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Ocean acidification threatens the persistence of biogenic calcium carbonate
(CaCO3) production on coral reefs. However, some coral genera show resist-
ance to declines in seawater pH, potentially achieved by modulating the
chemistry of the fluid where calcification occurs. We use two novel geochem-
ical techniques based on boron systematics and Raman spectroscopy, which
together provide the first constraints on the sensitivity of coral calcifying
fluid calcium concentrations (½Ca2þ #cf) to changing seawater pH. In response
to simulated end-of-century pH conditions, Pocillopora damicornis increased
½Ca2þ #cf to as much as 25% above that of seawater and maintained constant
calcification rates. Conversely, Acropora youngei displayed less control
over ½Ca2þ #cf, and its calcification rates strongly declined at lower seawater
pH. Although the role of ½Ca2þ #cf in driving calcification has often been
neglected, increasing ½Ca2þ #cf may be a key mechanism enabling more resist-
ant corals to cope with ocean acidification and continue to build CaCO3

skeletons in a high-CO2 world.

1. Introduction
Since the start of the industrial era, atmospheric CO2 concentrations have
increased from approximately 280 to over 400 ppmv today, primarily due to
burning of fossil fuels and deforestation [1]. Although CO2 levels in the geologic
past (e.g. during the Eocene) were likely several times higher than today, it is the
speed of CO2 rise that dictates the severity of ocean acidification [2,3], with
the current rate of CO2 released by human activities being unprecedented even
over million-year timescales [4]. However, despite its rapid rise, more than one
quarter of anthropogenic CO2 emissions have already been absorbed by the
oceans [5], causing declines in seawater pH and hence aragonite saturation
state (VAr ¼ ½CO2%

3 #½Ca2þ #=Ksp). Shallow-water coral reefs, which are found
only within a relatively narrow range of open-ocean VAr . 3 conditions [6],
are likely to be among the most sensitive marine ecosystems to ocean acidifica-
tion [6–8]. Under ‘business-as-usual’ CO2 emissions, climate models project
that the surface open ocean could be devoid of regions with VAr . 3 by the end
of the twenty-first century [9], potentially driving a rapid decline of corals
and the CaCO3-based reef ecosystems that they build.

Crucial to interpreting the sensitivity of corals to ocean acidification is the
mechanism by which calcification occurs. Scleractinian corals transport seawater
to a micro-scale internal calcifying space [10–12], thereby supplying some of the
calcium (Ca2þ ) and carbonate (CO2%

3 ) ions needed to build their aragonitic
(CaCO3) skeletons. However, as seawater pH declines, the concentration of car-
bonate ions ([CO2%

3 ]) in seawater decreases, making precipitation of CaCO3 less
favourable due to lower VAr [13]. In laboratory experiments, many corals repeat-
edly show decreased calcification rates in response to lower-VAr conditions
achieved by manipulating seawater pH or, less commonly, [Ca2þ ] [14–17]. Yet,
it is increasingly recognized that not all corals are affected equally. Some species
are highly sensitive ‘losers’ and others appear to be more resistant ‘winners’ that
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may potentially benefit from reduced competition for space
or resources [8]. Differential sensitivities to VAr among coral
species imply that ocean acidification has the potential to
irrevocably alter coral assemblages for centuries to come.
Despite this, little is known about how resistant species are
better able to cope with acidification. Elevating pH (and thus
[CO2%

3 ]) at the internal site of calcification is one potential mech-
anism to maintain high VAr that may confer resistance [18–21],
but the ability to raise pH is not limited to resistant species [22].
Alternatively, or in combination, corals could theoretically
elevate internal Ca2þ to increase VAr, even though concen-
trations of Ca2þ in ambient seawater (approx. 10 mmol kg21)
far exceed those of CO2%

3 (approx. 0.2 mmol kg21). The utility
of elevating [Ca2þ ] is, however, potentially limited to less
than a factor of approximately two increase relative to seawater
because decreases in Mg/Ca will begin to favour the precipi-
tation of calcite over aragonite [23] and the Ca2þ =CO2%

3
stoichiometry will become less optimal for crystal growth
[24]. Nevertheless, while at least some corals can actively
pump Ca2þ [25,26], no study has quantified changes in calcify-
ing fluid Ca2þ (½Ca2þ #cf) in response to seawater pH, and thus,
the role of Ca2þ relative to CO2%

3 in defining resistance to ocean
acidification remains unknown.

