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Abstract. We study equilibrium properties of catalytically-activated A + A → ⊘
reactions taking place on a lattice of adsorption sites. The particles undergo continuous

exchanges with a reservoir maintained at a constant chemical potential µ and react

when they appear at the neighbouring sites, provided that some reactive conditions

are fulfilled. We model the latter in two different ways: In the Model I some fraction p

of the bonds connecting neighbouring sites possesses special catalytic properties such

that any two As appearing on the sites connected by such a bond instantaneously

react and desorb. In the Model II some fraction p of the adsorption sites possesses

such properties and neighbouring particles react if at least one of them resides on a

catalytic site. For the case of annealed disorder in the distribution of the catalyst,

which is tantamount to the situation when the reaction may take place at any point on

the lattice but happens with a finite probability p, we provide an exact solution for both

models for the interior of an infinitely large Cayley tree - the so-called Bethe lattice.

We show that both models exhibit a rich critical behaviour: For the annealed Model

I it is characterised by a transition into an ordered state and a re-entrant transition

into a disordered phase, which both are continuous. For the annealed Model II, which

represents a rather exotic model of statistical mechanics in which interactions of any

particle with its environment have a peculiar Boolean form, the transition to an ordered

state is always continuous, while the re-entrant transition into the disordered phase

may be either continuous or discontinuous, depending on the value of p.
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1. Introduction

Catalytically activated reactions involve particles that react only in the presence of

another agent - a catalyst - and remain chemically inactive otherwise. Such processes are

widespread in nature and are also involved in a variety of technological and industrial

applications [1, 2]. Different kinetic, equilibrium and out-of-equilibrium properties of

such reactions, as well as various theoretical concepts, available analytical and numerical

approaches have been comprehensively reviewed in Ref. [3].

The classical textbook approach to the kinetics of such processes focuses only on

the average concentrations of the species involved. In consequence, one usually writes

systems of differential rate equations of varying complexity with multiple parameters,

as prescribed by the formal-kinetic “law of mass action” (see, e.g., Ref. [3]). Ziff, Gulari

and Barshad (ZGB) [4] and subsequently, Ziff and Fichthorn [5], Fichthorn, Gulari

and Ziff [6], were apparently first to realise that fluctuations in adsorption/desorption

events, fluctuations of coverages and spatial correlations can cause a severe departure

from the deterministic descriptions based on the rate equations approach. Using

computer simulations ZGB studied the so-called monomer-dimer model, introduced as

an idealised description of the important process of CO oxidation on a catalytic surface,

which revealed an emerging spectacular cooperative behaviour: it was found that the

monolayers formed by the molecules adsorbed on the surface may undergo discontinuous

or continuous phase transitions in different parameter ranges.

More specifically, ZGB considered a reaction occurring by the following three steps:

a) an irreversible adsorption of CO molecules from their reservoir onto a single-crystal

catalyst surface, modelled as a simple square lattice of adsorption sites, b) an irreversible

adsorption of O2 molecules onto the lattice from their reservoir with the subsequent

dissociation of O2 into two O atoms, each residing on a separate lattice site (while

CO requires only a single site, which explains why the model is called the ”monomer-

dimer” one) and c) an instantaneous (perfect) irreversible reaction between neighbouring

absorbed CO and O, followed by an immediate desorption of the reaction product

CO2, which does not interact further with the system. It was realised that on a two-

dimensional square lattice upon lowering the CO adsorption rate the system undergoes

a first-order (discontinuous) phase transition from a CO saturated inactive phase into a

reactive steady state, followed by a continuous transition into an O2-saturated inactive

phase, which belongs to the same universality class as directed percolation and the

Reggeon field theory [7]. While such a model evidently discards many important features

of real physical systems, such as, e.g., molecular diffusion on the surface, reversibility

of the adsorption of the species involved, imperfect reaction, when two neighbouring

adsorbed reactants react only with a finite probability, and etc., it does reproduce two

types of phase transitions which occur in realistic systems [3].

A more simple, monomer-monomer model was introduced by Ziff and Fichthorn [5]

and was subsequently studied in Refs. [8–10]. In this model one focuses on a general

reaction scheme A + B → ⊘ where A and B are two chemically different species but
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both are monomers, in the sense that both require just a single lattice site for an

irreversible adsorption. It was realised that the monomer-monomer model exhibits

a first-order transition from a phase saturated with one of the species to the phase

saturated with the other one. Allowing for an adsorption of one of the species, i.e.,

connecting the system to a reservoir, leads to a continuous transition which also belongs

to the directed percolation universality class [10]. We note also that the fluctuation-

induced behaviour of the catalytically-activated reactions between molecules with more

complicated structures has been studied [11–13] and also the influence of the lateral

diffusion of the adsorbed species on the reaction kinetics (see, e.g. Refs. [14–18] and

references therein) as well as of the heterogeneity in the spatial distribution of the

catalyst (see, e.g., Refs. [19, 20]) have been addressed.

As long as one is interested only in the thermodynamic equilibrium properties of

the monolayers of the adsorbed molecules, formed in the course of such catalytically-

activated reactions, one may realise that the latter should be very similar to the

analogous properties of the adsorbates emerging in the models of hard-core lattice gases

with athermal interactions, in which one studies a reversible deposition of ”hard”, non-

overlapping objects on two-dimensional lattices. Indeed, the constraint that any two

particles appearing at the neighbouring sites have an infinite repulsion, (so that the

input of such configurations into the partition function of the adsorbate is zero), and

the condition, in case of catalytically-activated reactions, that once two particles appear

at the adjacent adsorption sites they react and leave the system, play essentially the

same role. A prominent example of such lattice gases, solved exactly by Baxter [21,22], is

furnished by the so-called hard hexagon model, which is a two-dimensional lattice model

of a gas, where identical particles are allowed to be on the vertices of a triangular lattice

but no two particles may be adjacent. From the perspective of catalytically-activated

reactions, this model can be interpreted as a simple reaction A + A → ⊘ between

monomers A, being at contact with a reservoir maintained at a constant chemical

potential µ, adsorbing onto empty lattice sites and desorbing back to the reservoir,

and undergoing a chemical reaction as soon as any two A particles appear at the

adjacent sites. Much progress has been made within the recent years in understanding

equilibrium properties of such lattice gases, involving similar or different particles,

which may also have a different shape (see, e.g., Refs. [23, 24]), revealing a rich critical

behaviour, characterised by continuous and discontinuous phase transitions which are

quite analogous to the ones observed in the irreversible ZGB model. We note also that

a similarity between a simple A + A → ⊘ reaction and random sequential adsorption

has been pointed out in Ref. [25], since the removal of two nearest-neighbour reactants

is equivalent to a ”deposition” of a ”dimer” of two empty sites. Such a duality has been

used in Ref. [25] to derive an exact solution of the model on the Bethe lattice.

In this paper we study equilibrium properties of an adsorbate formed in the course

of the reaction

A+ A→ ⊘ (1)
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between monomers A, undergoing continuous exchanges with their vapour phase - a

reservoir maintained at a constant chemical potential µ, and taking place on the lattice

with annealed reactive properties. Our goal here is to show that already this simplest

possible reaction scheme involving only monomers of the same type exhibits quite a

rich critical behaviour, depending moreover on the specific way how the reaction is

modelled and also on the value of the particles’ reactivity. The critical behaviour which

we predict is characterised by a transition into a phase with a broken symmetry (ordered

or an alternating state, in which layers with low and high densities are formed), which

is continuous with a finite jump in compressibility. This transition is followed by, upon

an increase of the chemical potential µ by a re-entrant transition into a disordered

phase, which (depending on the reaction model) may be continuous with a finite jump

in compressibility, or even discontinuous with a finite jump of density.

We will consider here two different ways of modelling the catalytic reaction:

In the Model I, we stipulate that some fraction p of the bonds < ij > connecting

nearest-neighbouring sites i and j possesses catalytic properties so that the A particles

react when two of them appear on the neighbouring sites connected by such a bond.

In the Model II, we suppose that not the bonds but rather some lattice sites themselves

are the catalytic agents such that any two neighbouring As will react instantaneously

and leave the system, when at least one of them resides on a special catalytic sites.

More specifically, in the Model I we associate with each bond < ij > a random

variable ζ<ij>, such that ζ<ij> = 1, if < ij > is a catalytic bond (which event is

chosen with probability p, independently of other bonds) and ζ<ij> = 0, otherwise,

(with probability 1 − p). When any two A-s appear at the neighbouring sites i and j

connected by a catalytic bond, they instantaneously react (and the product leaves the

system). The A particles harmlessly coexist on neighbouring sites connected by non-

catalytic bonds. For such a model, the corresponding grand canonical partition function

of the adsorbate with a fixed distribution of the catalytic bonds can be written as

Z ({ζ<ij>}) =
∑

{nj}

exp

(

βµ
∑

j

nj

)

∏

<ij>

(

1− ζ<ij>ninj

)

, (2)

where µ is the chemical potential, β is the inverse temperature, (measured in units of

the Boltzmann constant kB), nj is the Boolean variable describing the occupation of

a given site j (nj = 1 for an occupied site and nj = 0, otherwise), the sum with the

subscript {nj} denotes summation with respect to the states of all occupation variables

of all sites, and lastly, the product sign with the subscript < ij > signifies that the

product is taken over all bonds of the embedding lattice. For p ≡ 1, Z ({ζ<ij>}) in eq.

2 evidentlycoincides with the grand partition function of the gas of hard molecules with

infinite nearest-neighbour repulsion [21, 22].

In the Model II, we assign to each of the sites a random quenched variable χj, which,

in a similar fashion, is equal to 1 for a ”catalytic” site (probability p, independently of

other sites) and zero, otherwise, (with probability 1 − p). In this case, two A particles

instantaneously react A+A→ ⊘, (and the product ⊘ leaves the system), if at least one
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of them is on a catalytic site. If neither of them occupies a catalytic site, the particles do

not react. For a given distribution of the catalytic sites, the grand canonical partition

function Z ({χi}) reads

Z ({χi}) =
∑

{nj}

exp

(

βµ
∑

j

nj

)

∏

i

∏

i,<ij>

(

1− χininj

)

, (3)

where the product with the subscript i runs over all sites of the lattice, while the product

sign with the double subscript i, < ij > signifies that the product operation is taken

over all the sites j neighbouring to the site i. Note that the expression in eq. 3 becomes

identical to the one in eq. 2 for p ≡ 1, as it should be.

We will focus in what follows on the annealed limit in the distribution of the

catalytic bonds or sites. Such a limit is interesting in its own right since it corresponds

to a physical situation in which the neighbouring adsorbed A particles may react at

any place on the lattice, but only with a finite reaction probability p, so that the

reaction between them is not perfect. The properties of the adsorbate in this limit

will be described by the annealed grand canonical partition functions, i.e., averaged

directly over the distributions of the random variables ζ<ij> and χj. The annealed

grand canonical partition function for the Model I reads

Z(bonds)(p) =
∑

{nj}

exp

(

βµ
∑

j

nj

)

(1− p)
∑

<ij> ninj , (4)

and describes a grand canonical partition function of a lattice gas with purely repulsive,

soft interactions. Exact solution of the one-dimensional Model I for arbitrary p for both

the cases of random quenched and of the annealed distribution of the catalytic bonds

has been obtained in Refs. [26, 27].

