
HAL Id: hal-02321656
https://hal.science/hal-02321656

Submitted on 15 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A review on dimensionality reduction for multi-label
classification

Wissam Siblini, Pascale Kuntz, Frank Meyer

To cite this version:
Wissam Siblini, Pascale Kuntz, Frank Meyer. A review on dimensionality reduction for
multi-label classification. IEEE Transactions on Knowledge and Data Engineering, 2019,
�10.1109/TKDE.2019.2940014�. �hal-02321656�

https://hal.science/hal-02321656
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Review on Dimensionality Reduction for
Multi-label Classification

Wissam Siblini, Pascale Kuntz and Frank Meyer

Abstract—Multi-label classification has gained in importance in the last decade and it is today confronted to the current needs to

process massive raw data from heterogeneous sources. Therefore, dimensionality reduction, which aims at reducing the number of

features, labels, or both, knows a renewed interest to enhance the scaling properties of the classifiers and their predictive

performances. In this paper we review more than fifty papers presenting dimensionality reduction approaches for multi-label

classification and we propose an analysis in three steps : (i) a typology of the methods describing the main components of their

strategies, the problem they tackle and the way they solve it (ii) a unified formalization of the problems to help to distinguish the

similarities and differences between the approaches, and (iii) a meta-analysis of the published experimental results inspired by the

consensus theory to identify the most efficient algorithms.

Index Terms—Dimensionality reduction, multi-label classification, meta-analysis.

1 INTRODUCTION

THE most popular classification paradigms are the single
label classification and the multi-class classification. For

the first one, the objective is to decide, for each instance
described by its features, whether it is associated to a given
label or not. The second one is a generalization and it aims at
associating each instance to one label among several. How-
ever, in many real-world applications (e.g. sound analysis
[1] [2], computer vision [3] [4], text analysis [5] [6], biology
and health [7] [8], recommender systems [9] [10]), items are
intrinsically describable with multiple labels. For instance,
in a Video on Demand catalog, a movie is described by a set
of complementary labels (e.g. Funny, Masterpiece, Based on
novel, Futuristic) which are used by a recommender system
to provide users with movies that are relevant to their
preferences. Consequently, multi-label classification, which
associates each instance to multiple labels, has received a
great attention in recent years. From the pioneering works
of Boutell and al. [11], Zhang and al. [12] and Tsoumakas
and al. [13], several reviews have been published [13] [14]
[15] [16] [17] [18]. They group the algorithms in three main
families : (i) the problem transformation methods which
transform the multi-label problem into one or several single-
label classification or regression problems, (ii) the algorithm
adaptation methods which adapt existing algorithms to
learn from multi-label data and (iii) the ensemble methods
which deduce multi-label predictions from a collection of
learners.

This effervescence in research has allowed a significant
improvement of the result quality for benchmarks routinely
used in the literature. But it has also coincided with the
explosion of data dimensionality. In particular, today, the ex-
pansion of online labeling services generates a production of
massive raw data of varying quality. This scaling evolution
has recently led to the emergence of the so-called eXtreme
Multi-label Learning community which considers problems
in which the number of labels is extremely large (in the order
of 106 and more) [19] [20] [21]. This increasing complexity
entails a renewed interest for the dimensionality reduction

approaches which aim at reducing the number of features,
labels, or both in order to improve the scaling properties of
the classifiers and their predictive performances.

Dimensionality reduction has a long history in data
science [22] [23] associated to different motivations such
as, in particular, data visualization and interpretation [24],
data compression [25] and data denoising [26]. In short,
applying dimensionality reduction on raw data offers a
synthetized representation which allows highlighting links
and structures hidden in the mass and guiding learning
algorithms [27] [28]. As a promising lever for dealing with
large and noisy data, dimensionality reduction in multi-
label classification has been the subject of a large number
of publications over the last decade, resulting in various
developments of methods. However, to the best of our
knowledge, only one state-of-the-art was already published
five years ago [29] and it neither explores the wide range
of existing approaches nor provides a global framework to
compare them.