We apply a novel technique to derive ½Ca2þ #cf in the corals
Acropora youngei and Pocillopora damicornis cultured under
simulated ocean acidification conditions. In the absence of
direct or non-invasive techniques to measure ½Ca2þ #cf, we use
the information provided by combining two recently devel-
oped geochemical proxies. First, the boron systematics (d11B
and B/Ca) of aragonite quantify calcifying fluid carbonate
chemistry, including pHcf and ½CO2%

3 #cf [27,28]. Second,
Raman spectroscopy can be used to determine calcifying
fluid VAr [29]. As VAr is a function of both [CO2%

3 ] and
[Ca2þ ], boron systematics and Raman spectroscopy can be
applied in tandem to derive ½Ca2þ #cf (electronic supplementary
material, table S1). Here, we use this approach to investigate
the response of ½Ca2þ #cf to seawater pH and its potential role
in controlling the calcification sensitivity to ocean acidification.

2. Material and methods
The coral culturing experimental design was described pre-
viously by Comeau et al. [30]. Briefly, branches of A. youngei
and P. damicornis were collected from Rottnest Island in Western
Australia and transported to the Waterman’s Bay experimental
aquaria facility in Perth, Australia. The corals were allowed to
recover for two weeks before exposure to treatments in 36 aqua-
ria divided among three pH (total scale) treatments of 7.63, 7.81
and 8.09 maintained by CO2 bubbling. After eight weeks, the
apical tips of the skeletons were crushed to powders for geo-
chemical and Raman analyses. B/Ca and d11B measurements
and data are reported in Comeau et al. [30]. Mg/Ca and Sr/Ca
ratios were measured on a Q-ICP-MS (X-series II, Thermo
Fisher Scientific) following the methods of Holcomb et al. [31].
Precisions of Mg/Ca and Sr/Ca were 0.01 mmol mol21 and
0.009 mmol mol21, respectively, based on repeated analyses of
an in-house coral skeleton consistency standard.

Raman spectroscopy was conducted on the same powders
used for geochemical analyses. Measurements were made on a
WITec Alpha 300RAþ system with an Andor iDUS 401 CCD
maintained at 2608C, and a 20& objective with 0.5 numerical
aperture. An infrared (785 nm) laser was used with a
1200 mm21 grating and the spectral centre placed at a Raman
shift of 830 cm21. Coral skeleton powders were spread onto a

glass slide and multiple grains (typically five) were sampled
with 1 s integration times. A target for replication was set at 25
spectra per sample (i.e. per individual coral branch), although
this was not always achieved as some spectra with poor signal
(i.e. arbitrary intensity units less than 100) were subsequently fil-
tered during data processing (electronic supplementary material,
tables S2–S3). For each spectrum, the aragonite n1 peak was fit
with a Gaussian curve, and the resulting full width at half maxi-
mum (FWHM) intensity was converted to VAr following the
methods of DeCarlo et al. [29]. We note that VAr was estimated
by Comeau et al. [30] based only on boron-derived ½CO2%

3 #cf
and assuming a constant ½Ca2þ #cf. Here, we use only the directly
derived ½CO2%

3 #cf from Comeau et al. [30], and instead, we
calculate ½Ca2þ #cf as follows:

½Ca2þ #cf ¼
VAr 'Ksp

½CO2%
3 #cf

, ð2:1Þ

where ½CO2%
3 #cf and VAr are derived from boron systematics [28]

and Raman spectroscopy, respectively. This equation is simply a
rearrangement of the definition of aragonite saturation state
shown in the Introduction. Ca2þ

cf =Ca2þ
sw ratios were calculated

by normalizing to [Ca2þ ]sw, which was estimated from salinity
as 10.58 mmol kg21 [32].