In turn, for the annealed Model II we have the following grand canonical partition

function

Z(sites)(p) =
∑

{nj}

exp

(

βµ
∑

i

ni

)

(1− p)
∑

i niΨi , (5)

where Ψi is a Boolean function of the form

Ψi = 1−
∏

i,<ij>

(1− nj) ≡
{

0 when all nj = 0,

1 when at least one nj = 1.
(6)

Therefore, in the annealed Model II we again deal with a lattice gas with purely repulsive,

soft interactions between the particles, but here the interactions are very peculiar: the

total interaction energy of the particle occupying site i is not proportional to the number

of neighbouring particles, as it usually happens, but has a Boolean form such that

Ψi = 0 if all the sites neighbouring to i are vacant, and Ψi = 1 independently of the

actual number of occupied neighbouring sites if at least one of them is occupied. Note

that in this rather exotic model of statistical mechanics the interactions are therefore

less restrictive than those appearing in the Model I, in which each pair of neighbouring
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particles contributes to the energy of the system. Exact solution of the Model II in

one-dimensional systems was obtained in Refs. [28,29] for arbitrary p, for both the cases

of random quenched and of the annealed distributions of the catalytic sites.

Analysing the critical behaviour of the annealed versions of the Model I and Model

II, we will resort here to a mean-field-like approximation, solving both models exactly on

the Bethe lattice - a deep interior of the so-called Cayley tree (see Fig.1, left panel) well

away of the boundary sites. This is a topologically simpler object than usual lattices,

because such trees do not have closed loops (such that the approximation is equivalent to

the standard Bethe-Peierls theory [22]). We focus solely on the case of a Bethe lattice

with the coordination number equal to three, which means that we provide here an

approximate solution for the annealed Models I and II on a honeycomb lattice. We note

that for many complicated lattice models of statistical mechanics such an approximation

has been invoked first, since it is often amenable to a completely analytical analysis

reducing the original many-body problem to the analysis of the limit solutions of

some non-linear recursion schemes, in which a phase transition manifests itself by the

spontaneous break up of the symmetry between recursion terms of an odd and an even

order. In many cases, a detailed studies of the properties of the original lattice models

can be carried out, showing no sign of a pathological behaviour [30]. To name but a few,

we mention studies of the phase diagrams of athermal lattice gases [24,31,32], modulated

phases of the Ising model with competing interactions [33–35], Potts models [36], lattice

models of glassy systems [37, 38], different aspects of the localisation transition [39, 40]

and phase diagram for ionic liquids in non-polarised nano-confinement [41].

Our main results are as follows:

For the annealed Model I defined on the Bethe lattice with the coordination number

three, we set out to show that there exists

a) a critical value p = p
(bonds)
c = 8/9, such that for p < p

(bonds)
c no broken symmetry

phase emerges, while for p
(bonds)
c < p < 1, upon increasing the chemical potential µ, one

observes

b) a transition from a disordered to an ordered (alternating) phase at µ = µ
(bonds)
c,1 (p).

In this ordered phase the tree spontaneously partitions into alternating layers - the ones

which are densely populated by the A particles and the ones which are almost completely

devoid of them. For the original honeycomb lattice it will mean that (somewhere close

to µ = µ
(bonds)
c,1 (p)) the lattice will partition into two sub-lattices - the one densely packed

with A particles and the second - almost empty.

c) Increasing µ further, a re-entrant (inverted) transition into a disordered phase at

µ = µ
(bonds)
c,2 (p) > µ

(bonds)
c,1 (p) should take place. Both transitions are continuous, with a

finite jump in compressibility. When p → 1, the re-entrant transition disappears since

µ
(bonds)
c,2 (p) → ∞.

d) We also calculate the mean density in the disordered and ordered phases, the

staggered density in the ordered phase which serves as the order parameter for the

system under study and the compressibility.

For the annealed version of the Model II defined on the Bethe lattice with the
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coordination number three, we observe a critical behaviour, which turns out to be even

somewhat richer than that of the Model I. We show that

a) there exist two critical values of the reaction probability p: p
(sites)
c,1 ≈ 0.794 and

p
(sites)
c,2 ≈ 0.813 and no critical behaviour emerges for p < p

(sites)
c,1 .

b) For p > p
(sites)
c,1 , upon a gradual increase of µ, the system undergoes a continuous

transition from a disordered into an ordered, alternating phase at µ = µ
(sites)
c,1 (p),

characterised by a finite jump of the compressibility.

c) Our further analysis reveals that the behaviour for larger values of µ depends on

whether p belongs to the interval p
(sites)
c,1 < p < p

(sites)
c,2 or to the interval p ≥ p

(sites)
c,2 :

for the former case, for µ = µ
(sites)
c,2 (p) > µ

(sites)
c,1 (p) the system undergoes a re-entrant

continuous transition into a disordered phase, while for the latter this transition is

discontinuous, with a finite jump of both the mean and the staggered densities.

d) We also determine the mean density in the disordered and the ordered phases, the

staggered density and the compressibility.

The paper is outlined as follows: In Sec. 2 we describe the system’s geometry and

present the details of the derivation of the annealed grand canonical partition functions

(in what follows, we will call them for brevity just as ”partition functions”) for the

Models I and II. In Sec. 3 we focus on the singular case p ≡ 1, in which both Models (as

well as their annealed versions) are identical, and briefly recall the classical analysis due

to Runnels of the critical behaviour of a gas of hard molecules on the Bethe lattice with

the coordination number equal to three. This permits us to set up a unifying framework

for what follows. In Sec. 4 we study the annealed version of the Model I for an arbitrary

value of the reaction probability p, 0 < p ≤ 1. We first derive the recursion relations

obeyed by the partition function in eq. 4 on a Bethe lattice and analyse their critical

behaviour, as manifested by the breaking of the symmetry between the terms of odd

and even order. Next, in Sec. 5, we focus on the annealed version of the Model II. We

derive here the recursion relations obeyed by the annealed partition function defined in

eqs. 5 and 6, and analyse their critical behaviour, and also determine the mean density

in the disordered and ordered phases, the staggered density and the compressibility, as

the functions of the chemical potential. Finally, we conclude in Sec. 6 with a brief

recapitulation of our results.

2. Partition functions in the annealed limit

Consider a Cayley tree with the coordination number equal to three, (see Fig.1, left

panel), having N generations of sites (such that the ”volume” M = 3(2N − 1) + 1 for

N ≥ 0 ), in contact with the vapour phase of hard particles A. The A particles can

adsorb onto the vacant sites and can desorb back to the reservoir. The reservoir is

characterised by a chemical potential maintained at a constant value µ and measured

relative to the binding energy of an occupied site, such that µ > 0 indicates a preference

for adsorption. Correspondingly, the activity z is defined as z = exp(βµ). Hard-core

interactions prohibit double occupancy of any node j and the occupation of this node is

7
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O

O

Figure 1. Left: Cayley tree with 3 generations emanating from the central site O.

Right: A subtree with 3 generations emanating from the central site O.

described by a Boolean variable nj such that nj = 1 for an occupied node and nj = 0,

otherwise.

We will consider two ways of modelling the catalytic reaction between the

neighbouring A particles, which differ in the definition of the catalytic agent. In Model I,

we suppose that these are some bonds connecting neighbouring sites, which are deemed

to have special catalytic properties promoting the reaction, while in Model II these will

be some special catalytic sites. In the former case, only the A particles separated by a

catalytic bond react, while in the latter, in order for the reaction to take place, at least

one of two neighbouring As has to reside on a special catalytic site. In both cases, a

given bond or a given site can be in a catalytic state with probability p, independently of

the environment. The partition functions of the adsorbate corresponding to the Models

I and II, Z ({ζ<ij>}) and Z ({χi}), are defined in eqs. 2 and 3, respectively.

Here we will be concerned with the annealed versions of both Models whose

partition functions are obtained by directly averaging Z ({ζ<ij>}) and Z ({χi}) over

the distributions of the catalytic bonds and sites.

The averaging of Z ({ζ<ij>}) in eq. 2 is very straightforward

Z(bonds)(p) = 〈Z ({ζ<ij>})〉ζ<ij>
=
∑

{nj}

z
∑

j nj

∏

<ij>

〈(

1− ζ<ij>ninj

)〉

ζ<ij>

=
∑

{nj}

z
∑

j nj

∏

<ij>

(

p (1− ninj) + 1− p
)

,

=
∑

{nj}

z
∑

j nj (1− p)
∑

<ij> ninj , (7)

from which one can directly read off the result in eq. 4. Averaging of Z ({χi}) in eq. 3

8
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is only slightly more involved. Here we have

Z(sites)(p) = 〈Z ({χi})〉χi
=
∑

{nj}

z
∑

j nj

∏

i

〈

∏

i,<ij>

(

1− χininj

)〉

χi

=
∑

{nj}

z
∑

j nj

∏

i

(

p
∏

i,<ij>

(1− ninj) + 1− p

)

. (8)

Further on, noticing that
(

p
∏

i,<ij>

(1− ninj) + 1− p

)

≡
(

p
∏

i,<ij>

(1− nj) + 1− p

)ni

, (9)

and next that, trivially,
(

p
∏

i,<ij>

(1− nj) + 1− p

)

≡ (1− p)1−
∏

i,<ij>(1−nj) , (10)

we find that the disorder-average partition function Z(sites)(p) attains the form defined

in our eqs. 5 and 6. Parenthetically, we note that the expressions in eqs. 4 and 5 are

valid for any lattice, not necessarily for the Cayley tree.

Next, focussing on the limit N → ∞, we will discard the surface effects considering

the behaviour in the interior of the Cayley tree. In other words, we will turn to the

thermodynamic limit of the Cayley tree, i.e., to the behaviour on the so-called Bethe

lattice. Under such simplifying assumptions, the thermodynamics of the system is given

by the annealed pressure (in units of the lattice cell area), defined as

PI(T, µ) =
1

β
lim

M→∞

lnZ(bonds)(p)

M
, (11)

for the Model I, and as

PII(T, µ) =
1

β
lim

M→∞

lnZ(sites)(p)

M
, (12)

for the Model II. Once P -s are known, all other thermodynamic quantities of interest

can be obtained by differentiating P with respect to µ or T .

3. Singular case p ≡ 1. Runnels’ analysis.

To set up the scene, we first consider the special singular case p ≡ 1, in which all the

bonds and all the sites are catalytic, implying that the reactive constraint is imposed

everywhere. Analysis in this case is much more simple than for an arbitrary p but will

permit us to introduce all the basic concepts and to establish a unifying framework

for what follows. In this case, eqs. 2 and 3 become identical, and also identical to

the partition function of the lattice gas of hard particles, having an infinite repulsion

between the neighbouring ones:

Z({1}) =
∑

{nj}

z
∑

j nj

∏

<ij>

(

1− ninj

)

. (13)

9
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Below we briefly recall some classical results due to Runnels [31] obtained for Z({1})
defined on the Bethe lattice with the coordination number three, using for further

convenience a bit different settings and notations.

The partition function Z({1}) of the entire Cayley tree writes:

Z({1}) = Z
(0)
N ({1}) + Z

(1)
N ({1}) , (14)

where Z
(0)
N ({1}) and Z(1)

N ({1} are the partition functions of the entire tree with a vacant

and an occupied central site, respectively.

Define next a subtree with N generations (see Fig. 1, right panel), emanating from

the central site O, and introduce two auxiliary partition functions - BN(1) and BN(0),

where the former denotes the partition function of a subtree with an occupied central

site, while for the latter the central site of the subtree is vacant. Clearly, we have

Z
(0)
N ({1}) = B3

N (0) , (15)

because the entire Cayley tree with the vacant central site decomposes into three

independent subtrees with a vacant central site, while Z
(1)
N ({1}) decomposes into three

independent subtrees with an occupied central site :

Z
(1)
N ({1}) = z−2B3

N(1) , (16)

where the factor z−2 prevents the over-counting of the contribution of the central site.

