Testing the Role of the Red Queen and Court Jester as Drivers of the Macroevolution of Apollo Butterflies - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Systematic Biology Année : 2018

Testing the Role of the Red Queen and Court Jester as Drivers of the Macroevolution of Apollo Butterflies

Sebastian Höhna
  • Fonction : Auteur
Felix Sperling
  • Fonction : Auteur
Isabel Sanmartin
  • Fonction : Auteur
  • PersonId : 1018760
RJB

Résumé

In macroevolution, the Red Queen (RQ) model posits that biodiversity dynamics depend mainly on speciesintrinsic biotic factors such as interactions among species or life-history traits, while the Court Jester (CJ) model states that extrinsic environmental abiotic factors have a stronger role. Until recently, a lack of relevant methodological approaches has prevented the unraveling of contributions from these 2 types of factors to the evolutionary history of a lineage. Herein, we take advantage of the rapid development of new macroevolution models that tie diversification rates to changes in paleoenvironmental (extrinsic) and/or biotic (intrinsic) factors. We inferred a robust and fully-sampled species-level phylogeny, as well as divergence times and ancestral geographic ranges, and related these to the radiation of Apollo butterflies (Parnassiinae) using both extant (molecular) and extinct (fossil/morphological) evidence.We tested whether their diversification dynamics are better explained by an RQ or CJ hypothesis, by assessing whether speciation and extinction were mediated by diversity-dependence (niche filling) and clade-dependent host-plant association (RQ) or by large-scale continuous changes in extrinsic factors such as climate or geology (CJ). For the RQ hypothesis, we found significant differences in speciation rates associated with different host-plants but detected no sign of diversity-dependence. For CJ, the role of Himalayan–Tibetan building was substantial for biogeography but not a driver of high speciation, while positive dependence between warm climate and speciation/extinction was supported by continuously varying maximumlikelihood models. We find that rather than a single factor, the joint effect of multiple factors (biogeography, species traits, environmental drivers, and mass extinction) is responsible for current diversity patterns and that the same factor might act differently across clades, emphasizing the notion of opportunity. This study confirms the importance of the confluence of several factors rather than single explanations in modeling diversification within lineages.

Dates et versions

hal-02323593 , version 1 (21-10-2019)

Identifiants

Citer

Fabien Condamine, Jonathan Rolland, Sebastian Höhna, Felix Sperling, Isabel Sanmartin. Testing the Role of the Red Queen and Court Jester as Drivers of the Macroevolution of Apollo Butterflies. Systematic Biology, 2018, 67 (6), pp.940-964. ⟨10.1093/sysbio/syy009⟩. ⟨hal-02323593⟩
101 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More