Precisions of derived ½Ca2þ #cf were estimated with a Monte
Carlo method. We repeated the calculation of ½Ca2þ #cf 104

times, and in each iteration, we added random errors to the
measured d11B (1s analytical uncertainty of 0.17‰), B/Ca (1s
analytical uncertainty of 18 mmol mol21) and Raman FWHM
(standard error of replicates per sample; electronic supplemen-
tary material, tables S2–S3), assuming Gaussian distributions.
We estimated the 1s uncertainty of ½Ca2þ #cf by taking the
standard deviation of the 104 Monte Carlo iterations.

We also tested whether our technique could be accurately
applied to abiogenic (i.e. synthetic or inorganic) aragonites. These
aragonites were precipitated from seawater with [Ca2þ ] manipu-
lated by the addition of CaCl2 and concentrated seawater [27],
allowing us to check if our combined boron and Raman approach
is sensitive to variations in [Ca2þ ]. We used the seven abiogenic
aragonite samples that were repeatedly analysed in DeCarlo
et al. [29] for calibration of the Raman-VAr proxy, in addition to
new Raman measurements on nine more abiogenic aragonite
samples that were precipitated from fluids with [Ca2þ ] exceeding
12 mmol kg21, as described in [27]. Eight of the abiogenic aragonite
samples were precipitated using a ‘degassing’ method in which
CaCO3 was dissolved in acidified seawater and precipitation
occurred as the seawater pCO2 equilibrated with the atmosphere.
The degassing experiments were not used in calibrating the
Raman-VAr proxy. The other eight experiments were conducted
by pumping Na2CO3/NaHCO3 solutions into filtered seawater.
For each sample, we used the fluid pH, and the aragonite B/Ca
and Raman FWHM to calculate [Ca2þ ] as described above. We
then compared our derived [Ca2þ ] with that reported from
measurements during the aragonite precipitation experiments [27].

Coral ½Ca2þ #cf dynamics were separately estimated using
Mg/Ca and Sr/Ca ratios of the coral skeletons. Coral calcifica-
tion models that invoke seawater as the ultimate source of the
calcifying fluid, Ca2þ addition to the fluid and precipitation
from a closed or semi-closed reservoir have been successful at
explaining much of the variability in the elemental composition
of the skeleton [12,29,33,34]. Although such models have not
been validated in terms of accurately predicting ½Ca2þ #cf variabil-
ity, they can provide insights into whether Ca2þ addition to the
calcifying fluid is required to explain the skeletal geochemistry.
We used the model described in [29] that predicts ½Ca2þ #cf enrich-
ment based on paired Mg/Ca and Sr/Ca data. The model is
based on the abiogenic partitioning of these two element ratios
between aragonite and seawater, and it solves for the combi-
nation of ½Ca2þ #cf enrichment (which dilutes both Mg/Ca and
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Sr/Ca) and Rayleigh fractionation (which increases Mg/Ca
and decreases Sr/Ca) that match the measured element ratios.
We performed two separate model runs: one in which addi-
tion to the calcifying fluid is 100% selective for Ca2þ and
another in which addition is 50% ‘leaky’ with respect to Mg2þ

and Sr2þ (i.e. [Sr2þ ]fluid ¼ (0.5Ca2þ
addition)(Srsw/Casw) þ [Sr2þ ]sw).

Both produce the same patterns of variability, but the latter
requires twice the ½Ca2þ #cf enrichment to explain the measured
element ratios.