We seek next the recursion relations obeyed by BN(1) and BN (0). For p ≡ 1, if the

central site is occupied, the neighbouring one (generation 1) is always vacant, such that

BN(1) = z B2
N−1(0) , (17)

where the factor z stems from the contribution of the occupied central site. Next, if

the central site is vacant, the neighbouring one (generation 1) can be either vacant or

occupied, such that BN(0) can be represented via the partition functions of the subtrees

with N − 1 generations as

BN(0) = B2
N−1(0) + z−1B2

N−1(1) , (18)

where the factor z−1 in the second term on the r-h-s of eq. 18 prevents the over-counting

of the contribution of the occupied site, neighbouring the central one, from which two

subtrees with N−1 generations emanate. Together with the evident ”initial” conditions

B0(1) = z and B0(0) = 1, eqs. 17 and 18 totally define BN (1) and BN(0) (and hence,

Z({1})), for the Cayley tree with an arbitrary number of generations N .

Equations 17 and 18 can be simplified by introducing an auxiliary parameter

xN(z) =
BN(1)

zBN (0)
. (19)

This parameter, multiplied by z, is simply the ratio of the number of the subtrees with

an occupied central site and the number of the subtrees with a vacant central site.

Dividing eq. 17 by eq. 18, we find that xN (z) obeys the following recursion :

xN(z) =
1

1 + z x2N−1(z)
, x0(z) = 1 . (20)

10
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Once xN (z)-s are determined, one can readily find BN (0) via the recursion

BN(0) =
(

1 + zx2N−1(z)
)

B2
N−1(0) =

B2
N−1(0)

xN (z)
, B0(0) = 1 , (21)

which follows from eq. 18 and the definitions of xN (z) in eqs. 19 and 20, and gives

BN(0) =

N
∏

j=0

1

x2
N−j

j (z)
. (22)

In turn, the partition function of the entire Cayley tree in eq. 14 can be straightforwardly

written using xN(z)-s as

ZN({1}) =
(

1 + zx3N (z)
)

(

N
∏

j=0

1

x2
N−j

j (z)

)3

, (23)

so that the pressure P in the limit N → ∞ (and hence, M → ∞) will be given by

P (T, µ) =
1

β
lim

N→∞

(

3
2N

M

N
∑

j=0

2−j ln

(

1

xj(z)

)

+
ln (1 + zx3N (z))

M

)

=
1

β

∞
∑

j=0

2−j ln

(

1

xj(z)

)

. (24)

Note that eq. 24 defines the pressure of the adsorbate on the entire Cayley tree, such that

to get an analogous result for the Bethe lattice we have to subtract the contribution

due to the boundary sites. For the case p ≡ 1, the corresponding procedure will be

explained below. For the general case 0 < p ≤ 1 we will adapt the procedure elaborated

in Ref. [42], which is explained in Appendix B.

3.1. Solutions of the recursion relations for p ≡ 1

The central question now is the behaviour of xN (z)-s, which are all functions of the

activity z. Before we turn to analytical calculations, it might be expedient to numerically

generate several consecutive terms xN(z), in order to get a clue to their actual behaviour.

In Fig. 2 we present first 100 terms xN (z) as functions of the activity z = exp(βµ).

One observes that for a relatively small βµ (or z), as N grows, all xN (z) converge to

the same curve x(z). Therefore, for sufficiently small z one has a sequence convergence

as N → ∞ to the unique limit x(z), which, in virtue of eq. 20, obeys

z x3(z) + x(z)− 1 = 0 . (25)

The discriminant △ = −27z2 − 4z of the cubic eq. 25 is strictly negative, meaning that

eq. 25 has two non-real complex conjugate roots and one real root x(z) which is given

explicitly by

x(z) = − 1

3z

(

C +
△0

C

)

, (26)

11
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Figure 2. xN = xN (z) in eq. 20 for N = 1, 2, . . . , 100 plotted versus βµ = ln(z). Red

curves are xN (z)-s with even N , while the green ones correspond to the terms with odd

values of N . Arrows indicate the direction of growth of N . Thick black curve depicts

the behaviour of the real root of eq. 25 (see eq. 26) on the interval [0, βµ = 2 ln(2)].

Two dashed blue curves starting at βµ = 2 ln(2) are the roots of the second term in

eq. 29 defining two distinct limit curves xodd(z) and xeven(z). The figure illustrates

continuous phase transition from disordered state described by solution of eq. 25 (black

line) to symmetry broken phase with alternating layers of different densities described

by solution of eq. 29 (dashed blue lines). The phase transition occurs at zc = 4 at

which all three curves meet.

where

△0 = −3z , C =

(△1 + 3z
√
−3△

2

)1/3

,△1 = −27z2 . (27)

This root is depicted in Fig.2 by a thick black curve.

Further on, Fig. 2 shows that there is an apparent ”critical” value zc such that for

z > zc the odd terms converge to one function, x2N+1(z) → xodd(z), while even terms

converge to another one, x2N (z) → xeven(z). In this case of the so-called subsequence

convergence, one may calculate xodd(z) and xeven(z) by iterating eq. 20 once again, so

that the the resulting recursion scheme will involve the terms of the same parity only;

that is, we rewrite eq. 20 formally as

xN(z) =

(

1 +
z

(

1 + z x2N−2(z)
)2

)−1

. (28)

Turning next to the limit N → ∞, we find that two distinct limit functions xodd(z) and

xeven(z) must satisfy the fifth-order equation, that conveniently factors into
(

z x3(z) + x(z)− 1
)(

zx2(z)− zx(z) + 1
)

= 0 . (29)

One notices that the first term is precisely our previous eq. 25, which has a real root

defined by eq. 26, while the second term has two roots:

xeven(z) =
z +

√
z2 − 4z

2z
, (30)

12
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and

xodd(z) =
z −

√
z2 − 4z

2z
, (31)

which we depict in Fig. 2 by blue dashed curves. These two roots are real only for

z ≥ 4. Note now that the three curves defined by eqs. 26, 30 and 31, all meet at z = 4

each assuming the value 1/2. Since xodd(z) and xeven(z) are complex-valued for z < 4,

the unique limit x(z) in eq. 26 must obtain for z < 4. As shown in Ref. [31], the result

in eq. 26 becomes unstable for z > 4. This signifies that the alternating limits xodd(z)

and xeven(z) obtain for z > 4.

One may notice that the special point z = 4, where the singularity occurs, can

be obtained from the direct stability analysis of the fixed point solution of recursion

20. This recursion is stable if the slope of the function f(xN−1(z)) in the right-hand-

side of eq. 20 in the vicinity of the fixed point is smaller than unity; that being

|f ′(xN−1(z))|xN−1(z)=x(z) < 1. Therefore, solving equation:

f ′(xN−1(z))|xN−1(z)=x(z) = −1 (32)

with x(z) defined by eq. 26 one gets z = 4 as the point where the solution 26 looses its

stability and a bifurcation occurs. For z > 4 the limit cycle defined by the second term

in eq. 29 is a stable solution.

Therefore, z = 4 is the only candidate for a singularity or a phase transition. As

shown by Runnels [31] (see also Ref. [32] for a more detailed discussion of the behaviour

on the entire Cayley tree), in actual fact it is a rather subtle issue. The point is that on

the Cayley tree the various derivatives of xj become indeed unbounded with increasing

j, but not rapidly enough to spoil the convergence of eq. 24 and its derivatives, due

to the presence of the factor 2−j. The ensuing smooth overall behaviour attributable

to this factor is easily understood : most of the sites of the Cayley tree are near its

exterior surface, where they are essentially independent; the highly correlated sites

are deep in the interior of the tree. In other words, zeros of the partition function

do close in on z = 4 but with vanishing density, which allows the system to sneak

through on the real axis with no transition. Conversely, if one discards the influence

of the overwhelming majority of the surface sites and focuses on the behaviour of the

interior of the Cayley tree far away the surface - the so-called Bethe lattice, one will

indeed observe a transition at z = zc = 4. The transition occurring in this interior

region far removed from the exterior surface is continuous, with a finite jump in the

compressibility [31]. This is a transition of the disorder-order type so that at z = zc = 4

the interior region spontaneously partitions in alternating, highly occupied and almost

devoid of particles layers. Note that these predictions on the existence and on the

type of the phase transition obtained for the Bethe lattice, which is essentially a mean-

field (albeit quite reliable [30]) approximation, appear to be qualitatively correct for

models defined on corresponding (with the same coordination number) regular lattices,

as evidenced later by the exact solution of the so-called hard-hexagons model [21].

13
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3.2. Order parameter for p ≡ 1

We briefly recall next Runnel’s calculations of the particle densities in the alternating

layers. Differentiating eq. 24, one gets for the mean density

ρ(z) = βz
∂P

∂z
=

∞
∑

j=1

2−jtj(z) , (33)

where tj(z) = −z∂ ln (xj(z)) /∂z satisfies the recursion of the form

tj(z) = bj(z) (1− 2tj−1(z)) , t0(z) = 1 , (34)

in terms of bj(z) = 1− xj(z). Straightforward calculations give [31]

tj(z) =

j−1
∑

i=0

(−2)j
j
∏

n=j−i

bn(z) , (35)

which, being inserted in eq. 33, allows to rewrite the latter equation as

ρ(z) =

∞
∑

j=0

2−jrj(z) , rj(z) =

∞
∑

i=0

(−1)i
j+i
∏

n=j

bn(z) . (36)

Note now that bj(z) and rj(z) have simple interpretations [31]: From the preceding

equations, it is clear that bj(z) is the fraction of the activity-weighted configurations of

subtrees having an occupied root, or in other words, the average occupancy of the root

at activity z. Noticing then that eq. 36 can be alternatively written as

rj(z) = bj(z) (1− rj+1(z)) , (37)

(which can be straightforwardly reiterated to give back eq. 36), one concludes that

rj(z) is simply the average occupancy of a site at generation j. Indeed, eq. 37 can be

interpreted as the definition of the average occupancy rj(z): it equals the factor bj(z),

that being, the weighted fraction of configurations of a subtree with the selected site

occupied, times the factor (1 − rj+1(z)), which defines the fraction of configurations of

a subtree with the inner site adjacent to the selected site vacant to permit occupancy of

the selected site. Therefore, eq. 36 shows that the overall density is a weighted average

of the densities of various generations, the weighting factor 2−j being proportional to

the number of sites in generation j.

One may now define the order parameter as the staggered density δρ = |rj(z) −
rj+1(z)|, i.e., the difference of average occupations of adjacent layers deep in the interior

of the tree in the limit j → ∞. Clearly, for z < zc all bj(z) converge to the single limit

b(z) = 1 − x(z) regardless of the parity, where x(z) is the solution of eq. 25. In this

case, in virtue of eq. 37, the average occupations of the layers converge as j → ∞ to

the unique limit rj(z) → r(z) = b(z)/(1 + b(z)) such that δρ ≡ 0.

For z > zc the situation is different. As j → ∞, the parameter bj with odd j

converges to b+(z) = 1 − xodd(z), eq. 31, while the parameter bj with even j converges

to b−(z) = 1 − xeven(z), eq. 30. Consequently, one finds from eq. 36 that the densities

14
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rj(z) in the layers with odd j converge to r+(z), while the average occupations of the

layers with even j converge to r−(z), which are given explicitly by

r+(z) =
b+(z)(1 − b−(z))

1− b+(z)b−(z)
, r−(z) =

b−(z)(1− b+(z))

1− b+(z)b−(z)
. (38)

In turn, for z > zc = 4 the order parameter obeys

δρ =
b+(z)− b−(z)

1− b+(z)b−(z)
=

xeven(z)− xodd(z)

xeven(z) + xodd(z)− xeven(z)xodd(z)
. (39)

and equals zero for z < zc. In the limit z → ∞, r+(z) → 1, r−(z) → 0, and δρ→ 1.