For the study presented in this paper, we have gathered
more than fifty papers to provide a macroscopic view of
the dimensionality reduction strategies developed in multi-
label classification and to help users select the most efficient
ones. Let us note that we do not consider the variable
selection methods (see [30] for a recent review) which are
efficient to change the relative importance of variables but
which are not designed to extract semantic links between
variables as pointed out by several authors [31] [32]. Here
we go beyond a classical state-of-the-art often based on an
organized list of the existing works by structuring our anal-
ysis of the literature along three complementary objectives
: (1) a typology of the different approaches, (2) a unified
formalization of the problems, and (3) a meta-analysis of the
published experimental results. The typology is built from
the main components which determine the nature of the
problem and the way to solve it: (i) the choice of the reduced
space (feature space, label space or both), (ii) the indepen-
dence/dependence between the dimensionality reduction
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objective and the classification objective, (iii) the character-
istics of the transformations which reduce the initial spaces,
and (iv) the regularization functions and set of constraints
which improve the problem solving process. To help to
distinguish the similarities and differences between the
approaches with more precision, we introduce two generic
formulations which scan the large majority of the problems
encountered in the literature. We complete this thorough
review of the problem ingredients by a meta-analysis of
the experimental comparisons carried out in the papers
inspired by the consensus theory [33] [34]. For each selected
evaluation measure, the published pairwise comparisons
(algorithm Ai is better than algorithm Aj at a statistical sig-
nificance level α) are represented by a multigraph where the
vertices are the algorithms and the directed edges represent
the domination relationships extracted from the published
experimental results. The analysis of the multigraphs allows
to identify communities which are families of algorithms
that have been mostly examined separately in the littera-
ture. Moreover, in each community, the approaches which
outperform the others are highlighted.

2 TYPOLOGY OF MULTI-LABEL DIMENSIONALITY

REDUCTION METHODS

Throughout the paper we consider a dataset with N in-
stances described by a set of nx features and labeled by a
set of ny labels. We denote by X (resp. Y ) the N × nx (resp.
N × ny) matrix describing the features (resp. the labels). As
usually done in the literature, X (resp. Y ) also refers to the
feature (resp. label) space when there is no ambiguity. The
objective of the multi-label classification is to predict the
right label vector y ∈ R

ny for any feature vector x ∈ R
nx .

During a training phase, given the feature matrix X , a
classifier is adjusted to fit its prediction to the label matrix
Y .

The vast majority of multi-label classification approaches
based on dimensionality reduction follows a two-step pro-
cess : (1) reduction of X or Y or both, (2) prediction of the
labels from the reduced spaces with a classifier. The dimen-
sionality reduction is very often applied as an independent
data pre-processing before prediction, but recent research
stimulates exploration of the coupling between reduction
and classification [35]. Whatever the strategy, the impact
of the reduction on the classifier performances is in fine
evaluated by the quality of the label prediction for which
numerous measures have been proposed in the literature
(e.g. Hamming Loss, F1) [14] [17]. Consequently, three in-
gredients are considered in the dimensionality reduction
problem: the objective function fd for the dimensionality
reduction which is independent from or dependent on the
classifier, the objective function fc associated to the classifier
and the final prediction quality measure mq . Finally, the
choice of the reduced space closely determines the nature
of the problem and the way to solve it.

Let us denote the reduction of X (resp. Y) by the N × kx
(resp. N × ky) matrix X ′ (resp. Y ′) where kx (resp. ky) is the
dimension of the reduced space X ′ (resp. Y ′). In practice,
the values of kx and ky are often fixed a priori (100 and 500
are commonly used values [36] [37]) but different classical
strategies can be applied to guide their choice in particular

when the reduction method performs an eigendecomposi-
tion (e.g. kx and/or ky are the number of eigenvalues above
a fixed threshold, or necessary to preserve a percentage
of the total sum of eigenvalues). There are three different
ways to tackle the dimensionality reduction problem for
the multi-label classification (figure 1): (i) reduce the feature
space X into X ′ and predict the label matrix Y from the
reduced feature matrix X ′, (ii) reduce the label space Y into
Y ′ and predict the reduced label matrix Y ′ from the feature
matrix X , (iii) reduce both the label and the feature spaces
into X ′ and Y ′ and predict the reduced label matrix Y ′ from
the reduced feature matrix X ′.