All parameters (½CO2%
3 #cf, ½Ca2þ #cf, VAr, calcification rate and

modelled ½Ca2þ #cf) for each species were checked for normality
with Kolmogorov–Smirnov tests and homogeneity of variances
across pH treatments with Levene’s tests. Regressions were per-
formed using the linear model (lm) function in R [35] with species
treated as factors as described in the text. Residuals of all regressions
were also checked for normality with Kolmogorov–Smirnov tests.

3. Results and discussion
Our application of the Raman and boron proxies to the abio-
genic aragonites produced [Ca2þ ] estimates that were

correlated with the known [Ca2þ ] during the experiments
(figure 1). A regression between derived and known [Ca2þ ]
has a slope of 1.0+0.1 (r2 ¼ 0.82) (figure 1d ). Although
excluding the highest [Ca2þ ] data point decreases the slope
to 0.71+0.09 (r2 ¼ 0.82), the data still indicate a sensitivity
of the combined Raman-boron proxy to fluid [Ca2þ ]. This
result supports the overall reliability of our approach because
the derived versus known [Ca2þ ] plot close to a 1 : 1 line,
demonstrating that the Raman and B/Ca proxies differ pri-
marily by their sensitivities to [Ca2þ ]. The root-mean-square
error of the derived to known [Ca2þ ] regression is
1.7 mmol kg21, and comparing this with the average stan-
dard deviation of derived [Ca2þ ] (0.9 mmol kg21 for
abiogenic data and 0.5 mmol kg21 for our corals) indicates
that at least half of the scatter in the regression is explained
by propagation of errors from the boron and Raman
measurements. That not all the scatter around the regression
is accounted for by the propagated uncertainties may suggest
that other factors have minor influences on either the boron
or Raman proxies, but it is unlikely that we would be able
to successfully reconstruct 82% the [Ca2þ ] variance of the
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Figure 1. Test of deriving [Ca2þ ] from abiogenic aragonites precipitated under various Ca2þ concentrations. (a) Derived [Ca2þ ] (colours) as functions of VAr (x-axis)
and [CO2%

3 ] ( y-axis). Each black point shows the derived [Ca2þ ] of a separate abiogenic precipitation experiment. The boron-derived [CO2%
3 ] and Raman-derived VAr

measurements that are used together to calculate [Ca2þ ] are shown in (b) and (c), respectively. The dashed grey lines each connect to the boron and Raman data
from a single experiment, indicating how combining these data enables estimates of [Ca2þ ]. For clarity, only a subset of these lines is plotted. (d ) Comparison of
derived [Ca2þ ] to the [Ca2þ ] known from fluid measurements during the aragonite precipitation experiments. The dashed black line indicates a 1 : 1 relationship,
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experimental fluids if the primary controls of B/Ca and
Raman FWHM were factors other than [CO2%

3 ] and VAr,
respectively. Therefore, while each individual data point car-
ries substantial uncertainty, our abiogenic test suggests that
this approach is successful in capturing changes in [Ca2þ ]
given suitable sample replication (figure 1).

In our culturing experiment, P. damicornis displayed a
strong ability to control ½Ca2þ #cf, whereas A. youngei was
unable to elevate ½Ca2þ #cf in response to low pH. The ratio
of ½Ca2þ #cf to [Ca2þ ] of the external seawater (Ca2þ

cf =Ca2þ
sw)

ranged from 0.85 to 1.41 for P. damicornis and increased
significantly with decreasing seawater pH (pHsw; r2 ¼ 0.31,
n ¼ 42, p , 0.01, F1,40 ¼ 19.3; figure 2a). Pocillopora damicornis
maintained Ca2þ

cf =Ca2þ
sw of 1.06+0.06 (s.e.) at present-day

pHsw (8.09), but it increased Ca2þ
cf =Ca2þ

sw to 1.25+0.06 at
simulated end-of-century pHsw (7.63) under a business-as-
usual emissions scenario. Conversely, A. youngei did not con-
sistently increase Ca2þ

cf =Ca2þ
sw with decreasing pHsw. Although

A. youngei increased Ca2þ
cf =Ca2þ

sw slightly from 0.89+ 0.03 at
the highest pHsw to 0.97+0.03 at the mid-pHsw treatment,
there was no further change in Ca2þ

cf =Ca2þ
sw at the lowest

pHsw treatment (figure 2a). Calcifying fluid VAr was main-
tained at nearly constant levels across treatments for both
species, with only slight declines at the lowest pHsw

