mg/kg and gentamicin twice 115 

a day during 5 days (from day 45 to day 49) at a dose of 2.5 mg/kg to disrupt the intestinal 116 

microbiota. Then at day 50, hamsters were orally challenged with 7,5x10
4
 spores of C. difficile strain 117 

VPI 10463 (Fig. 1). Two days after challenge, C. difficile colonization was checked by detection of 118 

C. difficile vegetative cells in the feces by plating adequate dilutions on Columbia agar 119 

containing 5% of horse blood, 25% (w/v) of D-cycloserine, and 0.8% (w/v) of cefoxitin and 120 

taurocholate. 121 

2.6 Evaluation of specific antibody level in sera after immunization 122 

To evaluate the antibody response in sera, blood samples were withdrawn before the first 123 

immunization and 15 days after the last immunization, before C. difficile challenge. Indirect ELISA 124 

was used to detect antibodies in the sera as previously described [6]. Briefly, wells of 96-well 125 

microtitre plates (MaxiSorp, Nunc) were coated with 100 µL of a 5 µg/mL solution of recombinant 126 

purified FliC. Sera were tested in duplicate at dilution 1:500 in 100 µL final volume. After five 127 

washings with phosphate buffer (PBS) and Tween-20 (0.1%), an aliquot of 100 µL per well of a 128 

rabbit anti-hamster IgG conjugated with biotin (1:8,000 dilution; Biovalley) was added and plates 129 

were incubated for 30 min at 37°C. Then, after five washings, 100 µL per well of streptavidin–HRP 130 

(1:10,000 dilution; ThermoScientific) were added and plates were incubated for 30 min at 37°C. 131 

Assays with antigen in the absence of sera served as negative controls. Immunoglobulin levels are 132 

expressed as OD units at 450 nm. 133 

2.7 Statistical analysis 134 
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Animal surviving rate was analyzed using Kaplan–Meier estimates. Survival rates between groups 135 

were compared using log rank test, p-values < 0.05 were considered as statistically significant. 136 

Mann-Withney U-test was performed to analyzed specific anti-FliC antibody levels in sera after 137 

immunizations, p-values < 0.05 were considered as statistically significant. 138 

3 Results 139 

3.1 Flagellin encapsulation in pectin beads and in vitro release 140 

In order to perform oral vaccination, we encapsulated the recombinant C. difficile flagellin FliC into 141 

pectin beads. About 40 to 45 beads were obtained per milliliter of pectin solution. After drying, beads 142 

had an ellipsoid shape with a 1.2-1.5 mm diameter and weighed between 1.5 and 2 mg (Fig. 2). The 143 

total amount of encapsulated FliC was dosed after total disintegration of beads. FliC-loaded bead 144 

contained a total amount of 3 ± 1 µg of FliC by bead, this corresponds to an encapsulation efficiency 145 

of about 30 ± 10% (n=5). In vitro characterization confirms beads stability in SIM and protein release 146 

in SCM containing pectinase. Less than 10% of FliC was released after 5 h of incubation in SIM and 147 

dried beads swelled keeping their shape. After being placed in SCM, beads started to disintegrate 148 

leading to the release of FliC. Between 2 and 3 h were sufficient to release more than 80% of 149 

entrapped FliC (Fig. 3). This in vitro characterization of FliC-loaded beads confirms the interest of 150 

using this encapsulation strategy for colonic delivery of an antigen after oral administration. 151 

3.2 Vaccination with flagellin against CDI in the hamster model 152 

C. difficile flagellin FliC is a promising vaccine candidate. To evaluate the efficacy of mucosal 153 

vaccination with FliC against C. difficile virulence, we immunized hamsters with the same amount of 154 

FliC via different mucosal routes and compare them with the intra-peritoneal parenteral route. We 155 

showed here that encapsulation of FliC into pectin beads for oral administration significantly 156 
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protected hamsters against C. difficile lethal challenge (Fig. 4). Indeed, at day 17 after challenge, 157 

