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We report on the development of a lattice model to predict structural, dynamical and capacitive prop-
erties of electrochemical double layer capacitors. The model uses input from molecular simulations, such
as free energy profiles to describe the ion adsorption, and experiments, such as energy barriers for
transitions between lattice sites. The model developed is approximately 10,000 times faster than com-
mon molecular simulations. We apply this model to a set of carbon structures with well-defined pore
sizes and investigate the solvation effect by doing simulations with neat ionic liquids as well as
acetonitrile-based electrolytes. We show that our model is able to predict quantities of adsorbed ions and
capacitances in a range compatible with experimental values. We show that there is a strong dependency
of the calculated properties on the pore size and on the presence or absence of solvent. In particular, for
neat ionic liquids, larger capacitances are obtained for smaller pores, while the opposite trend is
observed for organic electrolytes.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Carbon-carbon supercapacitors are electrochemical energy
storage systems which store energy through ion adsorption at the
interface between an electrolyte and porous carbon electrodes.
Their high power density and long cycle life make them attractive
for a number of applications in which they complement or some-
times even replace batteries. Supercapacitors are already used in
applications such as regenerative energy braking [1] and catenary-
free trams [2] where they are charged at every stop of the vehicle.
Nevertheless, their relatively low energy density (< 20 Wh kg™ 1)
compared to the one of batteries (> 150 Wh kg~ !) [3,4] still limits
their range of applications.

In 2006, there was a breakthrough in the field of supercapacitors
when it was demonstrated that electrolyte ions could enter pores of
subnanometer sizes leading to a large capacitance (and thus energy
density) increase [5,6]. Since then, a number of experimental and
theoretical projects have focused on understanding this capaci-
tance increase and on designing new electrode materials with
improved performances [7—13]. The molecular understanding of
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the charge storage mechanisms is challenging due to the complex
nature of the carbons and hence the difficulty to characterise them.
Centeno et al. [14—16] proposed that the capacitance increase in
carbon nanopores comes from incorrect measurements of the
surface area of the porous carbons, but the confinement effect
responsible for the improved charge storage in nanopores has been
demonstrated using theoretical [12,17,18], including simulations
with pores of very well defined accessible surfaces [19—21], and
experimental studies [22], including the use of in-situ techniques
[23,24]. While the capacitance increase is now well understood,
reports of improvements in terms of capacitance are limited.
Recent works report a capacitance of approximately 200Fg~! in
mesoporous [25] and pillared graphene [26] based supercapacitors.

One important issue in the field of supercapacitors is to assess
the maximum capacitance that we could theoretically reach with
an optimum system. Estimating a maximum capacitance in
supercapacitors is a real challenge as it depends strongly on the
ionic arrangements in the pores at a given potential which is the
result of a large number of ion-ion and ion-electrode interactions.
In supercapacitors, both the electrode and the electrolyte are
disordered which makes them very difficult to characterise. A
maximum value of 550 Fg~, often quoted, was proposed by Xia
etal.[27]. This capacitance is the one which would be obtained for a
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single layer of counterions on both sides of a graphene layer, more
precisely located 0.3 nm away from the carbon surface. The small
ion-carbon distance considered and the fact that a full charge-
separation between counter- and co-ions is assumed suggest that
this value cannot be reached. However, there is to-date, no better
estimation for the maximum capacitance reachable in electro-
chemical double layer capacitors.

From a theoretical point of view, the most accurate approach to
predict a capacitance is Molecular Dynamics simulations (MDs)
because it allows one to describe the electrode-electrolyte interface
microscopically [12,28]. One of the challenges associated with do-
ing MDs of supercapacitors is to generate accurate atomistic models
of the complex disordered carbons used in such systems. A number
of ingenious strategies have been proposed in the past to obtain
such disordered structures including Reverse Monte Carlo [29],
Hybrid Reverse Monte Carlo [30,31], Quench Molecular Dynamics
[32,33], and mimetic approaches related to experimental condi-
tions [34,35]. The atomistic carbon structures generated in such
ways are highly valuable as they allow one to probe microscopic
phenomena at the molecular scale. However, this accuracy comes
with the price of a high computational cost and a less straightfor-
ward characterisation compared to slit pore models [36,37] which
prevents the use of MDs to realise a screening of porous carbons for
supercapacitor applications.