(figure 2c). The ability of P. damicornis to control ½Ca2þ #cf
resulted in similar VAr compared with A. youngei, even
though ½CO2%

3 #cf was lower in P. damicornis (figure 2b) [30].
The species’ differences in Ca2þ

cf =Ca2þ
sw are mirrored in

their calcification responses to acidification (figure 2d ).
While A. youngei calcification declined at lower pHsw (r2 ¼

0.36, n ¼ 42, p , 0.01, F1,40 ¼ 24.3), P. damicornis calcification
was insensitive to pHsw (r2 ¼ 0.01, p ¼ 0.58). These contrast-
ing responses appear to be driven not by calcifying fluid
carbonate chemistry [30], but rather by Ca2þ

cf =Ca2þ
sw. In fact,

½CO2%
3 #cf was significantly more sensitive to pHsw for

P. damicornis than for A. youngei (r2 ¼ 0.83, n ¼ 84, p , 0.01,
F3,80 ¼ 134.9), contrasting their calcification sensitivities to
pHsw (figure 2). Similarly, P. damicornis calcification has
been shown to be insensitive to acidification across multiple
locations in the Pacific Ocean [36], whereas A. youngei is
highly sensitive [37,38]. Although the mechanisms underlying
these different sensitivities have so far remained largely unre-
solved, our results suggest that resistant corals are those with
the ability to elevate ½Ca2þ #cf, and more susceptible species are
those which cannot.

There are two non-mutually exclusive hypotheses to
explain the changes in Ca2þ

cf =Ca2þ
sw that we observed: (i) pas-

sive precipitation of CaCO3 and (ii) active upregulation by
the coral polyps. Mass balance considerations imply that
accretion of CaCO3 skeleton consumes ½Ca2þ #cf, but this
does not exclude the possibility that upregulation of pro-
cesses controlling ½Ca2þ #cf is also involved. Indeed, several
lines of evidence support that much of the Ca2þ

cf =Ca2þ
sw varia-

bility in our experiment was driven by the activity of the
corals. First, while there is a weak inverse correlation between
Ca2þ

cf =Ca2þ
sw and calcification when data for both species are

combined (r2 ¼ 0.22, n ¼ 84, p , 0.01, F1,82 ¼ 24.0), there are
no significant correlations within each species (figure 3a).
Second, the Ca2þ

cf =Ca2þ
sw exceeding 1 for P. damicornis cannot

be explained by CaCO3 precipitation and requires some

(a) (b)

(c) (d)

900

800

700

600

500

150

100

50

ca
lc

if
ic

at
io

n 
(%

 re
la

tiv
e 

to
 p

H
 8

.1
)

0

[C
O

32–
] (

mm
ol

 k
g–1

)

1.4

1.2

1.0

0.8

14

13

12

11

10

15

9

7.6 8.07.97.87.7 8.1

ca
lc

if
yi

ng
 fl

ui
d 

W
A

r
C

a cf2+
/C

a sw2+

pHsw

7.6 8.07.97.87.7 8.1
pHsw

P. damicornis
A. youngei

*

*

*

*

*

Figure 2. Sensitivity of calcifying fluid chemistry and calcification to seawater pH. (a) Ca2þ
cf =Ca2þ

sw , (b) ½CO2%
3 #cf , (c) VAr and (d ) calcification responses to pHsw

treatments for both P. damicornis (blue squares) and A. youngei (red triangles). Bounded lines indicate regression fits+1 s.e. Coloured asterisks indicate which
regressions are statistically significant ( p , 0.01). Error bars on individual points represent 1 s.e.m.