50% of hamsters survived in the group orally vaccinated with FliC-loaded beads, whereas no survival 158 

was observed after oral vaccination with free FliC (p-value=0.041). Only 17% of hamsters (n=1) 159 

survived in the unloaded bead group. The same percentage of surviving animals was observed for the 160 

intra-rectally vaccinated group. After immunization by intra-peritoneal route, 33% of hamsters 161 

survived. Interestingly, analysis of C. difficile fecal shedding showed that, whereas all 30 animals 162 

were infected by C. difficile two days post-challenge, all surviving animals in the different groups 163 

were no more colonized at the end of the assay at 17 days post challenge. These results showed that 164 

oral vaccination with FliC-loaded pectin beads led to the best protection against C. difficile virulence 165 

in the hamster model. 166 

3.3 Antibody response induced after vaccination  167 

To correlate the observed protection with the systemic immune response induced by vaccination, we 168 

evaluated the anti-FliC response in sera. We observed an increased level of FliC-specific IgG 169 

antibodies in sera after intra-peritoneal immunizations of hamsters. In contrast, in the other groups, 170 

no significant increase of anti-FliC-specific serum IgG level was observed (Fig. 5). 171 

4 Discussion 172 

As C. difficile is a non-invasive enteropathogen, the induction of a mucosal immune response close 173 

to the site of infection appears to be a relevant choice for inducing protection. Vaccine development 174 

against non-invasive gastrointestinal infections such as enterotoxigenic Vibrio cholerae or 175 

Escherichia coli showed that the protection is conferred mainly by specific secretory IgA (sIgA) and 176 

by the induction of a memory immune response [19]. A mucosal vaccine strategy, which aims to 177 

prevent alteration of the intestinal epithelium by targeting the early stages of the C. difficile infectious 178 

process, could benefit from further attention.  179 
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Furthermore, one of the vaccine strategies against C. difficile is to target surface proteins involved in 180 

intestinal colonization. The flagellin FliC appears a promising vaccine candidate, since Ghose et al. 181 

reported that intra-peritoneal immunization with FliC and alum led to 43 to 64% of protection in a 182 

hamster model and 40 to 100% protection in a mouse model in a dose-dependent manner [12]. In our 183 

assay, intra-peritoneal immunization of hamsters with FliC led to 33% of survival against C. difficile. 184 

Compared to Ghose et al results [12], this difference of protection is probably due to the adjuvant 185 

used for immunization. Indeed, as already demonstrated, C. difficile flagellin FliC has adjuvant 186 

properties, avoiding alum use as adjuvant [12, 17]. Consequently in our study, immunizations were 187 

performed without additional adjuvant. In addition, C. difficile strain used for challenge was not the 188 

same, with probably a difference of virulence between the VPI 10463 strain used here and the 189 

630∆erm strain used in Ghose et al study, as described elsewhere [20]. Of note here, we 190 

demonstrated that the high immunogenicity of FliC enables to induce a strong systemic IgG antibody 191 

response after intra-peritoneal immunization without supplementary adjuvant.  192 

Interestingly, here we obtained a better protection with an oral vaccine consisting of FliC 193 

encapsulated into pectin beads to target colonic release than after intra-peritoneal immunization with 194 

purified FliC alone. We showed that this strategy can significantly protect 50% of hamsters from 195 

CDI (3 out of 6). However, these results should be confirmed in a larger study. This significant 196 

but partial protection confirms the multifactorial aspect of colonization, suggesting that a 197 

combination of several proteins will be necessary to trigger an efficient immune response 198 

against C. difficile colonization factors, and consequently to prevent the colonization process. In 199 

addition, according to animal variability to C. difficile infection, especially regarding immune 200 

response and microbiota, a combined vaccine could be necessary. 201 

Ghose et al. demonstrated that the protection induced by FliC immunization by intra-peritoneal route 202 

was anti-FliC IgG-mediated. In our study, the immune response induced after oral immunization with 203 
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FliC-loaded pectin beads is able to partially protect animal from death. However, no specific IgG 204 

antibody response was detected in sera. This was previously observed in another assay of oral 205 

vaccination of hamsters with the Cwp84 protease encapsulated in pectin beads. Although vaccinated 206 

hamsters were partially protected (40%) against CDI, they did not develop a systemic anti-Cwp84-207 

IgG antibody response [8]. This suggests that after vaccination by mucosal route, beside a systemic 208 

immune response, a local immune response with sIgA production could be the key factor of 209 

protection. It has been previously shown in a mouse model that parenteral immunization with 210 

flagellin can activate mucosal dendritic cells and induce an isotype switch to IgA [18]. Unfortunately 211 

secondary antibodies are not commercially available to detect specific IgA in hamsters.  212 