Another issue with MDs is the small time and length scales
which can be probed (a few nanoseconds, a few nanometers)
usually far from the experimental values (a few micrometers at
least, a few milliseconds or seconds). As such, the description of the
carbon structure is usually not fully representative of the experi-
mental reality, e.g. the pore size distributions of the model carbon
electrodes are usually quite different from the experimental ones.
Thus, in such systems, where phenomena on the atomistic scale
have consequences on macroscopic length and timescales, it is
important to develop new models to bridge the gap between mo-
lecular simulations and macroscopic values.

In this work, we report on the development of an original
mesoscopic model to predict electrochemical performances of
carbon-carbon supercapacitors at a much lower computational cost
(~10*x faster) than MD simulations. We adapt a lattice model
which showed promising results for the simulation of ion diffusion
and NMR spectra prediction for species adsorbed in neutral porous
carbons [38,39]. Here, we implement new features to introduce the
possibility of applying a potential to the modelled electrodes, and
modify the way diffusion is treated in an attempt to get closer to
reality. In the remainder of this article, we first describe the model
before presenting the results obtained for two pure ionic liquids
and two acetonitrile-based electrolytes in contact with a range of
porous carbons having a simple pore size distribution (unimodal or
bimodal). We study in particular the effects of solvation and pore
size on the quantities of adsorbed ions and capacitive properties.

2. Description of the lattice gas model

In the lattice model, only one carbon electrode is simulated and
its structure is represented as a cubic tridimensional set of inter-
connected discrete sites, separated by a lattice spacing, a. Each
lattice site is an accessible space represented by a slit pore in the
porous matrix. The lattice pores are characterised by i) a pore size,
i.e. the width of the pore, and ii) a pore surface, corresponding to
the lateral walls of the pore. The pore sizes are assigned randomly
across the matrix according to pore size distributions (PSD) ob-
tained experimentally or from atomistic structures of different
types of carbons (microporous, mesoporous, ...). The pore surfaces
are determined following a lognormal distribution with a mean
value of —0.1 and a standard deviation of 0.25 (see Ref. [38] for a

detailed explanation of this choice).

In this study, we consider 10 different PSDs corresponding to
atomistic structures reported by Deringer et al. [40], which were
obtained by quench molecular dynamics using a machine learning
based force field. These structures, with pore sizes ranging from 7 A
to 13 A, are named GAP for the Gaussian Approximated Potential
approach adopted for the force field. Fig. 1 shows the PSDs of the
four GAP carbons discussed in the main text. Additional carbons
with micropores in the same range of pore sizes were also
considered to generate the electrode structures (see Fig. S1 in
Supporting Information).

Once we have determined the structural features of the carbon
lattice, we need to add a description of the adsorption profiles of
the considered species. Thanks to its multi-scale nature, our lattice
model can use data from molecular simulations, performed at the
slit pore level, to represent the adsorption in our electrode-scale
model. In this study, we use ionic densities from MDs to derive
the integrated density of adsorbed ions of two tetrafluoroborate
based electrolytes, the neat ionic liquid (IL) [BMI][BF4] and the ACN-
[BMI][BF4] organic electrolyte (ACN stands for acetonitrile) and two
hexafluorophosphate based electrolytes, [BMI][PFs] and ACN-[BMI]
[PFg], in contact with graphene-like electrodes [41]. The concen-
tration of the acetonitrile-based electrolytes are equal to 1.5 M. In
the main text, we focus on the BF4-based electrolytes (the equiva-
lent figures for the [BMI]|[PFs]-based electrolytes are given in Sup-
porting Information).

Figs. 2 and 3 give the integrated densities as a function of the
pore size for BF ; anions and BMI* cations in the organic electrolyte
and neat ionic liquid. The adsorbed densities are calculated for the
case of a zero potential difference (AV= 0V), as well as for applied
potential differences of AV =1,1.5 and 2 V.