4190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

ARTICLE IN PRESS

RSPB20180564—12/4/18—13:40–Copy Edited by: Not Mentioned



mechanism of increasing ½Ca2þ #cf. Finally, we independently
estimated ½Ca2þ #cf using skeletal Mg/Ca and Sr/Ca ratios
and a simple model [29] in which these element/Ca ratios
are explained by initial ½Ca2þ #cf elevation followed by precipi-
tation from a closed reservoir. The elevation of ½Ca2þ #cf
estimated from this modelling exercise is strongly correlated
(r2 ¼ 0.53, n ¼ 84, p , 0.01, F1,82 ¼ 93.0) with our derived
Ca2þ

cf =Ca2þ
sw ratios, and significant positive correlations are

found within each species (figure 3b). However, the model
implies that ½Ca2þ #cf is elevated up to 10% with respect to sea-
water, which is less than the upper limit of 25% indicated by
our maximum derived mean Ca2þ

cf =Ca2þ
sw of 1.25 for Pocillopora

at the lowest pHsw. One possible reason for this is that the
model assumes that the addition of Ca2þ to the calcifying
fluid is 100% selective for Ca2þ . Allowing this process to be
partially leaky with respect to Sr2þ and Mg2þ ions [39]
brings the modelled ½Ca2þ #cf elevation into closer agreement
with our derived Ca2þ

cf =Ca2þ
sw (figure 3b). Transporting Mg2þ

along with Ca2þ to the calcifying fluid may allow ½Ca2þ #cf to
be elevated without favouring calcite growth over aragonite.
Further geochemical evidence for active ½Ca2þ #cf elevation
comes from calcium isotope ratios in modern and fossil coral
skeletons, which cannot be reconciled with direct precipitation
from seawater [40,41]. Rather, the calcium isotopic offset
between coral skeletons and seawater supports strong biologi-
cal modulation of ½Ca2þ #cf [40] and potentially some effects of
Rayleigh fractionation or Ca2þ diffusion between the calcifying
fluid and the external environment [41].

Corals may influence their ½Ca2þ #cf via multiple mechan-
isms. These potentially include Ca-channels [25,39,42–44],
Ca2þ /Naþ exchange [43], Ca2þ -ATPase [26] and precipi-
tation/dissolution of amorphous calcium carbonate [45]. The
only previous measurements of coral ½Ca2þ #cf were made by
cutting an incision in living Galaxea fascicularis polyps and
inserting a Ca2þ microsensor near the skeleton surface [26].
Although potentially invasive, these previous data showed
elevation above seawater concentrations by up to 10%,
within the range of our Ca2þ

cf =Ca2þ
sw ratios. Importantly, the

microsensor data allowed for continuous measurements,
which revealed a strong sensitivity of ½Ca2þ #cf to light, likely
because the polyp uses energy provided by its photosynthetic

symbionts to drive the activity of various Ca2þ -transport mech-
anisms [26,44]. In additional laboratory experiments that
exposed corals to Ca-channel and Ca2þ -ATPase inhibitors,
½Ca2þ #cf variability was dampened and calcification rates
were decreased [26,39,43]. These multiple lines of evidence
make it clear that some corals have cellular mechanisms in
place to modulate ½Ca2þ #cf, and our results demonstrate that
resistant species such as Pocillopora can upregulate these
processes to resist the effects of ocean acidification and to main-
tain normal calcification rates even at low pHsw. Conversely,
our data indicate that A. youngei exerts less control on
½Ca2þ #cf, consistent with a previous experiment that found
gene expression for ion transporters in Acropora did not
change in response to seawater pH [46].

