G. Shafer, A Mathematical Theory of Evidence, 1976.

A. Dempster, A generalization of bayesian inference, Journal of the Royal Statistical Society. Series B (Methodological), vol.30, 1968.

R. Kennes, Computational aspects of the mobius transformation of graphs, IEEE Transactions on Systems, Man, and Cybernetics, vol.22, issue.2, pp.201-223, 1992.

N. Wilson, Algorithms for dempster-shafer theory, Handbook of Defeasible Reasoning and Uncertainty Management Systems : Algorithms for Uncertainty and Defeasible Reasoning

A. Sarabi-jamab and B. N. Araabi, Information-based evaluation of approximation methods in dempster-shafer theory, IJUFKS, vol.24, issue.04, pp.503-535, 2016.

P. Smets, The canonical decomposition of a weighted belief, Proc. of IJCAI, pp.1896-1901, 1995.

T. Denoeux, Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence, Artificial Intelligence, vol.172, issue.2, pp.234-264, 2008.

A. Kallel and S. L. Hégarat-mascle, Combination of partially non-distinct beliefs : The cautious-adaptive rule, IJAR, vol.50, issue.7, pp.1000-1021, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01756255

N. E. Zoghby, V. Cherfaoui, B. Ducourthial, and T. Denoeux, Distributed data fusion for detecting sybil attacks in vanets, Belief Functions : Theory and Applications, pp.351-358, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00756330

F. Pichon and T. Denoeux, T-norm and uninorm-based combination of belief functions, Proc. of NAFIPS, 2008.

A. Roquel, S. L. Hégarat-mascle, I. Bloch, and B. Vincke, Decomposition of conflict as a distribution on hypotheses in the framework on belief functions, IJAR, vol.55, issue.5, pp.1129-1146, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01694163

J. Schubert, Clustering decomposed belief functions using generalized weights of conflict, IJAR, vol.48, issue.2, pp.466-480, 2008.

D. Mercier, F. Pichon, and É. Lefèvre, Corrigendum to "belief functions contextual discounting and canonical decomposition, IJAR, vol.70, pp.137-139, 2016.

P. Smets, The application of the matrix calculus to belief functions, IJAR, vol.31, issue.1, 2002.

P. Smets, The transferable belief model, Artificial Intelligence, vol.66, issue.2, pp.191-234, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01185821

M. Chaveroche, evidence-based-dst, 2019.

M. Chaveroche, F. Davoine, and V. Cherfaoui, Efficient möbius transformations and their applications to dempster-shafer theory, 2019.