X Y

X’ Y’
Classification

Re
du

ct
io

n

Re
co

ns
tr

uc
tio

n

Objective

Cl
as

sif
ica

tio
n

Classification

N

nx ny

kykx

N

N N

case (i)
case (ii)
case (iii)

Re
du

ct
io

n

Re
co

ns
tr

uc
tio

n
Fig. 1. Overview of the dimensionality reduction strategies in the multi-
label classification process.

For each of these cases, the dimensionality reduction
problem can be set as an optimization problem:

optimize
U,V

fd(U, V,X, Y ) + r(U, V )

subject to c(U, V,X, Y )
(1)

where :

• U and V are either the parameters of a transforma-
tion function on X and Y (e.g. projection matrices Px

and Py in the case of a linear transformation) or the
reduced matrices X ′ and Y ′. When a method reduces
one space only (either X or Y ) the problem is defined
with one parameter (U or V ).

• fd is the reduction objective function which is inde-
pendent from or dependent on the classifier.

• r is a regularization function often associated to a
norm (L1, L2, L12) on the parameter space which is
introduced to limit the overfitting phenomena and to
simplify the model.
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• c is a constraint set on the search space. Some ap-
proaches do not introduce constraints but most of
them try to reduce the degree of freedom of the
problem to make its resolution easier.

In the following we detail the different ingredients of
the problem (1). We first present the most popular objective
functions fd which are independent of the classifiers and
we specify their definitions according to the spaces targeted
with the dimensionality reduction. Then, we discuss the
different cases where the dimensionality reduction objective
is coupled with the classification objective. For each case,
only one example from the literature is given for illustration
and we refer to Table 2 for a detailed state-of-the-art. In
addition, Tables 1a and 1b synthetize the strategy of each
of the reviewed methods. We finish with a synthetic pre-
sentation of the regularization functions and the additional
constraints applied by multi-label dimensionality reduction
methods.

2.1 Classifier-Independent Objective Functions

We here present the dimensionality reduction methods with
an objective function independent of the classifier. They are
grouped according to the space they reduce (X , Y , both X

and Y ).

2.1.1 Feature Space Reduction (X)

The ”feature space reduction methods” turn the initial large
feature space X into a reduced space X ′ with the goal of ex-
tracting the essential information of the data. As features are
partially noisy, redundant and/or irrelevant, some works
also aspire to fix the original defects [38]. The objective
function fd is either independent from or dependent on the
information carried by the labels.

Most of the label-independent methods have been ini-
tially developed for other learning paradigms but quite a
few of them have also been frequently applied in multi-
label learning. Their objectives can be organized into three
families depending on the considered information for the
reduction1:

1) Objective FI1: maximize the conservation of the fea-
ture covariance/co-occurrences (e.g. Principal Com-
ponent Analysis (PCA) [39]);

2) Objective FI2: minimize the reconstruction error for-
mulated by a distance between X and X ′ (e.g.
Autoencoders (AE) [40]);

3) Objective FI3: maximize the conservation of dis-
tances between items described by X and by X ′

(e.g. Locality Preserving Projection (LPP) [41]). The
conservation is either global if all pairwise distances
are equally maintained or local if, for example, each
item only preserves its distances with its nearest
neighbors.

Let us remark that these objectives may be closely linked
together; for instance, PCA, classified in FI1, also implicitly
minimizes the quadratic reconstruction error between a

1. Each objective is encoded to be identified in Table 2. For instance,
FI1 refers to the 1st objective of the label-Independent Feature reduction
methods.

projection of X ′ and X (FI2). In addition, besides these
approaches, random projections (Objective R) have been
explored [42] [43].