Our unique characterization of ½CO2%
3 #cf and ½Ca2þ #cf

enables the first evaluation of their relative influences on
calcifying fluid VAr. Most models of coral calcification rely
on the assumption that VAr is controlled by ½CO2%

3 #cf and
that variability in ½Ca2þ #cf is negligible [20,47]. However, we
found no significant correlations between ½CO2%

3 #cf and VAr,
neither within nor between species (figure 4a). Rather, VAr

is positively correlated (r2 ¼ 0.47, n ¼ 84, p , 0.01, F2,81 ¼
37.8) with ½Ca2þ #cf for both A. youngei and P. damicornis
(figure 4b). This finding should, however, be viewed with
some caution because our technique of deriving ½Ca2þ #cf in
part from proxy measurements of VAr means that they are
not independent, and thus, it is difficult to determine if this
correlation represents a causal relationship. Nevertheless,
for a given ½Ca2þ #cf, calcifying fluid VAr is higher in A. youngei
than P. damicornis, which may explain the overall faster calci-
fication of A. youngei [30]. Critically though, ½Ca2þ #cf for
A. youngei remains within a relatively narrow range, whereas
P. damicornis is capable of driving VAr higher, potentially by
elevating ½Ca2þ #cf. This ability may account for the relative
insensitivity of P. damicornis calcification to seawater pH,
although we cannot exclude some influence of other factors
such as changes in calcifying time or surface area within
the calyx.

Ocean acidification, combined with warming, threatens to
disrupt coral growth and survival [6–8,38]. Although some
resistant species are likely to persist, the differential responses

P. damicornis
A. youngei
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Figure 3. Factors driving Ca2þ
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sw variability. Sensitivity of Ca2þ
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sw to (a) calcification and (b) ½Ca2þ #cf elevation estimated by modelling with Mg/Ca and
Sr/Ca ratios. In (b), the upper x-axis values show the model assuming 100% selectivity for Ca2þ , and the lower x-axis values show the model that is 50% leaky with
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to ocean acidification will potentially create novel configur-
ations of species occupying coral reefs. If coral communities
shift in favour of species resistant to ocean acidification [8],
there are likely to be cascading effects in reef ecosystems
due to the associations of other reef biota with the habitat
created by susceptible coral genera such as Acropora [48]. Fur-
thermore, declines in CaCO3 production by susceptible
genera are expected to be exacerbated by increasing bioero-
sion and carbonate dissolution rates as seawater pH
declines [49–53]. In tandem, these changes in CaCO3 budgets
could inhibit some reefs from keeping pace with rising sea
levels [54]. Identifying which corals can cope with ocean acid-
ification by increasing ½Ca2þ #cf provides a new perspective in
identifying more resistant species, which may help efforts to
forecast the changing state and viability of coral reefs as
anthropogenic CO2 continues to invade the oceans.
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25. Zoccola D, Tambutté E, Sénégas-Balas F, Michiels
J-F, Failla J-P, Jaubert J, Allemand D. 1999 Cloning
of a calcium channel a1 subunit from the reef-
building coral, Stylophora pistillata. Gene 227,
157 – 167. (doi:10.1016/S0378-1119(98)00602-7)

26. Al-Horani FA, Al-Moghrabi SM, De Beer D. 2003 The
mechanism of calcification and its relation to
photosynthesis and respiration in the scleractinian
coral Galaxea fascicularis. Mar. Biol. 142, 419 – 426.
(doi:10.1007/s00227-002-0981-8)

27. Holcomb M, DeCarlo TM, Gaetani GA, McCulloch M.
2016 Factors affecting B/Ca ratios in synthetic
aragonite. Chem. Geol. 437, 67 – 76. (doi:10.1016/j.
chemgeo.2016.05.007)

28. McCulloch MT, D’Olivo Cordero JP, Falter J, Holcomb
M, Trotter JA. 2017 Coral calcification in a changing
World: the interactive dynamics of pH and DIC up-
regulation. Nat. Commun. 8, 15686. (doi:10.1038/
ncomms15686)