From the integrated density profiles, we can see that, depending
on their dimensions and on the potential applied, lattice sites are
not identically populated. Therefore, each pore within the structure
will have a different site energy E;. This energy is equal to E; = —
kgT In(p;), with p; being the integrated density of site i, and con-
ditions the lattice sites populations. To allow for ion diffusion be-
tween sites, we apply an acceptance rule to regulate inter-site
transitions. The probability of a transition from site i to site j

follows:
—(E —E)\ .
exp( kT ) if Ej>E;

1 if Ej < E;

P(i.j)=
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Fig. 1. Pore size distributions for the four carbons discussed in the main text, namely
GAP-a, GAP-, GAP-y and GAP-6, with average pore sizes dayg = 12.1,10.5, 8.7 and 7.7 A
respectively.
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Fig. 2. Integrated density profiles of BF; anions (solid lines) and BMI" cations (dashed lines) in the [BMI][BF4] neat IL as a function of pore size. The profiles are calculated for an
applied potential difference of 0V, 1V, 1.5V and 2 V.
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Fig. 3. Integrated density profiles of BF; anions (solid lines) and BMI™ cations (dashed lines) in the ACN-[BMI][BF,] organic electrolyte as a function of the pore size. The profiles are
calculated for an applied potential difference of 0V, 1V, 1.5V and 2 V.

This condition is defined to favor jumps from sites with higher
energies to sites with lower energies. A transition from site i with D:: — a..i (2)
higher energy to site j with lower energy will always occur, while v U2dAt
the probability of the opposite jump will decrease as the difference
E; — E; increases.

To run a lattice model simulation, a number of iterations n and a
timestep At are defined. For each iteration, particles are moved
using the moment-propagation scheme [42—44], which is a to the bulk diffusion. This factor is defined as: a;; = exp (#)
recursive method allowing the examination of all possible trajec- ’
tories at once and at a much lower computational cost than non-
recursive methods. In the current state of the mesoscopic model,
one calculation for a given system with 8,000 pores, i.e. corre-
sponding to a 20 x 20 x 20 cubic lattice, takes around 2—3 h on a
single core. All simulations consist in an equilibration period
(10,000 iterations), where the sites densities evolve towards their
equilibrium values, and a production period (50,000 iterations),
where the various properties are evaluated.

Inter-pore diffusion coefficients follow equation [38]:

where a is the lattice spacing and d is the dimensionality of the
system. a;; corresponds to a reduction factor for the inter-pore
diffusion between two neighbouring lattice sites i and j compared

where E,(ij) is the energy barrier governing jumps between lattice
sites i and j. The parametrisation of these energy barriers will be
discussed in a later section.

3. Results and discussion
3.1. In-pore ion populations

To examine the validity of our model we first compare the total
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in-pore ion populations, i.e. the sum of the number of adsorbed
anions and the number of adsorbed cations Nj, pore = N8+ + NBMI,
calculated within the lattice model to the ones obtained in the
framework of MD simulations. The details of the molecular simu-
lations conducted are given in the Supporting Information. The
comparison is done for all GAP electrodes in contact with neat
[BMI][PFg] at a OV potential difference. The total in-pore pop-
ulations are plotted as a function of the average pore size of the GAP
carbons (see Fig. 4). To ease the comparison between the lattice
model and the molecular simulations results, the populations are
normalised by the population of an arbitrarily chosen GAP carbon,
here GAP-01 corresponding to davg = 8.7 A. The population profile
obtained from lattice model simulations presents similar features
as the one of MD simulations but overestimates the quantities for
the largest pore sizes. An interesting result is that the lattice model
is able to reproduce the peaks of populations observed at around
8.7 A and 10.6 A. This shows that our model, which operates at the
electrode scale, can grasp some of the microscopic characteristics of
the considered porous carbon-based supercapacitors. The

g
=

| ] |

Normalised population
p ot
(e (=
|

8 10 12
d_. (A)

avg

overestimation could be due to the fact that our model un-
derestimates the rugosity of the carbon structure, especially for
pore interconnections. In the future, this could be improved by
providing more accurate free energies on the lattice sites.