The label-dependent objectives aim at guiding the reduc-
tion with label information [44] [45]. This helps to strengthen
the link between the extracted reduced feature space X ′ and
the label space Y . They cover three main strategies:

1) Objective FD1: maximize the X-Y link via a stan-
dard criterion (covariance, Hilbert-Schmidt Inde-
pendence) (e.g. Multi-label Dimensionality Reduc-
tion via Dependence Maximization (MDDM) [35])
;

2) Objective FD2: preserve the isometry between the
instances described in the initial label space Y and
the instances described in the reduced feature space
X ′ (e.g. Hypergraph Spectral Learning (HSL) [46])

3) Objective FD3: maximize the link between the fea-
ture and the label space by learning a subspace X ′

that can be used to reconstruct both X and Y (e.g.
Multi-label Latent Semantic Indexing (MLSI) [47]).

In addition, several hybrid approaches optimize a pa-
rameterized trade-off (e.g θ1 objective FD1 + θ2 objective
FD2) between the above objectives (e.g. Maximizing fea-
ture Variance and feature-label Dependence simultaneously
(MVMD) [48]).

2.1.2 Label Space Reduction (Y)

As some labels are correlated, it seems intuitive to take
these correlations into account to improve both quality and
scalability of the classification [17]. This can be achieved by
learning a dimensionality-reduced label space. One of the
first label space reduction for multi-label classification was
based on compressed sensing (CS) [25]. The transformation
made by CS is a random projection without training (Ob-
jective R). However in the prediction phase, CS solves an
optimization problem for each instance to reconstruct the la-
bel vector from a reduced one. Since then, various strategies
have been proposed. Dually to the feature space reduction
above, they are either independent from or dependent on
the information carried by the features. And, the feature-
independent objectives can be organized into three families
similar to the label-independent feature space reduction:

1) Objective LI1: maximize the conservation of the label
covariance (e.g. Principal Label Space Transforma-
tion (PLST) [49] which is the equivalent of PCA
applied to the label space);

2) Objective LI2: minimize the reconstruction error for-
mulated by a distance between Y and Y ′ (e.g. Multi-
label prediction via compressed sensing (CS) [25]).

3) Objective LI3: maximize the conservation of dis-
tances between items described by Y and by Y ′ (e.g.
Cost-sensitive Label Embedding with Multidimen-
sional Scaling (CLEMS) [50])

Let us note that, similarly to PCA, PLST also implicitly
minimizes the quadratic reconstruction error (LI2).

There are also feature-dependent objectives. Indeed,
when considering dimensionality reduction for classifica-
tion, reducing the labels while strengthening the links with
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the features can be useful. Conditional Principal Label Space
Transformation (CLPST) [51] is one of the first methods
to reduce the labels with an objective dependent on the
features and it has opened the way to many other feature-
dependent label space reduction approaches. They maxi-
mize the correlations between X and Y ′ to improve the
predictability of one matrix from the other (Objective LD).

In addition, several hybrid approaches solve a
parametrized trade-off between minimizing the reconstruc-
tion error between Y and Y ′ and maximizing the prediction
of the feature matrix X from the reduced label matrix Y ′

(e.g. Dependence Maximization based Label space dimen-
sionality Reduction (DMLR) [52]).

Note that when the label space is reduced and the
classification model is trained on Y ′, the latter predicts
reduced label vectors y′ and it is necessary to reconstruct the
original label vectors y from it. Three cases are commonly
encountered in practice (the main associated methods are
indicated in parentheses):

1) A reconstruction model Ψinv : y′ 7→ y is trained
during the reduction phase or after [53]. It allows to
reconstruct y from y′ in the test phase. When the re-
duction is based on an orthogonal projection Py , the
reconstruction is often computed by the transpose
projection (y′ 7→ y = PT

y y′). (PLST, MOPLMS, ML-
CSSP, CPLST, BML-CS, FaIE, Rembrandt, DMLR,
TRANS, LEML, Bi-Dir, BMLPL, GIMC, C2AE, WS-
ABIE, COMB)