29. DeCarlo TM, D’Olivo JP, Foster T, Holcomb M, Becker
T, McCulloch MT. 2017 Coral calcifying fluid
aragonite saturation states derived from Raman

spectroscopy. Biogeosciences 14, 5253 – 5269.
(doi:10.5194/bg-14-5253-2017)

30. Comeau S, Cornwall CE, McCulloch MT. 2017
Decoupling between the response of coral calcifying
fluid pH and calcification to ocean acidification. Sci.
Rep. 7, 7573. (doi:10.1038/s41598-017-08003-z)

31. Holcomb M, DeCarlo TM, Schoepf V, Dissard D,
Tanaka K, McCulloch M. 2015 Cleaning and pre-
treatment procedures for biogenic and synthetic
calcium carbonate powders for determination of
elemental and boron isotopic compositions.
Chem. Geol. 398, 11 – 21. (doi:10.1016/j.chemgeo.
2015.01.019)

32. Riley JP, Tongudai M. 1967 The major cation/
chlorinity ratios in sea water. Chem. Geol. 2,
263 – 269. (doi:10.1016/0009-2541(67)90026-5)

33. Gaetani GA, Cohen AL. 2006 Element partitioning
during precipitation of aragonite from seawater: a
framework for understanding paleoproxies.
Geochim. Cosmochim. Acta 70, 4617 – 4634. (doi:10.
1016/j.gca.2006.07.008)

34. DeCarlo TM, Gaetani GA, Holcomb M, Cohen AL.
2015 Experimental determination of factors
controlling U/Ca of aragonite precipitated from
seawater: implications for interpreting coral
skeleton. Geochim. Cosmochim. Acta 162, 151 – 165.
(doi:10.1016/j.gca.2015.04.016)

35. R Core Team. 2016 R: A language and environment
for statistical computingQ2 .

36. Comeau S, Carpenter RC, Nojiri Y, Putnam HM, Sakai
K, Edmunds PJ. 2014 Pacific-wide contrast
highlights resistance of reef calcifiers to ocean
acidification. Proc. R. Soc. B 281, 20141339. (doi:10.
1098/rspb.2014.1339)

37. Schneider K, Erez J. 2006 The effect of carbonate
chemistry on calcification and photosynthesis in the
hermatypic coral Acropora eurystoma. Limnol.
Oceanogr. 51, 1284 – 1293. (doi:10.4319/lo.2006.51.
3.1284)

38. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S,
Hoegh-Guldberg O. 2008 Ocean acidification causes
bleaching and productivity loss in coral reef
builders. Proc. Natl Acad. Sci. USA 105,
17 442 – 17 446. (doi:10.1073/pnas.0804478105)

39. Allison N, Cohen I, Finch AA, Erez J, EIMF F. 2011
Controls on Sr/Ca and Mg/Ca in scleractinian corals:
the effects of Ca-ATPase and transcellular Ca
channels on skeletal chemistry. Geochim.
Cosmochim. Acta 75, 6350 – 6360. (doi:10.1016/j.
gca.2011.08.012)

40. Inoue M, Gussone N, Koga Y, Iwase A, Suzuki A,
Sakai K, Kawahata H. 2015 Controlling factors of Ca
isotope fractionation in scleractinian corals evaluated
by temperature, pH and light controlled culture
experiments. Geochim. Cosmochim. Acta 167,
80 – 92. (doi:10.1016/j.gca.2015.06.009)

41. Gothmann AM, Bender ML, Blättler CL, Swart PK,
Giri SJ, Adkins JF, Stolarski J, Higgins JA. 2016
Calcium isotopes in scleractinian fossil corals since
the Mesozoic: implications for vital effects and
biomineralization through time. Earth Planet.

Sci. Lett. 444, 205 – 214. (doi:10.1016/j.epsl.2016.
03.012)

42. Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F,
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