Here, we used the hamster model of CDI, which is highly sensitive to this infection and reflects more 213 

severe infection in human than mild infection. Our results indicate that in this model, protection 214 

could probably be related to neutralizing sIgA but other factors may play an important role in the 215 

host immune response against CDI. In particular, our immunization strategy might have generated a 216 

wider cell-based immunity that could have induced partial protection. Regarding Streptococcus 217 

pneumoniae, it has been demonstrated that multiple immune cell types are required for the induction 218 

of a protective immunity in a murine model which lacks mature B cells and fails to produce antibody 219 

[21]. Further studies are needed to specify the immune effectors induced by immunization. 220 

In this study, the least protection of hamsters observed by intra-rectal administration of FliC 221 

compared to the oral administration of FliC-loaded beads and the absence of protection for the free 222 

FliC orally treated group, is presumably due to the degradation of the free antigen by gut enzymes 223 

before it reaches the colon. This further confirms the importance of the administration route and the 224 

use of pectin beads as a delivery system for FliC.  225 
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To conclude, we showed that oral vaccination with C. difficile FliC-loaded pectin beads is partially 226 

protective against a virulent strain of C. difficile in a hamster model. In order to assess in further 227 

depth the mechanisms of protection, further studies in mouse model could inform on the 228 

protection against C. difficile colonization and a better understanding of the immune response 229 

elicited with this vaccine. This study confirms the importance of the adequacy between the 230 

administration route, the delivery system and the vaccine candidate in the design of a mucosal 231 

protective immunization strategy targeting C. difficile. 232 
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Figures 241 

242 

Figure 1. Vaccination protocol.  243 

Animals received a total of 300 µg of FliC in three administrations of 100 µg of FliC on days 0, 15 244 

and 30. Before challenge, hamsters received clindamycin and gentamicin to disrupt the intestinal 245 

microbiota. Then, hamsters were orally challenged by 7,5x10
4
 spores of C. difficile strain VPI 10463. 246 

Two days after challenge CDI was checked by detection of C. difficile in the feces. Blood samples 247 

were withdrawn before the first immunization and 15 days after the last immunization to evaluate the 248 

antibody response in sera. 249 

 250 

 251 

 252 

Figure 2. Dried pectin beads (scale bar represents 1 cm).  253 
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 254 

Figure 3. In vitro FliC release from pectin beads in Simulated Intestinal Medium (SIM) for 5h and 255 

Simulated Colonic Medium (SCM) for other 5h (n=2). 256 

 257 

Figure 4. Kaplan-Meier survival estimates after immunizations. One group was immunized with 258 

FliC-loaded beads given orally (FliC-loaded beads), one group orally received unloaded pectin beads 259 

(Unloaded beads) and three other groups were immunized with recombinant free FliC by oral (FliC 260 

oral), intra-rectal (FliC intra-rectal) or intra-peritoneal route (FliC intra-peritoneal). After challenge 261 

with spores of C. difficile VPI 10463 strain, animals were monitored for 17 days. * p-value < 0.05 262 
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 263 

Figure 5. Detection of specific IgG in animal sera by ELISA. Mean of anti-FliC-specific IgG in 264 

serum of immunized hamsters (diluted 1:500) before (D0) and after vaccination (D45). Sera of 265 

hamsters were analysed by ELISA. *: statistically significant difference p-value < 0.05 (Mann-266 

Withney U-test). 267 

 268 

 269 

 270 

 271 

 272 

References 273 

 274 

 275 

[1] Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of Clostridium difficile as 276 

Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe 2016 Aug 2016;40:95-9. 277 

[2] Koenigsknecht MJ, Theriot CM, Bergin IL, Schumacher CA, Schloss PD, Young VB. 278 

Dynamics and Establishment of Clostridium difficile Infection in the Murine Gastrointestinal Tract. 279 

Infection and Immunity 2015 03/2015;83:934-41. 280 



 
15 

[3] Péchiné S, Collignon A. Immune responses induced by Clostridium difficile. Anaerobe 2016 281 

Oct 2016;41:68-78. 282 

[4] Bruxelle J-F, Mizrahi A, Hoys S, Collignon A, Janoir C, Péchiné S. Immunogenic properties 283 

of the surface layer precursor of Clostridium difficile and vaccination assays in animal models. 284 

Anaerobe 2016 Feb 2016;37:78-84. 285 

[5] Mizrahi A, Collignon A, Péchiné S. Passive and active immunization strategies against 286 

Clostridium difficile infections: state of the art. Anaerobe 2014 Dec 2014;30:210-9. 287 