4. Model I : Catalytic bonds

In this Section we analyse the critical behaviour of the annealed version of the Model

I, whose partition function is defined by eq. 4. Here, similarly to the previously

considered case p ≡ 1, Z(bonds)(p) can be formally decomposed as Z(bonds)(p) =

Z
(bonds,0)
N (p) + Z

(bonds,1)
N (p), where now Z

(bonds,0)
N (p) (Z

(bonds,1)
N (p)) denotes the disorder-

average partition functions of the Cayley tree with a vacant (occupied) central site. In

this case eqs. 15 and 16 read

Z
(bonds,0)
N (p) = B3

N (0, p) , Z
(bonds,1)
N (p) = z−2B3

N(1, p) , (40)

where BN (0, p) and BN (1, p) are the partition functions of a subtree (see, Fig. 1,

right panel) with a vacant and an occupied root, respectively. Further on, we find

straightforwardly that BN(0, p) and BN(1, p) obey the following recursions :

BN(1, p) = zB2
N−1(0, p) + z(1 − p)

B2
N−1(1, p)

z
, (41)

and

BN(0, p) = B2
N−1(0, p) + z−1B2

N−1(1, p) . (42)

While the latter expression coincides with eq. 18 of the previous section, the former

one, given by eq. 41, has a different form compared to that in eq. 17 since here it is

possible to have two particles at the neighbouring sites.

The recursions in eqs. 41 and 42 can be simplified by introducing

xN(p, z) =
BN(1, p)

zBN (0, p)
, (43)

which now obeys the recursion :

xN(p, z) =
1 + z(1− p)x2N−1(p, z)

1 + zx2N−1(p, z)
, x0(p, z) = 1 . (44)

Note that BN (0, p) still obeys BN (0, p) = (1+zx2N−1(p, z))B
2
N−1(0, p), like the analogous

property in the case p ≡ 1, eq. 21, which implies that the pressure PI(T, µ) of the

adsorbate is given by last line of eq. 24 with xj(z) replaced by (xj(p, z)− 1 + p)/p.
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4.1. Solutions of the recursion relations for p < 1

We proceed further by numerically iterating first 20 terms of the recursion defined in

eq. 44 for two different values of the parameter p: p = 0.85 and p = 0.95, which we

present in panels (a) and (b) of Fig. 3. For p = 0.85 (panel (a)) we observe a sequence

convergence xN (p, z) → x(p, z), as N → ∞, to a single limiting curve x(p, z) for both

even and odd N for any z. For this single limit case, x(p, z) obeys, in virtue of eq. 44,

a cubic equation of the form,

zx3(p, z)− z(1 − p)x2(p, z) + x(p, z)− 1 = 0 , (45)

which reduces to eq. 25 when p = 1. The discriminant △(p) of the cubic eq. 45,

△(p) = −4(1− p)3z3 − (8 + 20p− p2)z2 − 4z , (46)

is strictly negative, so that eq. 45 has a single real root given explicitly by

x(p, z) =
1− p

3
− 1

3z

(

C(p) +
△0(p)

C(p)

)

, (47)

where

△0(p) = (1− p)2z2 − 3z , C(p) =

(

△1(p) + 3z
√

−3△(p)

2

)1/3

, (48)

and

△1(p) = −z2
(

9(2 + p) + 2(1− p)3z
)

. (49)

The real root in eq. 47 is depicted by a thick black line in Fig. 3, panel (a).

Turning next to the case p = 0.95, we observe a more complicated behaviour. First

of all, we notice that similarly to the case p ≡ 1, there is an apparent transition at

a certain z = z
(bonds)
c,1 (p) from the sequence convergence to a single limit x(p, z), to a

subsequence convergence to alternating limits, when the even and odd terms in the

recursion in eq. 44 converge, respectively, to some well-defined curves xeven(p, z) and

xodd(p, z). Curiously enough, however, these two curves xeven(p, z) and xodd(p, z) meet

each other again at some z = z
(bonds)
c,2 (p), such that for z ≥ z

(bonds)
c,2 (p) the sequence

convergence to a single limit x(p, z) is again restored. While, evidently, the transition

at z = z
(bonds)
c,1 (p) is the same as observed by Runnels; that being, the transition from a

disordered into an ordered phase, the second transition taking place at z = z
(bonds)
c,2 (p)

can be identified as a re-entrant transition from the ordered into a disordered phase.

To the best of our knowledge, we are unaware of any previous report on the presence

of the latter re-entrant transition for a repulsive lattice gas on a Bethe lattice, although

it is quite plausible from the physical point of view. Indeed, for p < 1 the possibility

of having two particles at neighbouring sites is not strictly prohibited and the penalty

for having such a pair can be paid by an increase of the chemical potential. Below we

study the loci and the nature of these transitions in more details.
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Figure 3. xN = xN (p, z) in eq. 44 for N = 1, 2, . . . , 20 plotted versus βµ = ln(z).

Red curves are xN with even N , while the green ones correspond to odd values of N .

Panel (a): p = 0.85. Thick black curve describe disordered state and is the real root of

eq. 45 given explicitly by eq. 47. Panel (b): p = 0.95. Thick black curves in the regions

z < z
(bonds)
c,1 (p), eq. 55, and z > z

(bonds)
c,2 (p), eq. 56, are the single limit solution of eq.

45. Two dashed blue curves in the intermediate region z
(bonds)
c,1 (p) < z < z

(bonds)
c,2 (p)

describe alternating state and are defined by two distinct limit curves xodd(p, z) and

xeven(p, z), eqs. 52 and 53. The figure illustrates appearing of broken symmetry

phase for p > 8/9. Phase transitions between disordered and ordered state occur at

z
(bonds)
c,1 (p) and z

(bonds)
c,2 (p), where blue lines meet with black lines.

As in the previous section, we reiterate the recursion in eq. 44 to get a recursion

scheme involving the terms of the same parity only:

xN(p, z) =

(

1 + z(1 − p)

(

1 + z(1 − p)x2N−2(p, z)

1 + zx2N−2(p, z)

)2
)

×
(

1 + z

(

1 + z(1 − p)x2N−2(p, z)

1 + zx2N−2(p, z)

)2
)−1

, x0(p, z) = 1 . (50)

Supposing next that xN (p, z) → x(p, z) as N → ∞, we find that x(p, z) obeys the

fifth-order equation which, again, conveniently factors into
(

zx3(p, z)− z(1− p)x2(p, z) + x(p, z)− 1
)

×

×
(

z
(

1 + z(1 − p)2
)

x2(p, z)− pzx(p, z) + 1 + z(1 − p)
)

= 0 . (51)

While the first factor is just our previous eq. 45, which has one real root defining the

solution in the single limit case, the second factor has two solutions:

xeven(p, z) =
pz +

√

D(p, z)

2z (1 + z(1− p)2)
, (52)

and

xodd(p, z) =
pz −

√

D(p, z)

2z (1 + z(1− p)2)
, (53)

where the discriminant D(p, z) is given by :

D(p, z) = − z
(

4(1− p)3z2 + (8− 12p+ 3p2)z + 4
)
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= 4(1− p)3z
(

z − z
(bonds)
c,1 (p)

)(

z
(bonds)
c,2 (p)− z

)

(54)

with

z
(bonds)
c,1 (p) = −8− 12p+ 3p2 + p3/2

√
9p− 8

8(1− p)3
, (55)

and

z
(bonds)
c,2 (p) =

−8 + 12p− 3p2 + p3/2
√
9p− 8

8(1− p)3
. (56)

We note now the following : both z
(bonds)
c,1 (p) and z

(bonds)
c,2 (p) in eqs. 52 and 53 are real

and positive only for p > p
(bonds)
c = 8/9. The discriminant D(p, z) > 0 and hence, the

solutions xeven(p, z) and xodd(p, z), eqs. 52 and 53, are real and positive when p > p
(bonds)
c

and z
(bonds)
c,1 (p) < z < z

(bonds)
c,2 (p), so that a critical behaviour can emerge only for such

values of p and for such a range of z. For p < 8/9 the second factor in eq. 51 does not

have real solutions and the only real root of eq. 51 is determined by the single limit

solution, eq. 47. This is precisely the behaviour we observe in Fig. 3 in which the panel

(a) corresponds to the single-limit case with p = 0.85 < p
(bonds)
c , while the panel (b) with

p = 0.95 > p
(bonds)
c shows the subsequence convergence to alternating limiting curves

xeven(p, z) and xodd(p, z) for z
(bonds)
c,1 (p) < z < z

(bonds)
c,2 (p), and the sequence convergence

for z < z
(bonds)
c,1 (p) and z > z

(bonds)
c,2 (p). In Fig. 4 we depict the parametric curve which

solves the equation D(p, z) = 0. The region encircled by this curve corresponds to the

critical region z
(bonds)
c,1 (p) < z < z

(bonds)
c,2 (p). When p → 1, z

(bonds)
c,1 (p) → 4, (the Runnels’

result), while z
(bonds)
c,2 (p) ∼ 1/8(1−p)3 → ∞, which explains why the re-entrant transition

is absent in the Runnels’ case p ≡ 1. We note lastly that z
(bonds)
c,1 (p) and z

(bonds)
c,2 (p) can

be obtained from the stability analysis of the derivative of the function f(xN−1(p, z)),

which defines the recursion in eq. 44. Substituting into equation f ′(xN−1(p, z)) = −1

the solution 52 or 53 instead of xN−1(p, z), and solving the resulting quadratic equation

with respect to z, one gets the values defined in eq.55 and eq. 56.

4.2. Order parameter for p < 1

The order parameter δρ is defined as the difference of average occupations of adjacent

layers j and j + 1 in the limit j → ∞. For p < 1, the average density is still described

by eq. 33 with tj(z) replaced by tj(p, z), which obeys the recursion

tj(p, z) = bj(p, z)

(

1− 2
p (1− bj−1(p, z))

1− p bj−1(p, z)
tj−1(p, z)

)

, t0(p, z) = 1 , (57)

where bj(p, z) = (1− xj(p, z))/p. The recursion in eq. 57 can be solved exactly to give

tj(p, z) =

j−1
∑

i=0

(−2)j
j
∏

n=j−i

bn(p, z)

(

p (1− bn(p, z))

1− p bn(p, z)

)1−δn,j

, (58)
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Figure 4. Phase diagram for the annealed Model I. Blue line separating disordered

and ordered (alternating) phases is the solution of equation D(p, z) = 0 with D(p, z)

defined by eq. 54. The full circle indicates the location of the critical value of the

parameter p = p
(bonds)
c = 8/9.

where δn,j is the Kronecker-delta, such that δn,n = 1 and is zero, otherwise. Further on,

inserting eq. 58 into eq. 33 and re-arranging the series, we get the expansion in eq. 36

with rj(z) replaced by rj(p, z), which now obeys the recursion relation

rj(p, z) = bj(p, z)

(

1− p (1− bj(p, z))

1− p bj(p, z)
rj+1(p, z)

)

, (59)

whose solution is given by

rj(p, z) =
∞
∑

i=0

(−1)i
i+j
∏

n=j

bn(p, z)

(

p (1− bn(p, z))

1− p bn(p, z)

)1−δn,i+j

. (60)

Similarly to the expression in eq. 36 for the p ≡ 1 case, eq. 60 defines the average

occupation at generation j in the general case when 0 ≤ p ≤ 1.