2) If the dimensionality reduction method explicitely
provides a reduction function Ψ : y 7→ y′, then,
given a reduced label vector y′, the original label
vector y can be recovered by solving the following
structured output learning [54] problem:

min
y

l(y′,Ψ(y)) (2)

where l is a loss function. The optimization is of-
ten performed with matching pursuit [55] or basis
pursuit [56]. (CS, MLC-BMaD, MSE)

3) The nearest neighbors of y′ are computed in the re-
duced training set and y is deduced from the aggre-
gation of their original label vectors [37]. (CLEMS,
SSI, SLEEC)

2.1.3 Both Feature Space and Label Space Reduction

When both spaces are reduced, the reduction of each space
depends on the other and two main strategies have been
investigated:

• Objective LFD1: seek the principal directions in both
label space and feature space which maximise the
linear correlations with each other. Originally de-
veloped with the popular method CCA (Canoni-
cal Correlation Analysis) [23] this approach has led
to dozens of extensions in multi-label classification
(e.g. an extension with a least square resolution LS-
CCA [29], an extension with a sketching technique
[57], an output-code extension [58]). Moreover, some
methods have extended CCA by combining it with
other approaches (e.g. The Two-Stage Dual Space
Reduction Framework (2SDSR) [59]).

• Objective LFD2: minimize a distance function be-
tween X ′ and Y ′ (e.g. Supervised Semantic Indexing
SSI [60]).

In addition, note that there is a special case (Independent
Dual Space Reduction (IDSR) [61], [62]) where the label
and feature space reductions are independently operated
(objective LFI): a label-independent feature space reduction
is applied on X and a feature-independent label space
reduction is applied on Y .

2.2 Coupling Dimensionality Reduction with the Clas-

sifier Objective

As previously pointed out, a large majority of the reduction
approaches are applied as a data pre-processing indepen-
dent of the classification stage. But this procedure can turn
out to be lacking in flexibility in some cases: its perfor-
mances may be high for some problems and degrade some
others. Indeed, it has been observed on many benchmarks
that the impact of a reduction method on the classification
performances varies with the classifier and the datasets [48].
To overcome this limitation, some works have started in-
vestigating the coupling between dimensionality reduction
and classification. At first glance, this approach consists
in setting the coupling as a multi-objective optimization
problem which tries to optimize both the reduction and
the classifier objectives (resp. fd and fc) simultaneously.
This multi-objective/multi-parameter problem is difficult to
solve [63] [64] [65] and, in practice, fd and fc are alterna-
tively or jointly maximized via a linear combination (Ob-
jective C1 - e.g. Simultaneous Large-margin and Subspace
Learning Approach (TRANS) [66]). But, when we get down
to the details, the coupling can also be set up in two other
scenarios:

1) Objective C2: the dimensionality reduction is inte-
grated within the classification model by replacing
X and Y by X ′ and Y ′ in fc and the objective
is consequently the maximization of fc (e.g Linear
Dimensionality Reduction for Multi-label Classifi-
cation (MLSVM) [67]).

2) Objective C3: the dimensionality reduction objective
fd is implicitly designed to optimize the classifier.
This happens when the classifier is k-NN. For in-
stance, Supervised Orthonormal Locality Preserv-
ing Projection (SOLPP) [68] learns a projection Px

on the feature space X that reduces the distance
between instances which share numerous labels.
This implicitly optimizes k-NN. Similar strategies
are employed in other methods (e.g. Hypergraph
Spectral Learning (HSL) [46]).

2.3 Explicit and Implicit Transformations

When the algorithm reduces the data via a transformation
function, the reduction is explicit and it allows to compute
the transformation of any instance on line. Otherwise, the
transformation is implicit: it directly provides the reduced
matrix but not the transformation function.
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# Method Description

1 Principal Component Analysis Eigendecomposition of the feature covariance matrix to derive orthogonal directions of
(PCA) maximal variance (principal components).

2 Locality Preserving Projection Spectral decomposition of the instance adjacency graph to compute a reduced feature
(LPP) space that maximally preserves it.

3 Constrained Non-negative Matrix Constrained non negative matrix factorization on X . The first factor is considered as the
Factorization (CNMF) reduced feature space X ′.

