Y. Yoshida, H. P. Figueroa, and R. A. , Comparison of energy storage configurations in railway microgrids, IEEE Second International Conference on DC Microgrids (ICDCM, pp.133-138, 2017.

Y. Zhang, Z. Wei, H. Li, L. Cai, and J. Pan, Optimal charging scheduling for catenaryfree trams in public transportation systems, IEEE Trans. Smart Grid, vol.10, pp.227-237, 2019.

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater, vol.7, pp.845-854, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02020693

B. Y. Guan, A. Kushima, L. Yu, S. Li, J. Li et al., Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors, Adv. Mater, vol.29, p.1605902, 2017.

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, vol.313, pp.1760-1763, 2006.

E. Raymundo-piñero, K. Kierzek, J. Machnikowski, and F. Eguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes, Carbon, vol.44, pp.2498-2507, 2006.

D. Sheberla, J. C. Bachman, J. S. Elias, C. Sun, Y. Shao-horn et al., Dinc a, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nat. Mater, vol.16, pp.220-224, 2017.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai et al., Carbonbased supercapacitors produced by activation of graphene, Science, vol.332, pp.1537-1541, 2011.

L. L. Zhang and X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev, vol.38, pp.2520-2531, 2009.

Y. Tao, X. Xie, W. Lu, D. Tang, D. Kong et al., Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors, Sci. Rep, vol.3, p.2975, 2013.

P. Simon and Y. Gogotsi, Capacitive energy storage in nanostructured carboneelectrolyte systems, Acc. Chem. Res, vol.46, pp.1094-1103, 2013.

C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna, P. Simon et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nat. Mater, vol.11, pp.306-310, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01153072

Q. Liao, N. Li, S. Jin, G. Yang, and C. Wang, All-solid-state symmetric supercapacitor based on Co 3 O 4 nanoparticles on vertically aligned graphene, ACS Nano, vol.9, pp.5310-5317, 2015.

T. A. Centeno, O. Sereda, and F. Stoeckli, Capacitance in carbon pores of 0.7 to 15 nm: a regular pattern, Phys. Chem. Chem. Phys, vol.13, pp.12403-12406, 2011.

F. Stoeckli and T. A. Centeno, Pore size distribution and capacitance in microporous carbons, Phys. Chem. Chem. Phys, vol.14, pp.11589-11591, 2012.

A. García-g-omez, G. Moreno-fern-andez, B. Lobato, and T. A. Centeno, Constant capacitance in nanopores of carbon monoliths, Phys. Chem. Chem. Phys, vol.17, 2015.

C. Merlet, C. Ean, B. Rotenberg, P. A. Madden, B. Daffos et al., Highly confined ions store charge more efficiently in supercapacitors, Nat. Commun, vol.4, p.2701, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01157828

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. Taberna et al., Efficient storage mechanisms for building better supercapacitors, Nature Energy, vol.1, p.16070, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480941

G. Feng and P. T. Cummings, Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size, J. Phys. Chem. Lett, vol.2, pp.2859-2864, 2011.

P. Wu, J. Huang, V. Meunier, B. G. Sumpter, and R. Qiao, Complex capacitance scaling in ionic liquids-filled nanopores, ACS Nano, vol.5, pp.9044-9051, 2011.

D. Jiang, Z. Jin, and J. Wu, Oscillation of capacitance inside nanopores, Nano Lett, vol.11, pp.5373-5377, 2011.

N. , P. Simon, Y. Gogotsi, and V. Presser, Increase in capacitance by subnanometer pores in carbon, ACS Energy Lett, vol.1, p.1262, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01528359

D. T. Galhena, B. C. Bayer, S. Hofmann, and G. A. Amaratunga, Understanding capacitance variation in sub-nanometer pores by in situ tuning of interlayer constrictions, ACS Nano, vol.10, pp.747-754, 2016.

C. Prehal, C. Koczwara, N. , A. Schreiber, M. Burian et al., Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering, Nature Energy, vol.2, p.16215, 2017.

J. Liu, W. Li, and D. Zhao, Mesoporous materials for energy conversion and storage devices, Nat. Rev. Mater, vol.1, p.16023, 2016.

H. Banda, S. Eri-e, B. Daffos, P. Taberna, L. Dubois et al., De Pa? epe, F. Duclairoir, Sparsely pillared graphene materials for high-performance supercapacitors: improving ion transport and storage capacity, ACS Nano, vol.13, pp.1443-1453, 2019.

J. Xia, F. Chen, J. Li, and N. Tao, Measurement of the quantum capacitance of graphene, Nat. Nanotechnol, vol.4, pp.505-509, 2009.

G. Feng and P. T. Cummings, Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size, J. Phys. Chem. Lett, vol.2, pp.2859-2864, 2011.

K. Thomson and K. E. Gubbins, Modeling structural morphology of microporous carbons by Reverse Monte Carlo, Langmuir, vol.16, pp.5761-5773, 2000.

A. H. Farmahini, G. Opletal, and S. K. Bhatia, Structural modelling of silicon carbidederived nanoporous carbon by Hybrid Reverse Monte Carlo simulation, J. Phys. Chem. C, vol.117, pp.14081-14094, 2013.