We focus now on the single limit case obtained either for p < p
(bonds)
c = 8/9, or for

p > p
(bonds)
c with z < z

(bonds)
c,1 (p) or z > z

(bonds)
c,2 (p). In this case all bj(p, z) converge as

j → ∞ to b(p, z) = (1− x(p, z))p−1 with x(p, z) defined by eq. 47. In virtue of eq. 59,

we have that the average occupation at generation j converges to

r(p, z) =
b(p, z) (1− p b(p, z))

1− p b2(p, z)
, (61)

such that the order parameter δρ ≡ 0. Further on, we consider the critical case when

p > p
(bonds)
c and z ∈ [z

(bonds)
c,1 (p), z

(bonds)
c,2 (p)]. Here, bj(p, z) with even j converges in the

limit j → ∞ to b−(p, z) = (1−xeven(p, z))p−1, eq. 52, while bj(p, z) with odd j converges

to b+(p, z) = (1 − xodd(p, z))p
−1, eq. 53. Correspondingly, the average occupations on

the generation j deep in the interior of an infinitely large tree are given by

r−(p, z) =
b−(p, z) (1− p b+(p, z))

1− p b+(p, z)b−(p, z)
(62)
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Figure 5. Order parameter δρ in eq. 64 versus βµ for different p > p
(bonds)
c . Green

curve corresponds to p = 0.9, the red one - to p = 0.95 and the blue curve - to p = 0.99.

for even j, and

r+(p, z) =
b+(p, z) (1− p b−(p, z))

1− p b+(p, z)b−(p, z)
(63)

for odd j, respectively. In consequence, the staggered density obeys

δρ = r+(p, z)− r−(p, z)

=
b+(p, z)− b−(p, z)

1− p b+(p, z)b−(p, z)

=
xeven(p, z)− xodd(p, z)

1− p+ p (xeven(p, z) + xodd(p, z)− xeven(p, z)xodd(p, z))
, (64)

where xeven(p, z) and xodd(p, z) are defined by eqs. 52 and 53. In Fig. 5 we depict the

behaviour of the order parameter in eq. 64 for several values of p > p
(bonds)
c .

Using eqs. 52 to 54, we can formally rewrite eq. 64 in the form

δρ =

√

4(1− p)3z
(

z − z
(bonds)
c,1 (p)

)(

z
(bonds)
c,2 (p)− z

)

(1− p)3z2 + (1− 2(1− p)p)z − p
. (65)

For z sufficiently close to z
(bonds)
c,1 (p) one has

z = exp(ln(z
(bonds)
c,1 (p))/(1− τ)) ≃ z

(bonds)
c,1 (p) + z

(bonds)
c,1 (p) ln(z

(bonds)
c,1 (p))τ, (66)

where τ = (T − Tc)/Tc is the deviation of the reduced temperature from the critical

point Tc. Then, substituting eq. 66 into eq. 67 and expanding the resulting expression

in powers of τ , we find

δρ ≃

√

4(1− p)3z
(bonds)
c,1 (p)

(

z
(bonds)
c,2 (p)− z

(bonds)
c,1 (p)

)

ln(z
(bonds)
c,1 (p))

(1− p)3z
(bonds)
c,1 (p)

2
+ (1− 2(1− p)p)z

(bonds)
c,1 (p)− p

√
τ +O(τ 3/2), (67)
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which implies that the order parameter has the form δρ ∼ τ b with the mean-field critical

exponent b = 1/2. In a similar way, we analyse the behaviour of the order parameter in

the vicinity of the inverted transition point; that being, z = z
(bonds)
c,2 (p), to get a scaling

behaviour with the same critical exponent b = 1/2.

4.3. Mean densities and the compressibility

We address next the question of the order of the transitions which our system undergoes

at z = z
(bonds)
c,1 (p) and at z = z

(bonds)
c,2 for p > p

(bonds)
c . Consider first the behaviour of

the mean particle density at these points. In the sequence convergence limit, i.e., for

z < z
(bonds)
c,1 (p) or for z > z

(bonds)
c,2 (p), the average occupation of the generations with odd

and even j deep in the interior of the infinite tree is the same, such that in virtue of

eqs. 36 and 61 we have

ρout(p, z) = r(p, z) =
b(p, z) (1− p b(p, z))

1− p b2(p, z)
, (68)

where the subscript ”out” signifies that we deal with the behaviour out of the critical

region, b(p, z) = (1− x(p, z))/p and x(p, z) is given by eq. 47.

Further on, within the critical region z ∈ [z
(bonds)
c,1 (p), z

(bonds)
c,2 (p)], the average

occupations of all the sites at even and odd generations are defined by eqs. 62 and

63, respectively, such that the mean density within the critical region obeys

ρin(p, z) =
1

2
(r+(p, z) + r−(p, z))

=
1

2

b−(p, z) + b+(p, z)− 2pb+(p, z)b−(p, z)

1− pb+(p, z)b−(p, z)

=
2 + (2− 3p)z

2 + 2z (2− 3p+ (1− p)3z)
. (69)

Next, one may readily notice that since

b(p, z
(bonds)
c,1 (p)) = b−(p, z

(bonds)
c,1 (p)) = b+(p, z

(bonds)
c,1 (p)) (70)

and

b(p, z
(bonds)(p)
c,2 ) = b−(p, z

(bonds)
c,2 (p)) = b+(p, z

bonds)
c,2 (p)), (71)

one has ρout(p, z
(bonds)
c,1 (p)) = ρin(p, z

(bonds)
c,1 (p)) and ρout(p, z

(bonds)
c,2 (p)) = ρin(p, z

(bonds)
c,2 (p)),

such that the density is a piece-wise continuous function of z.

Consider next the compressibility κT defined as

κT =
1

ρ2
∂ρ

∂µ
=

β

ρ2
∂ρ

∂ ln(z)
. (72)

Away of the critical region, i.e., for z < z
(bonds)
c,1 (p) or for z > z

(bonds)
c,2 (p), we use the

expression in eq. 68 to get

κT/β =

(

x(p, z)− 1 + p
)

x(p, z)
(

1− x(p, z)
)

(

p (1− 2x(p, t))− (1− x(p, z))2
)

(

p (x(p, t)− 2) + 2 (1− x(p, z))2
) . (73)
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Figure 6. Compressibility κT /β in eqs. 73 and 74 versus βµ for different p > p
(bonds)
c .

Green curve corresponds to p = 0.9, the red one - to p = 0.95 and the blue curve - to

p = 0.99.

On the other hand, within the critical region, i.e., for z ∈ [z
(bonds)
c,1 (p), z

(bonds)
c,2 (p)], we

take advantage of the expression in eq. 69 to get

κT/β =
2z
(

3p− 2− 4(1− p)3z − (2− 3p)(1− p)3z2
)

(

2 + (2− 3p)z
)2 . (74)

In Fig. 6 we plot the compressibility κT defined by eqs. 73 and 74 versus βµ for

different values of p > p
(bonds)
c . We observe that the compressibility exhibits a finite

upward jump when the system enters into the ordered phase at z = z
(bonds)
c,1 (p), and

also a finite downward jump when it re-enters the disordered phase for z exceeding

z
(bonds)
c,2 (p). This implies that both transitions are continuous, or second order in the

Ehrenfest nomenclature. In particular, for p = 0.9, κ/β → 5/16 when z approaches

z
(bonds)
c,1 (p) from below, and κ/β → 5/12 when z → z

(bonds)
c,1 (p) from above. For the re-

entrant transition for the same value of p, we have κ/β → 1/5 for z → z
(bonds)
c,2 (p) from

below, and κ/β → 4/15 for z → z
(bonds)
c,2 (p) from above, respectively.

We close this Section with the following remark: Exact calculation of the average

occupation at generation j in the general case 0 ≤ p ≤ 1, culminating at our eq. 60,

which we performed here by generalising very directly the Runnel’s approach, appears

to be quite cumbersome even for the simple model of a purely repulsive lattice gas

(Model I) and thus we can hardly expect that an analogous analysis can be carried out

for the Model II with its multi-site Boolean interactions. In this regard, it might be

instructive to present a somewhat simpler derivation of the main results of this Section

using a different approach, which may also shed some light on the physical meaning of

the expressions for ρin(z) in eq. 69 and for ρout(z) in eq. 68. Let ρ0 denote the mean
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density at the central site of a finite Cayley tree. This density is formally defined as

ρ0 =
Z

(bonds,1)
N (p)

Z
(bonds,0)
N (p) + Z

(bonds,1)
N (p)

, (75)

where Z
(bonds,1)
N (p) and Z

(bonds,0)
N (p) are given by eqs. 40. Taking into account the

definition of xN(p, z) in eq. 43, we arrive at the following expression:

ρ0 =
zx3N (p, z)

1 + zx3N (z, p)
. (76)

Outside of the critical region, in the limit N → ∞, mean densities on each site of

the tree are equal to the same quantity ρout, and consequently, ρout = ρ0. Plugging

xN (z, p) → x(z, p) into eq. 76 and combining it with eq. 45, we recover the expression

in eq. 68. Further on, within the critical region the situation is a bit more delicate,

because here we have two alternating limits for N → ∞: xeven(p, z) and xodd(p, z). Let

ρeven(p, z) and ρodd(p, z) obey

ρeven(p, z) =
zx3even

1 + zx3even
, ρodd(p, z) =

zx3odd
1 + zx3odd

. (77)

Defining next the mean density in the critical region as ρin = (ρeven+ρodd)/2, and using

eqs. 52 and 53, we obtain for ρin exactly the same expression as the one in eq. 69.

5. Model II : Catalytic sites

We turn next to the annealed version of the Model II and examine the critical behaviour

of the annealed partition function defined by our eqs. 5 and 6, as the function of the

reaction probability p and of the chemical potential µ (or the activity z). Similarly to the

previously considered case of catalytic bonds, we decompose formally Z(sites)(p) in eq.

5 as Z(sites)(p) = Z
(sites,0)
N (p) + Z

(sites,1)
N (p), where Z

(sites,0)
N (p) and Z

(sites,1)
N (p) denote the

disorder-averaged partition functions of the Cayley tree with a vacant and an occupied

central sites. One immediately notices that the partition function of the entire tree

with a vacant central site factorises into the product of the partition functions defined

on the subtrees; that being, we still have Z
(sites,0)
N (p) = G3

N(0; p), where GN(0, p) is the

partition function in eq. 5 defined on a subtree (see, Fig. 1, right panel) with a vacant

root. Note that, evidently, GN(0; p = 1) = BN (0; p = 1) = BN (0).

The case of a tree with an occupied central site is more difficult, compared to the

Model I, since here different subtrees emanating from the occupied central node are

effectively coupled via the Boolean function Ψ0, eq. 6, and the way how they may get

decoupled depends now on the occupations of the sites belonging to the first generation.