4 Random Principal Component Analysis Randomized algebra technique (much faster than PCA when nx is large) to approximate
(RPCA) the principal components of X .

5 Auto-Encoder Non linear reduction (projection + activation) and decoding to efficiently reduce and
(AE) reconstruct the original feature space.

6 Model-Shared Subspace Boosting Multiple random reductions of the feature space to create and combine a set of weak
(MSSBoost) classifiers.

7 Orthonormal Locality Preserving Extension of LPP with an orthonormality constraint on the reduced feature space.
Projection (OLPP)

8 Orthonormal Neighborhood Preserving Orthonormal feature space projection which preserves each item location with respect to
Projection (ONPP) its l nearest neighbors.

9 Shared subspace for multi-Label Embedding resulting from a trade-off between the label space and the feature space
(MLLS) reconstructions.

10 Partial Least Square Construction of a dimensionality reducing projection that maximizes the correlations
(PLS) between the projected feature space and the label space.

11 Multi-label Latent Semantic Indexing Linear feature space projection to optimize both the reconstruction of the original feature
(MLSI) space and the correlations between the projected feature space and the label space.

12 Orthonormal Partial Least Square Extension of PLS with an orthonormality constraint on the reduced feature space.
(OPLS)

13 Hypergraph Spectral Learning Spectral decomposition of an hypergraph which links instances with many common
(HSL) labels to obtain a reduced feature space that favors locality between them.

14 Joint Dimensionality Reduction and Multi- Simultaneous learning of a feature space reducing projection and an SVM classifier
label Classification (MLSVM) applied on the obtained reduced space.

15 Multi-Label Dimensionality reduction via Linear projection of the feature space that produces a reduced space with a minimal
Dependence Maximization (MDDM) Hilbert Schmidt Independence with the label space.

16 Semi-Supervised Dimension Reduction for Construction of a feature space projection which reproduces the neighborhood of the
Multi-Label Classification (SSDR-MC) instances in the label space in the projected feature space.

17 Supervised Orthonormal Locality Preserving Spectral decomposition of a feature/label adjacency trade-off graph to obtain a reduced
Projection (SOLPP) feature space where neighbors have common features and labels.

18 Multi-label Linear Discriminant Analysis Proposition of a definition for multi-label interclass/intraclass variances and
(MLDA) computation of the linearly reduced feature space that maximizes their ratio.

19 Direct Multi-label Linear Discriminant Redefinition of MLDA’s interclass variance matrix to overcome a limit that MLDA has
Analysis (DMLDA) on the dimensionality of the reduced space.

20 Variable Pairwise Constraint projection Proposition of ”must/cannot link” constraints between instances (based on their labels)
for Multi-label Ensemble (VPCME) and computation of the feature space projection that maximally respects them.

21 Hypergraph Orthonormal Partial Least Trade-off between OPLS and HSL.
Square (HOPLS)

22 Shared Subspace Multi-Label Dim reduction Trade-off between MLLS and MDDM.
via Dependence Maximization (SSMDDM)

23 Maximizing feature Variance and feature- Trade-off between PCA and MDDM.
label Dependence simultaneously (MVMD)

24 Multi-label prediction via Compressed Reduction of the label space with a random projection and reconstruction of it with a
Sensing (CS) sparse signal identification technique.

25 Principal Label Space Transformation Dually to PCA, computation of the orthogonal directions of maximum variance
(PLST) (principal components) in the label space.

26 Bayesian Multi-Label Compressed Sensing Simultaneous learning, with EM, of probabilistic models for (i) labels reduction, (ii)
(BML-CS) reduced labels prediction and (iii) labels decoding.

27 Multi-Label Classification via Boolean Boolean Matrix Decomposition to construct the binary reduced label space that can
Matrix Decomposition (MLC-BMaD) optimally reconstruct the original label space.

TABLE 1a
Short description of all the algorithms presented in the review.
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# Method Description

28 Landmark Selection Method for Multiple Resolution of a strongly regularized label space encoding/decoding problem and
Output Prediction (MOPLMS) selection of the non-zero labels in the solution as the reduced label space.