J. C. Palmer, S. J. Jain, K. E. Gubbins, N. Cohaut, J. E. Fischer et al., Hybrid Reverse Monte Carlo simulations of microporous carbons. Royal society of chemistry, Proceedings of the 8th International Symposium on the Characterisation of Porous Solids, vol.III, 2009.

J. C. Palmer, A. Llobet, S. Yeon, J. E. Fischer, Y. Shi et al., Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics, Carbon, vol.48, pp.1116-1123, 2010.

M. W. Thompson, B. Dyatkin, H. Wang, C. H. Turner, X. Sang et al., An atomistic carbide-derived carbon model generated using ReaxFF-based quenched molecular dynamics, C J. Carbon Res, vol.3, p.32, 2017.

C. De-tomas, I. Suarez-martinez, F. Vallejos-burgos, M. J. Opez, K. Kaneko et al., Structural prediction of graphitization and porosity in carbidederived carbons, Carbon, vol.119, issue.1, 2017.

S. Schweizer, R. Meißner, M. Amkreutz, K. Thiel, P. Schiffels et al., Molecular modeling of microporous structures of carbide-derived carbon-based supercapacitors, J. Phys. Chem. C, vol.121, pp.7221-7231, 2017.

S. K. Bhatia, Characterizing structural complexity in disordered carbons: from the slit pore to atomistic models, Langmuir, vol.33, pp.831-847, 2017.

A. H. Farmahini and S. K. Bhatia, Hybrid Reverse Monte Carlo simulation of amorphous carbon: distinguishing between competing structures obtained using different modeling protocols, Carbon, vol.83, pp.53-70, 2015.

C. Merlet, A. C. Forse, J. M. Griffin, D. Frenkel, and C. P. Grey, Lattice simulation method to model diffusion and NMR spectra in porous materials, J. Chem. Phys, vol.142, p.94701, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01985699

A. C. Forse, C. Merlet, P. K. Allan, E. K. Humphreys, J. M. Griffin et al., New insights into the structure of nanoporous carbons from NMR, Raman, and pair distribution function analysis, Chem. Mater, vol.27, pp.6848-6857, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01985735

V. L. Deringer, C. Merlet, Y. Hu, T. H. Lee, J. A. Kattirtzi et al., Towards an atomistic understanding of disordered carbon electrode materials, Chem. Commun, vol.54, pp.5988-5991, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01985588

C. Merlet, M. Salanne, B. Rotenberg, and P. A. Madden, Influence of solvation on the structural and capacitive properties of electrical double layer capacitors, Electrochim. Acta, vol.101, pp.262-271, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853396

D. Frenkel, Velocity auto-correlation functions in a 2D lattice lorentz gas: comparison of theory and computer simulation, Phys. Lett. A, vol.121, pp.385-389, 1987.

M. Levesque, M. Duvail, I. Pagonabarraga, D. Frenkel, and B. Rotenberg, Accounting for adsorption and desorption in lattice Boltzmann simulations, Phys. Rev. E, vol.88, p.13308, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01078977

B. Rotenberg, I. Pagonabarraga, and D. Frenkel, Dispersion of charged tracers in charged porous media, Europhys. Lett, vol.83, p.34004, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00369645

A. C. Forse, C. Merlet, J. M. Griffin, and C. P. Grey, New perspectives on the charging mechanisms of supercapacitors, J. Am. Chem. Soc, vol.138, pp.5731-5744, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01985713

C. Prehal, C. Koczwara, H. Amenitsch, V. Presser, and O. Paris, Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors, Nat. Commun, vol.9, p.4145, 2018.

R. Zhao, P. M. Biesheuvel, H. Miedema, H. Bruning, and A. Van-der-wal, Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization, J. Phys. Chem. Lett, vol.1, pp.205-210, 2010.

E. Avraham, M. Noked, Y. Bouhadana, A. Soffer, and D. Aurbach, Limitations of charge efficiency in capacitive deionization. II. On the behavior of CDI cells comprising two activated carbon electrodes, J. Electrochem. Soc, vol.156, pp.157-162, 2009.

P. M. Biesheuvel, S. Porada, M. Levi, and M. Z. Bazant, Attractive forces in microporous carbon electrodes for capacitive deionization, J. Solid State Electrochem, vol.18, pp.1365-1376, 2014.

T. Kim, J. E. Dykstra, S. Porada, A. Van-der-wal, J. Yoon et al., Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, J. Colloid Interface Sci, vol.446, pp.317-326, 2015.

C. Merlet, Mod elisation de l'adsorption des ions dans les carbones nanoporeux, 2013.

W. Tsai, P. Taberna, and P. Simon, Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons, J. Am. Chem. Soc, vol.136, pp.8722-8728, 2014.

C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi et al., Relation between the ion size and pore size for an electric double-layer capacitor, J. Am. Chem. Soc, vol.130, pp.2730-2731, 2008.

A. C. Forse, J. M. Griffin, C. Merlet, J. Carreteo-gonzalez, A. O. Raji et al., Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy, Nature Energy, vol.2, p.16216, 2017.

C. Wang, Y. Wang, Y. Lu, H. He, F. Huo et al., Heightdriven structure and thermodynamic properties of confined ionic liquids inside carbon nanochannels from molecular dynamics study, Phys. Chem. Chem. Phys, vol.21, pp.12767-12776, 2019.