In consequence, we have to represent Z
(sites,1)
N (p) as the sum of all configurations with

different occupations of the sites of the first generation; namely, all configurations with

an occupied central site and a) all three sites in the first generation occupied, b) two

sites occupied and one - vacant, c) one site occupied and two - vacant, and c) all three

sites in the first generation vacant. Introducing next auxiliary functions G(n0, n1; p),
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which denote the partition function of a subtree with the root having an occupation

number n0 and the site at the first generation having the occupation number n1, we

represent Z
(sites,1)
N (p) by directly counting all possible configurations as

Z
(sites,1)
N (p) =

G3
N(1, 1; p)

z2(1− p)2
+ 3

G2
N(1, 1; p)GN(1, 0; p)

z2(1− p)

+
3GN(1, 1; p)G

2
N(1, 0; p)

z2
+
G3

N (1, 0; p)

z2
, (78)

Further on, we find straightforwardly that G(n0, n1; p) obey the following recursions:

GN(0, 0; p) = G2
N−1(0; p) , GN(1, 0; p) = zG2

N−1(0; p) ,

GN(0, 1; p) =
1

(1− p)z

(

(1− p)G2
N−1(1, 0; p) +

+ 2(1− p)GN−1(1, 0; p)GN−1(1, 1; p) +G2
N−1(1, 1; p)

)

,

GN(1, 1; p) =
(

(1− p)GN−1(1, 0; p) +GN−1(1, 1, p)
)2

. (79)

Recalling next that GN(1; p) = GN(1, 1; p) + GN (1, 0; p) and GN(0; p) = GN(0, 0; p) +

GN(0, 1; p), we find from eq. 79 the recursions obeyed by GN(1; p) and GN (0; p):

GN(0; p) = G2
N−1(0; p) + pzG4

N−2(0; p) +

+
1

(1− p)z

(

GN−1(1; p)− pzG2
N−2(0; p)

)2

(80)

and

GN(1; p) = zG2
N−1(0; p) +

(

GN−1(1; p)− pzG2
N−2(0; p)

)2

. (81)

Now, it is convenient to introduce new auxiliary functions

ψN(p, z) =
GN(1; p)

zG2
N−1(0; p)

; ξN(p, z) =
G2

N−1(0; p)

GN(0; p)
, (82)

which obey, in virtue of eqs. 80 and 81, the following coupled recursion relations:

ψN(p, z) = 1 + zξ2N−1(p, z)
(

ψN−1(p, z)− p
)2

, ψ0(p, z) = 1 ,

ξN(p, z) =

(

1 + pzξ2N−1(p, z) + zξ2N−1(p, z)
(ψN−1(p, z)− p)2

1− p

)−1

, (83)

where ξ0(p, z) = 1. Note, that the parameter xN (p, z) used to simplify the recursion in

the Model I is given now by xN(p, z) = ψN(p, z)ξN (p, z). Note, as well, that in the limit

p→ 1 all ψN → 1, such that the second equation in eqs. 83 becomes ξN = (1+zξ2N−1)
−1,

which is just our previous eq. 20 written in term of the function ξN(p, z).

We turn back now to our eq. 78. Using the representations

GN(1, 1; p) = GN(1; p)−GN(1, 0; p)

= zG2
N−1(0; p)

(

ψN (p, z)− 1
)

= zξN (p, z)GN(0; p)
(

ψN(p, z)− 1
)

, (84)
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as well as our eqs. 79, we may rewrite eq. 78 formally as

Z
(sites,1)
N (p) =

zξ3N(p, z)G
3
N (0; p)

(1− p)2

((

ψN (p, z)− p
)3

+ p(1− p)2
)

, (85)

which together with the relation Z
(sites,0)
N (p) = G3

N(0; p) define the partition function

Z(sites)(p) of the entire Cayley tree.

Finally, interpreting the definition of the function ξN(p, z) in eq. 82 as a recursion

relation with an evident ”initial” condition G0(0; p) = 1, we find that GN(0; p) for an

arbitrary N can be expressed via ξN(p, z) as

GN(0; p) =
N
∏

j=1

ξ−2N−j

j (p, z) , (86)

such that eq. 12 yields for the pressure of the adsorbate

PII(T, µ) =
1

β
lim

M→∞

lnZ(sites)(p)

M
=

3

β
lim

M→∞

lnGN (0; p)

M

+
1

β
lim

M→∞

1

M
ln

[

1 +
zξ3N(p, z)

(1− p)2
(

(ψN(p, z)− p)3 + p(1− p)2
)

]

=
1

β

∞
∑

j=1

2−j ln

(

1

ξj(p, z)

)

, (87)

where the sum in the last line defines the desired thermodynamic limit result for the

entire Cayley tree. In Appendix B we explain how one may subtract the contribution

due to the boundary sites and get an analogous expression for the deep interior of the

Cayley tree - the Bethe lattice.

5.1. Solution of the recursion relations for p < 1

Before we proceed further, it seems again expedient to get first some general

understanding of the behaviour of the recursion scheme defined by eqs. 83. To this

end, we generate first 20 terms of ψN(p, z) and of ξN(p, z) for three different values of

the parameter p: p = 0.6, p = 0.8 and p = 0.9. These results are plotted in Figs. 7 and

8. We notice that the situation appears to be somewhat similar to the one encountered

for the annealed Model I in the sense that also here two clearly distinct behaviours are

observed : for p = 0.6 we have a convergence to the single limit curve for all values

of z, while for larger p there is a range of z with an apparent single limit convergence,

and a bounded region in which odd and even terms seemingly converge to alternating

curves. This signifies that, first, there exists some critical value p
(sites)
c,1 of the parameter

p, which lies somewhere in-between p = 0.6 and p = 0.8. Second, it shows that also for

the annealed Model II for p > p
(sites)
c,1 there are some critical value z

(sites)
c,1 (p), at which

the systems enters from a disordered phase into an ordered one, and some critical value

z
(sites)
c,2 (p) > z

(sites)
c,1 (p), at which the systems re-enters into a disordered phase.

There is, however, a notable distinction between the behaviour of ψN (p, z) and

ξN(p, z) for p = 0.8 and p = 0.9: while for z close to z
(sites)
c,1 (p) we observe quite a
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Figure 7. ψN = ψN (p, z) in eqs. 83 versus βµ for N = 1, 2, 3, . . . , 20. Green curves

correspond to odd N , while the red ones - to even values of N . Panel (a) : p = 0.6,

Panel (b): p = 0.8 and Panel (c): p = 0.9. Thick black lines are defined by eq. 89

with ψ(p, t) being the single limit solution of eq. 90. Thick blue dashed lines defining

the solution in the alternating limits are the roots of eq. 97. Vertical thin dotted

line in Panel (c) shows the discontinuity in ψN (p, z) at z = z
(sites)
c,2 (p) emerging for

p > p
(sites)
c,2 , where p

(sites)
c,2 is calculated from eq. B.10.

similar smooth behaviour, in the vicinity of z
(sites)
c,2 (p) the functions ψN(p, z) and ξN(p, z)

approach the single limit curve much more abruptly for p = 0.9 than for p = 0.8. This

hints that for the former case we may encounter a phase transition of a different type.

We turn first to the single limit case. Supposing that ξN(p, z) → ξ(p, z) and

ψN (p, z) → ψ(p, z) as N → ∞, we have that eqs. 83 become

ψ(p, z) = 1 + zξ(p, z)2
(

ψ(p, z)− p
)2

,

ξ(p, z) =






1 + pzξ2(p, z) + zξ(p, z)2

(

ψ(p, z)− p
)2

1− p







−1

. (88)

Further on, it follows from eq. 88 that

ψ(p, z)− p = (1− p)

(

1

ξ(p, z)
− pzξ2(p, z)

)

, (89)

which permits us to write down a closed-form equation determining ξ :

f1(ξ(p, z), p, z) = p2(1− p)ξ7(p, z)z3 − 2p(1− p)ξ4(p, z)z2 +
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Figure 8. ξN = ξN (p, z) in eqs. 83 versus βµ for N = 1, 2, 3, . . . , 20. Green curves

correspond to odd N while the red ones - to even values of N . Panel (a) : p = 0.6,

Panel (b): p = 0.8 and Panel (c): p = 0.9. Thick black lines are the single limit

solutions, eq. 90. Thick blue dashed lines define the alternating limits solution of

eq. 97 expressed in terms of ξ(p, z). Vertical thin dotted line in Panel (c) shows the

discontinuity in ξ(p, z) at z = z
(sites)
c,2 (p) for p > p

(sites)
c,2 ; p

(sites)
c,2 is obtained from eq.

B.10.

+ ξ(p, z)
(

pξ2(p, z) + 1− p
)

z + ξ(p, z)− 1 = 0 , (90)

which is a seventh-order equation in ξ(p, z). Note that for p ≡ 1, ψ(p, z) ≡ 1 such that

eq. 90 reduces to a depressed cubic equation of the form zξ(p, z)3 + ξ(p, z) − 1 = 0,

which is just our previous eq. 25. For general p < 1, we can only solve equation eq. 90

numerically. The real roots ξ(p, z), eq. 90, for fixed p = 0.6, 0.8, 0.9 are depicted by a

thick black line in Fig. 8, (and correspondingly, the roots of ψN(p, z) are depicted in

Fig. 7), demonstrating a convergence of the recursion to this single limit curve for any

z for p = 0.6, as well as for z < z
(sites)
c,1 (p) and z > z

(sites)
c,2 (p) for p = 0.8 and p = 0.9,

(where z
(sites)
c,1 (p) and z

(sites)
c,2 (p) stay undefined, for the moment).

Consider now the alternating limits case. As in the case of the Model I, (and also

following the Runnels’ analysis [31]), we reiterate eqs. 83 once more to get a recursion

involving only the terms of the same parity with respect to N . This gives

ψN(p, z) = 1 +
z(1 − p)2K2

N−2(p, z)
(

p(1− p)zξ2N−2(p, z) +KN−2(p, z)
)2 ,
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ξN(p, z) =






1 +

z(1− p)
(

p(1− p) +K2
N−2(p, z)

)

(

p(1− p)zξ2N−2(p, z) +KN−2(p, z)
)2







−1

, (91)

where we denote

KN−2(p, z) = 1− p+ zξ2N−2(p, z)
(

ψN−2(p, z)− p
)2

. (92)

Further on, we assume that ξN(p, z) → ξ(p, z), ψN(p, z) → ψ(p, z) and KN(p, z) →
K(p, z) as N → ∞, so that we may rewrite eqs. 91 and 92 as:

ψ(p, z) = 1 +
z(1 − p)2K2(p, z)

(p(1− p)zξ2(p, z) +K(p, z))2
, (93)

ξ(p, z) =

(

1 +
z(1 − p) (p(1− p) +K2(p, z))

(p(1− p)zξ2(p, z) +K(p, z))2

)−1

(94)

where

K(p, z) = 1− p+ zξ2(p, z)
(

ψ(p, z)− p
)2

. (95)

As a matter of fact, from our eq. 95 we can express ψ(p, z) in eq. 93 via K(p, z), which

will result in a closed system of equations for K(p, z) and ξ(p, z). Next, expressing

K(p, z) from the second equation via ξ(p, z) and plugging the result into the first

equation, we find a general closed-form equation for ξ(p, z). Some straightforward (but

rather tedious) calculations, which we omit here, show that the closed-form equation

for ξ(p, z) can be cast into the form

f1(ξ(p, z), p, z)f2(ξ(p, z), p, z) = 0 , (96)

where function f1(ξ(p, z), p, z) is defined in eq. 90. The function f2(ξ(p, z), p, z) is a

polynomial of the fourteenth order in ξ(p, z) and a polynomial of the eighth order in z,

and is presented in an explicit form in Appendix A (see eq. A.1).

Now, the root of the f1(ξ(p, z), p, z) = 0, eq. 90, defines the solution in the single

limit case. On the other hand, similarly to the situation described in Sec. 4, the roots

of the equation

f2(ξ(p, z), p, z) = 0 , (97)

define the solutions in the alternating limits case. Numerical analysis of a strongly non-

linear eq. 97 together with some complementary arguments presented in Appendix C

permit us to draw the following conclusions:

• Two alternating limit solutions appear only for p > p
(sites)
c,1 ⋍ 0.794, which value is

specific, of course, to the coordination number three of the Bethe lattice.

• the ordered phase can only exist for p > p
(sites)
c,1 and such z which obey the double-

sided inequality z
(sites)
c,1 (p) < z < z

(sites)
c,2 (p).

• There is another critical value of the reaction probability p = p
(sites)
c,2 ⋍ 0.813, such

that for p
(sites)
c,1 < p < p

(sites)
c,2 two alternating limit curves meet each other at the

single limit solution, eq. 90, at the points z
(sites)
c,1 (p) and z

(sites)
c,2 (p).
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Figure 9. ξN = ξN (p, z) in eq. 83 versus βµ for N = 1, 2, 3, . . . , 20 in the critical case

p = p
(sites)
c,2 ⋍ 0.813. Green curves correspond to odd N , while the red ones - to even

values of N . Thick black lines are the single limit solutions of eq. 90 while the thick

dashed lines are the alternating limits solutions of eqs. 97. Note that ξN (p, z) becomes

multi-valued at z = z
(sites)
c,2 (p).