We now focus on the evolution of the total in-pore population
when charging the electrode. Fig. 5 compares the adsorption pro-
files of the neat ionic liquid and the organic electrolyte in four
carbon structures. The charge storage mechanism at the negative
and positive electrodes involves adsorption of counter-ions and
desorption of co-ions, i.e. ionic exchange, for both [BMI][BF4] and
ACN-[BMI][BF4], and that for all the considered carbon types. The
populations in the charged electrodes are normalised by the values
at AVy =0V to examine the evolution of adsorption/desorption
mechanisms at non-zero applied potential differences. We see a
clear dependency of the charge storage mechanisms on the pore
size distributions, as well as on the absence/presence of solvent in
the electrolyte. In general, when comparing carbons with different
pore size distributions, we notice that higher ionic exchange occurs
in carbons with smaller pores.

2.0 T T 1

| ] ]

8 10 12
d_ . (A)

avg

0.0

Fig. 4. Total in-pore population in GAP-based systems in contact with pure [BMI][PFs]: comparison between the lattice model (LM) and Molecular Dynamics (MD) simulations. The
calculations are carried out for an applied potential difference of 0V. Populations are normalised by the GAP carbon with davg = 8.7 A (GAP-01 in the naming system of Deringer

et al. [40]).
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Fig. 5. Total in-pore ion population as a function of cell voltage for the considered electrode structures. Black and blue dashed lines show the populations of anions and cations,
respectively, in the neat IL. Black and blue solid lines show the populations of anions and cations, respectively, in the organic electrolyte. Anions and cations populations are
normalised by their equivalents at AV = 0V. The voltages indicated correspond to the full cell voltage, e.g. 2 V (respectively -2 V) designates the positive electrode (respectively the
negative electrode) for a 2V potential difference. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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To characterise more precisely the relative importance of
adsorption/desorption, we define the ionic exchange ratio as
follows:

NBFs(AV)  NBMI(AV) 3
Oexchange = NBF: (AVO) - NBMI(AVO) (3)

This quantity is similar to the charging mechanism parameter
[45,46] and the charge efficiency [47—50] proposed in other works.
Fig. 6 shows the ionic exchange ratio dexcpange as a function of the
average pore sizes of the carbons. For neat [BMI][BF4], in addition to
the decrease of ionic exchange for carbons with larger pore sizes,
we notice that this mechanism is more pronounced at the negative
electrode, compared to the positive one. This is observed for all the
considered applied potentials (i.e. AV =1V, 1.5V and 2 V). Since the
anions and cations have different sizes, shapes and charge distri-
butions, it is not surprising to observe an asymmetry between the
positive and negative electrodes. The difference in mechanisms
could be explained by a higher mobility of BMI™ cations [51]. At the
negative electrode, applying a potential difference leads to the
insertion of an important quantity of cations therefore forcing more
BF, anions to exit the carbons micropores. This is clear at small
pore sizes but not seen at larger pore sizes for which the relative
differences between 0V and a non-zero potential difference are
smaller. In contrast, at the positive electrode, the large desorption
of BMI™ cations is accompanied by a less important adsorption of
BF, anions in the considered voltage range, leading to a smaller
ionic exchange. Again, this effect depends on the pore size as the
large size of the cation probably leads to larger steric effects in the
smallest pores.

Adding a solvent, here acetonitrile, to the IL greatly changes the
profile of the in-pore ions adsorption. In this case, the solvent
screens the electrostatic coupling between ions and increases the
mobility of anions and cations within carbons pores. The solvent
also stabilises the ions leading to an easier charge separation. This
results in a notable increase of the ionic exchange, reaching in some
cases three times the value of that of the neat IL. The solvent
addition also introduces changes of the ionic orientations. This
combined with the screening induced enhancement of ion
mobility, which favors BF, anions in this case [51], influences the
asymmetric character of the ionic exchange. In this case, the

[BMI][BF,] ACN-[BMI][BF,]
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Fig. 6. lonic exchange aeycqnge as a function of the average pore size of the porous
carbon structures. The exchange is calculated at the positive and negative electrodes
for the considered applied potential differences.

exchange ratio tends to be higher at the positive electrode, as
opposed to the previous case of the neat IL. These results are
consistent with Electrochemical Quartz Crystal Microbalance ex-
periments done on the [EMI][TFSI]-ACN electrolyte (1-ethyl-3-
methylimidazolium bis(trifluoromethanesulfonyl)imide) [52].