[6] Péchiné S, Denève C, Le Monnier A, Hoys S, Janoir C, Collignon A. Immunization of 288 

hamsters against Clostridium difficile infection using the Cwp84 protease as an antigen. FEMS 289 

Immunology & Medical Microbiology 2011 10/2011;63:73-81. 290 

[7] Bourgeois S, Laham A, Besnard M, Andremont A, Fattal E. In vitro and in vivo evaluation of 291 

pectin beads for the colon delivery of beta-lactamases. Journal of Drug Targeting 2005 Jun 292 

2005;13:277-84. 293 

[8] Sandolo C, Péchiné S, Le Monnier A, Hoys S, Janoir C, Coviello T, et al. Encapsulation of 294 

Cwp84 into pectin beads for oral vaccination against Clostridium difficile. 2011 Nov 2011;79:566-295 

73. 296 

[9] Ndeh D, Rogowski A, Cartmell A, Luis AS, Basle A, Gray J, et al. Complex pectin 297 

metabolism by gut bacteria reveals novel catalytic functions. Nature 2017 Apr 6;544(7648):65-70. 298 

[10] Anosova NG, Brown AM, Li L, Liu N, Cole LE, Zhang J, et al. Systemic antibody responses 299 

induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-300 

associated disease in hamsters. Journal of Medical Microbiology 2013 Sep 2013;62:1394-404. 301 

[11] Kociolek LK, Gerding DN. Breakthroughs in the treatment and prevention of Clostridium 302 

difficile infection. Nature Reviews Gastroenterology & Hepatology 2016 Mar 2016;13:150-60. 303 

[12] Ghose C, Eugenis I, Sun X, Edwards AN, McBride SM, Pride DT, et al. Immunogenicity and 304 

protective efficacy of recombinant Clostridium difficile flagellar protein FliC. Emerging Microbes & 305 

Infections 2016 Feb 03, 2016;5:e8. 306 

[13] Batah J, Denève-Larrazet C, Jolivot P-A, Kuehne S, Collignon A, Marvaud J-C, et al. 307 

Clostridium difficile flagella predominantly activate TLR5-linked NF-κB pathway in epithelial cells. 308 

Anaerobe 2016 Apr 2016;38:116-24. 309 

[14] Rumbo M, Nempont C, Kraehenbuhl J-P, Sirard J-C. Mucosal interplay among commensal 310 

and pathogenic bacteria: Lessons from flagellin and Toll-like receptor 5. FEBS Letters 2006 2006-311 

05-22;580:2976-84. 312 

[15] Wright A, Drudy D, Kyne L, Brown K, Fairweather NF. Immunoreactive cell wall proteins of 313 

Clostridium difficile identified by human sera. Journal of medical microbiology 2008 Jun 314 

2008;57:750-6. 315 

[16] Péchiné S, Gleizes A, Janoir C, Gorges-Kergot R, Barc M-C, Delmée M, et al. 316 

Immunological properties of surface proteins of Clostridium difficile. Journal of medical 317 

microbiology 2005 Feb 2005;54:193-6. 318 

[17] Bruxelle J-F, Mizrahi A, Hoÿs S, Collignon A, Janoir C, Péchiné S. Clostridium difficile 319 

flagellin FliC: Evaluation as adjuvant and use in a mucosal vaccine against Clostridium difficile. PloS 320 

One 2017 2017;12:e0187212. 321 



 
16 

[18] Flores-Langarica A, Marshall JL, Hitchcock J, Cook C, Jobanputra J, Bobat S, et al. Systemic 322 

flagellin immunization stimulates mucosal CD103+ dendritic cells and drives Foxp3+ regulatory T 323 

cell and IgA responses in the mesenteric lymph node. Journal of Immunology (Baltimore, Md: 1950) 324 

2012 Dec 15, 2012;189:5745-54. 325 

[19] Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nature Medicine 2005 Apr 326 

2005;11:S45-53. 327 

[20] Theriot CM, Koumpouras CC, Carlson PE, Bergin II, Aronoff DM, Young VB. 328 

Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium 329 

difficile strains. Gut Microbes 2011 2011 Nov-Dec;2:326-34. 330 

[21] McCool TL, Weiser JN. Limited role of antibody in clearance of Streptococcus pneumoniae 331 

in a murine model of colonization. Infect Immun 2004 Oct;72(10):5807-13. 332 

 333 

 334 