• For p > p
(sites)
c,2 we have a different behaviour: the alternating limit curves have

different values at z = z
(sites)
c,2 (p) and the alternating limit solution of eqs. 97 become

multi-valued and no longer represents the actual limits approached by ψN (p, z) and

ξN(p, z) as N → ∞ (see Figs. 7 and 8, and also Fig. 9 which depicts the behaviour

for the critical value p = p
(sites)
c,2 in which case the alternating limit solutions of eqs.

97 form a vertical line at z = z
(sites)
c,2 (p)). This signifies that both ψN (p, z) and

ξN(p, z) exhibit a discontinuous transition at z = z
(sites)
c,2 (p) for N = ∞.

These findings are summarised in Fig. 10, in which we depict the dependence of z
(sites)
c,1 (p)

and z
(sites)
c,2 (p) on p defining the complete phase diagram for the annealed Model II. Note

that similarly to the Model I, z
(sites)
c,2 (p) → ∞ when p → 1, such that the re-entrant

transition disappears, as it should.

5.2. Mean density, compressibility and the order parameter for p < 1

We start with the calculations of the mean density and of the compressibility in the

single limit case, i.e., outside of the critical region. The mean density at the central site

of the Cayley tree is formally defined as

ρ0 =
Z

(sites,1)
N (p)

Z(sites)(p)
=

Z
(sites,1)
N (p)

Z
(sites,0)
N (p) + Z

(sites,1)
N (p)

, (98)

where Z
(sites,1)
N (p) is defined by eq. 85 and Z

(sites,0)
N (p) = G3

N(0; p). This implies that the

mean density at the central site of a Cayley tree with N generations is given by

ρ0 =
zξ3N (p, z)[(ψN (p, z)− p)3 + p(1− p)2]

(1− p)2 + zξ3N(p, z)[(ψN(p, z)− p)3 + p(1− p)2]
. (99)

For a deep interior of an infinite Cayley tree, i.e., for the Bethe lattice, and outside

of the critical region, that is, for any z and p < p
(sites)
c,1 , or for an arbitrary p but z
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Figure 10. Phase diagram for the annealed Model II. Solid line demarcates a

continuous phase transition between ordered (alternating) and disordered phases, while

the dashed curve shows the discontinuous re-entrant transition between these two

phases. The full circle corresponds to p
(sites)
c,1 , while the full diamond shows the location

of the tricritical point, at which the lines of continuous and discontinuous transitions

meet.

which are either less than z
(sites)
c,1 (p) or greater than z

(sites)
c,2 (p), mean densities at each

site (including the central one) are equal. Consequently, supposing that for the Bethe

lattice ψN (p, z) = ψ(p, z) and ξN(p, z) = ξ(p, z), and using eq. 89, we obtain

ρ
(sites)
out (p, z) =

z [(1− p)(1− pzξ3(p, z))3 + pξ3(p, z)]

1 + z [(1− p)(1− pzξ3(p, z))3 + pξ3(p, z)]
. (100)

Compressibility in this case can be found from the definition in eq. 72. Substituting eq.

100 into eq. 72, we find that the compressibility away of the critical region obeys

κT/β =
1

z
(

(1− p)(1− pzξ3(p, z))3 + pξ(p, z)
)3 +

+
3pξ2(p, z)

(

(1− p) (1− pzξ3(p, z)) (3zξ′(p, z) + ξ(p, z)) + ξ′(p, z)
)

(

((1− p)(1− pzξ3(p, z))3 + pξ(p, z))3
)2 , (101)

where the derivative ξ′(p, z) = ∂ξ(p, z)/∂z is defined as:

∂ξ(p, z)

∂z
= −∂f1(ξ(p, z), p, z)

∂z

(

∂f1(ξ(p, z), p, z)

∂ξ(p, z)

)−1

. (102)

We turn next to the behaviour in the critical region. We note that here, in contrast

to the Model I, the exact calculation of the densities in the alternating layers is hardly

possible due to a very complicated form of the recursion schemes obeyed by ξN(p, z) and

ψN (p, z). Therefore, we resort here to an approach described at the end of the previous

Section. Within the critical region, i.e., for p > p
(sites)
c,1 and for z

(sites)
c,1 (p) < z < z

(sites)
c,2 (p),
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Figure 11. Order parameter δρ versus βµ for different p > pc,1. Blue curve

corresponds to p = 0.8, the red one - to p = 0.9.

mean densities of even and odd generations are different. Consequently, in this case we

may consider mean density ρ
(sites)
in (p, z) = (ρ

(sites)
odd (p, z) + ρ

(sites)
even (p, z))/2. Using eq. 99,

we then define the mean density of sites at the odd generation, ρ
(sites)
odd (p, z), and at the

even generation, ρ
(sites)
even (p, z), as

ρ
(sites)
odd (p, z) =

zξ3odd(p, z)
[

(ψodd(p, z)− p)3 + p(1− p)2
]

(1− p)2 + zξ3odd(p, z)
[

(ψodd(p, z)− p)3 + p(1− p)2
] , (103)

and

ρ(sites)even (p, z) =
zξ3even(p, z)

[

(ψeven(p, z)− p)3 + p(1− p)2
]

(1− p)2 + zξ3even(p, z)
[

(ψeven(p, z)− p)3 + p(1− p)2
] .(104)

Using eqs. 103 and 104, we can define the order parameter δρ = |ρodd−ρeven|. The latter
is depicted in Fig. 11 as the function of βµ for the case p = 0.8 (i.e., for p within the

interval p
(sites)
c,1 < p < p

(sites)
c,2 ) and for the case p = 0.9 (i.e., for p such that p > p

(sites)
c,2 ).

One observes a markedly different behaviour at z = z
(sites)
c,2 (p) - in the former case δρ

attains a maximal value for z < z
(sites)
c,2 (p) and smoothly approaches zero, while in the

latter case the order parameter vanishes discontinuously at z = z
(sites)
c,2 (p).

The compressibility in this case can be found if we replace ρ in eq. 72 by ρin. Then,

the only properties we need to know are the derivatives of ξodd(p, z), ξeven(p, z), ψodd(p, z)

and ψeven(p, z) with respect to z. The latter can be calculated rather straightforwardly

and we obtain the following result:

κT/β = 2z
A1A

′
2 − A2A

′
1

(

A1 + 2A2

)2 , (105)

where the explicit expressions for the functions A1 = A1(s(p, z), σ(p, z)) and A2 =

A2(s(p, z), σ(p, z)) are given by eqs. C.13 and C.14 (see Appendix C), respectively.

Their derivatives with respect to z, i.e., A′
1 = A′

1(s(p, z), σ(p, z)) and A′
2 =
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Figure 12. Mean density ρ, panel (a), and the compressibility κT /β, panel (b),

versus βµ for p = 0.8. The red curves in panels (a) and (b) correspond to eqs.

100 and 101, respectively. The blue curve in the middle of the panel (a) depicts

ρin = (ρ
(sites)
odd (p, z)+ρ

(sites)
even (p, z))/2 with ρ

(sites)
odd (p, z) and ρ

(sites)
odd (p, z) defined by eqs.

104 and 103. The blue curve in the panel (b) shows the compressibility in the critical

region defined by eq. 105.
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Figure 13. Mean density ρ, panel (a), and the compressibility κT /β, panel (b),

versus βµ for p = 0.9. The red curves in panels (a) and (b) correspond to eqs.

100 and 101, respectively. The blue curve in the middle of the panel (a) depicts

ρin = (ρ
(sites)
odd (p, z)+ρ

(sites)
even (p, z))/2 with ρ

(sites)
odd (p, z) and ρ

(sites)
odd (p, z) defined by eqs.

104 and 103. The blue curve in the panel (b) defines the compressibility in the critical

region defined by eq. 105.

A′
2(s(p, z), σ(p, z)) are also presented in an explicit form in Appendix C (see eqs. C.17

and C.18).

Therefore, we obtain the compressibility for the whole range of βµ and arbitrary p.

The results for p = 0.8 and p = 0.9 are presented in Figs. 12 and 13, respectively. One

notices that for p = 0.8 the density is piece-wise continuous with cusps at z = z
(sites)
c,1 (p)

and at z = z
(sites)
c,2 (p)), while the compressibility exhibits finite jumps when the system

enters into the ordered phase at z = z
(sites)
c,1 (p) and re-enters into the disordered phase

at z = z
(sites)
c,2 (p). This implies that both transitions are continuous transitions. On the

other hand, for p = 0.9, (which value of p exceeds p
(sites)
c,2 ), we observe that the density

32



Order-disorder transitions in reactive lattice gases M. Dudka et al

is piece-wise continuous at z = z
(sites)
c,1 (p), and varies discontinuously at z = z

(sites)
c,2 (p),

which signifies that in this range of values of the reaction probability p the re-entrant

transition is discontinuous. Interestingly enough, behaviour of the compressibility after

the re-entrant transition is markedly different depending whether the latter is continuous

or discontinuous. In case of a continuous transition the compressibility jumps downwards

at the transition point, passes through a maximum and then decreases monotonically

with z. In case of a discontinuous transition the compressibility makes an upward jump

and then monotonically decreases with z.

6. Conclusions

To conclude, we have studied here equilibrium properties of two lattice-gas models of

catalytically-activated A + A → ⊘ reactions on a lattice of adsorption sites. In both

models, the A particles are assumed to be in thermal contact with their vapour phase (a

reservoir maintained at a chemical potential µ), adsorb onto empty adsorption sites and

desorb from the lattice. We considered two different ways of modelling such reactions:

in the Model I we assumed that some fraction p of the bonds connecting neighbouring

adsorption sites possesses special catalytic properties so that any two As appearing on

the sites connected by such a bond react instantaneously and desorb. In the Model II,

we stipulated that some fraction p of the adsorption sites possesses such properties and

the reaction takes place once at least one of the neighbouring A particles occupies a

catalytic adsorption site.

We focused on the case of annealed disorder in the distribution of the catalytic

bonds or sites, which is tantamount to the situation when the reaction between two

As may take place at any point on the lattice but happens with a finite probability

p, which means that the reaction is not perfect (instantaneous) but is characterised

by some finite reaction constant. In this case the Model I describes a lattice gas with

soft, purely repulsive nearest-neighbour interactions, while the Model II represents a

lattice gas with particular multi-site interactions of particles: here, the interaction of an

adsorbed particle with its nearest environment has a Boolean form - it is either zero,

in case when the particle does not have any neighbour, or is a constant independent of

the actual number of neighbouring adsorbed particles, if at least one of them is present.

We provided exact analytical solutions for the annealed versions of both Models I and

II on the interior of the Cayley tree - the Bethe lattice, and showed that they exhibit a

rich ”critical” behaviour with respect to µ and p, characterised by a transition into an

ordered state, which for both models is continuous with a finite jump in compressibility,

and a re-entrant transition into a disordered phase, which is continuous with a finite

jump in compressibility for the Model I and, depending on the value of p, may be either

continuous or discontinuous with a finite jump of density, for the Model II.

The wealth of critical phenomena which we observed for the Models I and II for

a Bethe lattice geometry, certainly merits further, more deep investigation including a

study of the kinetic behaviour in both models, as well as an analysis of both models on
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more realistic, regular or random adsorbent lattices with quenched (above and below

the percolation threshold) and/or annealed distributions of the catalysts. Lastly, we

would like to remark that it is interesting to extend our analysis over the case of a

monomer-monomer model A + B → ⊘, which involves two types of particles [5, 8–10].