We note here that the calculations carried out for the 6 addi-
tional carbon structures and the [BMI][PFg]-based electrolytes give
similar results (see Figs. S4—S9 in Supporting Information). More-
over, the effect of the solvation leading to an increase of the ionic
exchange was also observed in molecular simulations as described
in Table S1 of the Supporting Information.

3.2. Capacitive properties

We pointed out that the charge storage mechanism involved
simultaneous counter-ion adsorption and co-ion desorption in the
carbon micropores. We now focus on the impact of the variations in
ionic exchange on the capacitive properties of the electrodes
considered. We calculate the absolute value of the total ionic charge
stored in the electrode as:

Qionic — NBF4 _ NBMI e (4)

where NBf: and NBM! are the in-pore populations of anions and
cations, respectively, and e is the elementary charge.

Fig. 7 shows the calculated ionic charges for the considered
carbon structures in contact with the neat IL and the organic
electrolyte. The ionic charges normalised by the total surface area
give values in the range of reported experimental data [5,53]. We
note that lattice simulations give non-zero stored charges at
AV =0 V. This results from the integrated ionic density profiles (see
Figs. 2 and 3) extracted from MDs of electrolytes confined in larger
slit pores than the pore sizes considered here. This is one aspect of
the model which requires improvements, out of the scope of the
current work, in order to give more realistic results.

In general, systems containing the neat IL store considerably
more charge than the ones with the organic electrolyte. This is
surprising knowing that the ionic exchange is more important us-
ing ACN-[BMI|[BF4]. However, the absolute numbers of adsorbed
ions within the micropores are much larger in the neat IL than in
the organic electrolyte (see Table S2 in Supporting information).
This can explain, at least partially, the higher ionic charge in the
neat IL. Moreover, for AV =0V, all carbon structures have a higher
initial charge for the neat IL compared to the solvated electrolyte.
Therefore, even though the ratio of exchange is higher when
charging the system containing the organic electrolyte, the higher
initial charge for [BMI][BF4] gives this electrolyte an advantage.

The carbons with smaller micropores, i.e. GAP-y and GAP-,
further illustrate this trend. Indeed, for these structures the dif-
ference between [BMI][BF4] and ACN-[BMI]|[BF4] in the charge
stored at AV = 0V is much higher than for GAP-« and GAP-3. Upon
charging, this difference is retained and a higher charge is stored for
[BMI][BF4] in contact with both the positive and negative electrode.
For GAP-« and GAP-8, the smaller difference in charge storage at
AV =0V is rapidly overtaken by the more pronounced ionic ex-
change in the organic electrolyte, which appears to be dominant at
the positive electrode. As a result, a higher charge is stored at the
interface between the positive electrode and ACN-[BMI|[BF,].

From the obtained ionic charge we can calculate the capacitance
of each electrode as: C, = Q'"/AV,, with C, and C_ representing
the capacitances of the positive and negative electrode, respec-
tively. C; and C_ as a function of AV, and AV_, respectively, are
given in Fig. S10 in the Supporting Information. The values for AV,
i.e. the potential drops at the electrode-electrolyte interface, are
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[BMI][BE,]
ACN-[BMI|[BF,]
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Fig. 7. lonic charges stored at the positive and negative electrodes for the considered porous carbons. Blue and black bars give the charges obtained considering the neat IL and the
organic electrolyte, respectively. The calculated ionic charges are normalised by the total electrode surface. The voltages indicated correspond to the full cell voltage, e.g. 2V
(respectively -2 V) designates the positive electrode (respectively the negative electrode) for a 2 V potential difference. (For interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this article.)

taken from MD simulations previously reported [41]. We note that
the same trends are obtained if we simply take AV, = AV_ = AV/
2. Fig. 8 shows the total capacitance of the considered systems as a
function of the applied potential difference. The total capacitance is
calculated as:

1 1 1

We clearly see that the performance of the overall system is
greatly influenced both by the carbon structure and the presence of
solvent. When the electrode structure contains smaller pores, it
shows better performances when in contact with the neat IL as the
capacitance values in this case are clearly higher than the ones
obtained with the organic electrolyte. As an example, for an applied
potential difference of AV =1V, GAP-y- and GAP-j-based systems
(davg =8.7 A and dayg = 7.7 A, respectively) have a capacitance of
12.71 and 11.15 gF cm ™2, respectively, when the system contains
[BMI][BF4], compared to 4.64 and 1.71 uF cm~2 for the ACN-[BMI]
[BF4]-based systems. In contrast, the solvent addition improves the
storage mechanism when the electrode contains larger pores. If we

take the same case of AV =1V, we see that GAP-a-based system
(davg =12.1A) present a higher capacitance for ACN-[BMI][BF4]
(9.08 uFcm™2) than for [BMI][BF4] (2.04uFcm™2). For GAP-8
(davg = 10.5 A) the capacitive performance is improved when the
system contains the organic electrolyte. Indeed, the difference in
capacitance using ACN-[BMI][BF4] and [BMI|[BF,4] is considerably
smaller (i.e. 7.92 uF cm™~2 for ACN-[BMI|[BF4] and 8.42 uF cm™2 for
[BMI][BF4]), compared to the case of the electrode structure con-
taining mainly small micropores.

It is quite surprising that the neat IL and the organic electrolyte
give opposite variations with the pore size as this is not what is
observed experimentally [5,53]. One of the reason for this
discrepancy could be the fact that in our lattice model, we represent
only one electrode and as such, there is no interplay between the
negative and positive electrodes which usually leads to one elec-
trode being limiting in terms of charge storage. The difference in
the stored ionic charges is an artefact of our model and is experi-
mentally unrealistic in a two-electrode system. Strategies to over-
come this limitation will be explored in a future work but
comparisons with three-electrode systems might still be valid with

ACN-[BMI|[BF,]
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157 T T
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Fig. 8. Total capacitance as a function of the applied potential difference obtained for [BMI][BF4] and ACN-[BMI][BF,] in contact with GAP-«, GAP-§, GAP-y and GAP-d. Capacitances

are normalised by the total electrode surface.
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our approach. Another reason for the unexpected variation with
pore size could be the inaccuracy of the free energy profiles, this
can be checked in future works by implementing a better
description of these adsorption profiles. Finally, the experimental
carbons are actually much more disordered than the carbons
studied here, it is thus possible that such an effect would be
observed in carbons with well defined pore sizes.

3.3. Diffusion

As mentioned before, the diffusion coefficients of the ions and
solvent molecules in the lattice depend on the energy barriers be-
tween lattice sites, which are unknown. In previous works these
energy barriers were assigned following a Gaussian distribution to
calculate diffusion and NMR spectra in porous carbons [38]. How-
ever, this description lacks a dependency on the structural proper-
ties of the pores and of the adsorbed species. To overcome this, we
now calculate energy barriers in order to reproduce experimental
trends showing that diffusion coefficients decrease as the total in-
pore population within the carbon structures increases [54].

BF, ([BMI][BE,])

0002 T T T T T
0.0V

v —a 1.0Vpos

B =—=a |.5Vpos| A

i 2.0Vpos

o ' = = [.0Vneg

\ 1.5Vneg

= - 2.0Vneg

0.000

The energy barriers considered to calculate the diffusion co-
efficients are fitted (using an exponential function) on the experi-
mental data to reproduce the experimental dependence of
diffusion on the in-pore populations. Figs. 9 and 10 show the
resulting diffusion coefficients as a function of average pore sizes
for various potentials. Data shown in Figs. S11 and S12 in the
Supporting Information confirm that the energy barriers assigned
allow us to reproduce the exponential decay with in-pore
populations.

We now focus on the relationship between diffusion and
structural properties of the considered carbon structures. Figs. 9
and 10 give the diffusion coefficients (normalised by the bulk
diffusion, Dy = #zm) as a function of the average pore sizes of the
carbons for BF; and BMI* in [BMI][BF4] and ACN-[BMI][BFj] for all
the considered applied potential differences.

In systems containing the organic electrolyte (Fig. 9), we notice
that diffusion tends to decrease in carbons with larger micropores
for both anions and cations. Moreover, diffusion of a given ion type
seems to occur at the same rate within both the positive and
negative electrode. This dependency is in line with the ionic
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Fig. 9. Diffusion coefficients of adsorbed BF; anions and BMI™ cations as a function of average pore size in systems containing the neat IL. Calculations are obtained for AV =0,1,1.5

and 2 V.
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exchange profiles. When the pore size increases, the decay in
diffusion is accompanied by a less dominant ionic exchange
mechanism. The same dependencies are obtained when carbons
are in contact with the neat IL (Fig. 10), as the decrease of diffusion
coefficients of BF; anions and BMI* cations is even more pro-
nounced when considering carbons with larger micropores.