This model with a finite reactivity p has been already studied for one-dimensional finite

systems in Ref. [43] and also for two-dimensional lattices with an annealed distribution

of the catalytic bonds [44, 45]. In Refs. [44, 45] it was shown that, in particular, the

grand canonical partition function for the A + B → ⊘ model can be mapped onto

the partition function of the general spin S = 1 model [46, 47], which permitted to

exploit the large number of results available for the latter (see, e.g., Ref. [45]). For

instance, for the symmetric case of equal chemical potentials for both species, a phase

transition was predicted from the phase in which the particles of both sorts have the

same densities, to the phase in which one sort of particles prevails. This transition can

be of the first order or a continuous one, depending on the precise values of the system’s

parameters. It was also shown in Ref. [44] that in some parameter space the monomer-

monomer model defined on a honeycomb lattice with an annealed disorder in placement

of the catalytic bonds, reduces to the original Blume-Emery-Griffiths model [48], whose

solution can be obtained in a closed form via a mapping to a zero-field Ising model

on a regular honeycomb lattice, which can be solved exactly and exhibits a symmetry-

breaking continuous transition [49, 50]. For the A + B → ⊘ reaction on a lattice with

catalytic sites no analytical results are available at present.
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Appendix A. Polynomial f2(ξ(p, z), p, z)

We present here the polynomial f2(ξ(p, z), p, z) which enters eq. 96:

f2(ξ(p, z), p, z) = 1 + ξz
(

ξ13q3p4z6 − ξ12q3p4z6 − 2ξ10q4p3z6

+ 2ξ11q3p3z5(qz+1) + ξ7q2p2z3(3− qz(5− 8qz))

+ ξ5qpz2
(

z
(

16p− 7p2 + q4z2 − 11q3z − 9
)

+ 3
)

+ ξ8q2p2z4
(

7− q3z2 − 10q2z − 10p
)

+ ξ9q2p2z4
(

q4z3 + 3q3z2 − (4p− 3)qz + 2p+ 1
)

+ ξ4qpz2
(

q3z2 + 16q2z − 10p+ 7
)

− ξ2q2pz2

+ ξ
(

2q3z2 − (5p− 4)qz − p+ 2
)
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− ξ6q3pz3
(

z
(

2q3z2 − 2q2z + 13p− 10
)

− 6
)

+ ξ3qz
(

q5z4+4q4z3−(13p−6)q2z2+(9p−4)qz−3p−1
)

−p
)

, (A.1)

where q = 1− p.

Appendix B. Pressure for the Bethe lattice

To derive an explicit expression for the substrate pressure of a deep interior of the Cayley

tree - the Bethe lattice, we use the procedure which is well described in Ref. [42].

Appendix B.1. Pressure for the annealed Model I

The procedure described in Ref. [42] consists of the following steps. First, using eq. 11

we can write the pressure of an adsorbate on an N -generation Cayley tree in the form :

βMPI,N = lnZ(bonds)(p) . (B.1)

Using next the relation Z(bonds)(p) = Z
(bonds,0)
N (p)+Z

(bonds,1)
N (p), as well as the definitions

in eqs. 40 and 43, we find that the pressure in eq. B.1 reads

βMPI,N = 3 lnBN(0, p) + ln(1 + zx3N (p, z)) . (B.2)

Further on, for BN (0, p) we use the relation in eq. 42, which gives

βMPI,N = 6 lnBN−1(0, p) + 3 ln(1 + zx2N−1(p, z))

+ ln(1 + zx3N (p, z)) . (B.3)

Rewriting the latter expression in terms of the pressure PI,N−1 for an N − 1-generation

Cayley tree we therefore arrive at

βMPI,N = 2βMPI,N−1 − 2 ln(1 + zx3N−1(p, z))

+ 3 ln(1 + zx2N−1(p, z)) + ln(1 + zx3N (p, z)) . (B.4)

Reiterating this procedure n times, we find the following recursion relation for PI,N :

βMPI,N = 2nβMPI,N−n − βMPI,Nn , (B.5)

where PI,Nn is now the pressure of an n-generation deep interior of the Cayley tree - an

n-generation Bethe lattice, which reads

βMPI,Nn = 3
n
∑

k=1

ln(1 + zx2N−k(p, z))− 2n ln(1 + zx3N−n(p, z))

+ ln(1 + zx3N (p, z)) . (B.6)

Lastly, we determine PI by dividing the above expression by βM , and taking next the

limit N → ∞, (in which limit all xN−k(p, z) ≡ x(p, z)), which eventually yieldes the

desired expression

PI(x(p, z)) =
3

2β
ln(1 + zx2(p, z))− 1

2β
ln(1 + zx3(p, z)) . (B.7)
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We note next that the mean density can be obtained from eq. B.7 in the standard

way by differentiating the pressure with respect to z, i.e., vρ(z) = βz∂PI/∂z, and

excluding ∂x(p, z)/∂z and z from the resulting expression using eq. 45. In doing so,

one arrives at the expression given in eq. 68. Pressure in the critical region, in which

two alternating limits for xN (p, z) exist, is to be written in the form

PI,in =
1

2
(PI(xeven(p, z)) + PI(xodd(p, z))) . (B.8)

The mean density in this case is derived using eqs. 52 and 53, to get eventually the

expression in eq. 69.

Appendix B.2. Pressure for the annealed Model II

Applying the analogous procedure for the derivation of the pressure for the Model II,

we get following expression

PII(ξ(p, z), ψ(p, z)) =
3

2β
ln

(

1 + pzξ2(p, z) +
zξ2(p, z)

(1− p)

(

ψ(p, z)− p
)2
)

− 1

2β
ln

(

1 +
zξ3(p, z)

(1− p)2

((

ψ(p, z)− p
)3

+ p(1− p)2
)

)

. (B.9)

Requiring the continuity of the pressure at the phase transition point, we determine the

critical value of the activity zf (p) for the first order phase transition:

PII(ξ(p, zf), ψ(p, zf)) =
1

2

(

PII(ξeven(p, zf), ψeven(p, zf)) +

+ PII(ξodd(p, zf), ψodd(p, zf ))
)

. (B.10)

Together with eq. 88 and eqs. C.1 to C.4, the expression in eq. B.10 implicitly

determines zf(p). The solution is depicted by a dashed line in Fig. 10.

Appendix C. Alternating limits solution for the annealed Model II

Here we present some complementary analysis of the alternating limits solution for

the annealed Model II, which also turns out to be useful for the calculations of the

staggered density and of the compressibility. We first revisit our eq. 91 and suppose

that ξN(p, z) and ψN (p, z) with odd and even N converge as N → ∞ to ξodd = ξodd(p, z)

and ψodd = ψodd(p, z), and to xieven = ξeven(p, z) and ψeven = ψeven(p, z), respectively.

Then, in accord with eq. 83, we find that the latter obey:

ψodd = 1 + zξ2even

(

ψeven − p
)2

, (C.1)

ψeven = 1 + zξ2odd

(

ψodd − p
)2

, (C.2)

ξ−1
odd = 1 + pzξ2even +

zξ2even

(

ψeven − p
)2

1− p
, (C.3)

ξ−1
even = 1 + pzξ2odd +

zξ2odd

(

ψodd − p
)2

1− p
. (C.4)
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Observe next that

ψodd − p = (1− p)

(

1

ξodd
− pzξ2even

)

, (C.5)

ψeven − p = (1− p)

(

1

ξeven
− pzξ2odd

)

, (C.6)

such that ξodd and ξeven obey, respectively,

ξodd

(

1 + pzξ2even + z(1 − p)
(

1− pzξ2oddξeven

)2)

= 1 , (C.7)

ξeven

(

1 + pzξ2odd + z(1 − p)
(

1− pzξ2evenξodd

)2)

= 1 . (C.8)

Define next two auxiliary symmetric functions s = s(p, z) = ξodd + ξeven and σ =

σ(p, z) = ξodd−ξeven. Multiplying both sides of eq. C.7 by ξeven and of eq. C.8 - by ξodd,

we arrive, after some slight rearrangements of both equations, to the following equations

which define s and σ:
(

ξodd − ξeven

)(

1 + pzσ
(

(1− p)zσ (pszσ − 2)− s
))

= 0 , (C.9)

and
(

ξodd − ξeven

)(

(1− p)p2σ2z3
(

s2−σ
)

−2(1− p)psσz2−z(pσ − 1+p)+1
)

=0 .

From eq. C.9 we readily find that

s =
1− 2(1− p)pz2σ2

pσz
(

1− (1− p)pσ2z2
) . (C.10)

Substituting this expression into eq. C.10, we obtain the following expression for σ(p, z):

fσ(σ, p, z)=− pσz

[

(1− p)σz
(

pσz
(

σz((1− p)2p2σ3z3+

(1− p)z(p(σ−1)+1)−1 + p)−1
)

+2
)

−1

]

+1=0. (C.11)

Further on, ξodd and ξeven are obtained from

ξodd =
s +

√
s2 − 4σ

2
, ξeven =

s−
√
s2 − 4σ

2
. (C.12)

Real values of ξodd and ξeven obtained in this way reproduce the alternating limits

solution, shown by the blue dashed curves in Figs. 7 and 8.

Further on, the density ρin within the critical region can also be expressed through

the symmetric auxiliary functions s and σ. Substituting next the resulting expression

into eq. 72, we arrive at our eq. 105, which defines the compressibility within the critical

region and is presented in the main text. In this equation the functions A1 = A1(s, σ)

and A2 = A2(s, σ) are explicitly given by

A1 = z
(

(1− p)
(

(1− pzσs)3 − 6p2z2σ3 + 3p3z3σ4s
)

+ p(s3 − 3σs)
)

, (C.13)
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and

A2 = z2
(

(1−p)2(1− pzσs + p2z2σ3)3 + p(1−p)
(

s3 − 3σs− 3pzσ(s4 − 4σs2 + 2σ2)+

+ 3(pzσ)2(s5 − 5σs3 + 5σ2s)−(pzσ)3(s6 − 6σs4 + 9σ2s2 + 2σ3)
)

− p2σ3

)

. (C.14)

In turn, the derivatives of A1 and A2 with respect to z obey

zA′
1 = A1 + z2

(

3(1− p)
(

− p(1− pzσs)2(σs+ z (sσ′ + σs′))− 2p2zσ2(2σ + 3zσ′) +

+ p3z2σ3(3σs+ z (4sσ′ + σs′))
)

+ 3p(s2s′ − σs′ − sσ′)

)

, (C.15)

and

zA′
2 = 2A2 + z3

[

3(1− p)2(1− pzσs + p2z2σ3)2
(

− p
(

σs+ z (sσ′ + σs′)
)

+

+ 3p2z
(

2σ(σ+zσ′)(s5−5σs3+5σ2s)+5zσ2(s4s′−s3σ′−3s2σs′+2sσσ′+σ2s′)
)

−

− 3p
(

(σ + zσ′)(s4 − 4σs2 + 2σ2) + 4zσ(s3s′ − s2σ′ − 2sσs′ + σσ′)
)

+

+ p2zσ2(2σ + 3zσ′)
)

+ 3p2σ2σ′ + p(1− p)
(

3s2s′ − 3 (sσ′ + σs′) +

+ 6zσ3(s5s′ − s4σ′ − 4s3σs′ + 3sσ(sσ′ + σs′) + σ2σ′)−

− p3z2
(

3σ2(σ + zσ′)(s6 − 6s4σ + 9σ2s2 + 2σ3)
))

]

(C.16)

Lastly, we present explicit expressions for the derivatives s′ and σ′, which enter the

expressions for the compressibility :

s′ = (σ+zσ′)

(

1

pz2σ2
− (1−p)
1−(1−p)pz2σ2

(

1− 2(1−p)pz2σ2

1−(1−p)pz2σ2

))

(C.17)

and

σ′ = −∂fσ(σ, p, z)
∂z

(

∂fσ(σ, p, z)

∂σ

)−1

. (C.18)
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