Additionally, the solvation tends to amplify the inter-pore
diffusion. Indeed, diffusion coefficients of anions and cations are
almost one order of magnitude larger in systems with organic
electrolyte compared to the ones with the neat IL. This is under-
standable knowing that solvation reduces the electrostatic coupling
between ion pairs and the interaction of ions with pores walls.
Moreover, this amplification of the diffusion induced by the sol-
vation effect is also in agreement with the ionic exchange data, as
we noted that the exchange mechanism is more dominant when
considering the organic electrolyte compared to the neat IL. Finally,
we remind that the dependencies discussed above were validated
considering additional carbon structures and electrolyte composi-
tions (see Figs. S13 and S14 in the Supporting Information).

While the results obtained are consistent with our assignment
of energy barriers, it is worth noting that we obtain larger diffusion
coefficients for smaller pore sizes which is unexpected. Actually,
the experimental results of Forse et al. [54] were obtained for a
single carbon type and a single electrolyte. It is possible that the
trend observed is not valid across a range of carbons. The current
model only links diffusion to ionic in-pore populations and it is
clear that a more complete description will take into account
additional aspects related to the structural properties of the porous
matrix, which is a complicated task to perform. A very recent
theoretical work, based on MDs with slit pores of various widths,
showed an opposite trend of diffusion as a function of pore sizes
[55]. However, it is worth noting that those calculations were
performed for a larger range of pore sizes than the current study,
and that the trend is not monotonous in the interval of pore sizes
similar to the one considered in this work (i.e. around 10 A). Work is
ongoing to parametrise the variation of energy barriers across
various pore sizes and shapes using molecular simulations results.

4. Conclusions

In this work, we report on the development and application of a
mesoscopic lattice model used to study the relationship between
structural and capacitive properties in porous carbon-based
supercapacitors. This type of model was chosen for its high
computational efficiency and we estimate that it is 10,000 times
faster than molecular simulations. Several supercapacitor models
were examined by considering various microporous carbon struc-
tures and electrolytes. In particular, the solvent effect was investi-
gated by considering neat ILs, namely [BMI][BF4] and [BMI][PFg],
and their acetonitrile-solvated equivalents.

We showed that all systems exhibit ionic exchange upon
charging the electrodes. This exchange appeared to be less impor-
tant in carbon structures having large micropores, and more
marked for organic electrolytes compared to neat ILs. The diffusion
coefficients calculated follow this change of mechanism, with the
decrease of diffusion coefficients in larger micropores and in neat
ILs (compared to organic electrolytes). The lattice model also
showed the effect of solvation on the charge storage in porous
carbon-based supercapacitors. Even though ions exhibit higher
exchange in organic electrolytes, the larger absolute numbers of
adsorbed ions for neat ILs result in more charge storage for these
systems. Moreover, the model showed that the capacitance tends to
be higher in systems combining neat ILs or organic electrolytes
with carbons containing mainly small or large micropores,

respectively.

In summary, our results show that the lattice model is able to
retain some microscopic information and predict quantities of
adsorbed ions, capacitances and diffusion coefficients in an efficient
manner. However, for the lattice model to become suitable for a
systematic study of the structural and dynamical properties of
carbon-carbon supercapacitors, it is clear that further improve-
ments are needed to better describe the microscopic information
used as input. In particular the free energy profiles describing the
ion adsorption and the energy barriers for diffusion. For instance,
using data from molecular simulations performed on porous elec-
trode structures, instead of the graphene-like systems considered
here, could considerably improve the accuracy of the model. Other
perspectives include the description of the free energy profiles
through a classical density functional theory approach in order to
remove the need for molecular simulations.

5. Data availability

The data corresponding to the plots reported in this paper (pore
size distributions, integrated densities, in-pore populations, ionic
exchange values, capacitances, ionic charges and diffusion co-
efficients) are available in the Zenodo repository with identifier
10.5281/zenodo.3250139.
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