29 Multi-Label Column Subset Selection Derivation of label weights from the spectrum of the label covariance matrix and label
Problem (ML-CSSP) sampling with the weighted probability to produce the reduced space Y ′.

30 Cost-sensitive Label Embedding via Multidimensional scaling of the label space to embed instances according to a chosen
Multidimensional Scaling (CLEMS) instance pairwise cost which reflects the similarity of their label vector.

31 Conditional Principal Label Space Combination of PLST and CCA to guide label space reduction with feature information.
Transformation (CPLST)

32 Multi-label Subspace Ensemble Dimensionality reduction of the label space to improve its linear correlations with the
(MSE) feature space.

33 Feature-aware Implicit label space Implicit reduction of the labels to maximize (i) their ability to reconstruct the original
Encoding (FaIE) labels and (ii) their correlation with the feature space.

34 Response EMBedding via RANDomized Eigenvalue decomposition of the feature-label covariance matrix with a sketching
Techniques (Rembrandt) technique to reduce the label space and improve its link with the feature space.

35 Dependence Maximization based Label Trade-off between PLST and MDDM.
space dimension Reduction (DMLR)

36 Multi-Label Adapatative Random Computation of the feature space projection with an RVNS heuristic that optimizes the
Projection (ML-ARP) performances of the multi-label classifier ML-kNN on the reduced feature space.

37 Independent Dual Space Reduction Independent application of PCA on the feature space and PLST on the label space.
(IDSR)

38 Canonical Correlation Analysis Computation of the principal directions in both label and feature spaces that
(CCA) maximizes their linear correlations with each other.

39 Supervised Semantic Indexing Reduction of the feature space and the label space to increase (resp. decrease) the
(SSI) similarity between relevant (resp. irrelevant) pair x′-y′ of feature and label vectors.

40 Least-Square Canonical Correlation Approximate solution of CCA using an equivalent least square expression and an
Analysis (LS-CCA) efficient resolution.

41 Regularized Canonical Correlation Regularized version of CCA with an improved behavior when the label-feature
Analysis (rCCA) covariance matrix is close to singular.

42 Web Scale Annotation By Image Embedding Construction of feature and label embeddings such as the instances’ features average
(WSABIE) representation is similar to their labels’ representation.

43 Simultaneous Large-margin and Subspace Combination and simultaneous training of an unsupervised feature reduction method
Learning Approach (TRANS) and a large margin multi-label classifier.

44 Deep Canonical Correlation Analysis Application of CCA on f1(X) and f2(Y ) where f1 and f2 are two deep neural
(DCCA) networks. CCA and the networks are trained simultaneously.

45 Supervised Dual Space Reduction Family of methods that apply an existing dependent feature space reduction method
(2SDSR) on X (e.g MDDM) and an existing dependent label space reduction method on Y .

46 Convex Co Embedding Projection of the label and feature spaces which optimize a similarity, for each instance,
(ILA) between the reduced feature vector and reduced label vector.

47 Low rank Empirical risk minimization Simultaneous training of a classifier and a linear feature space reduction with the low
for Multi-Label Learning (LEML) rank Empirical Risk Minimization problem.

48 Bi-Directionnal Representation Learning Simultaneous predictions of labels from features and features from labels with an
(Bi-Dir) intermediary dimensionality reduction based on a bi-directional neural network.

49 Bayesian Multi-label Learning via EM-based construction of a subset of reduced labels (called topics) that can (i)
Positive Labels (BMLPL) reconstruct all the labels (Poisson law) and (ii) be predicted from features (Gamma law).

50 Sparse Local Embedding for Extreme Clustering of the instances and construction of local embeddings, on each cluster, of the
Classification (SLEEC) feature space to obtain the same closest neighborhood as in the label space.

51 Multi-label classification with feature-aware Union of a reduced features space obtained with CCA and a reduced feature space
non-linear label space transformation (COMB) obtained with KCCA.

52 Robust Extreme Multi-label Learning Prediction of labels using both a linear model applied on a linearly reduced feature
(REML) space and a sparse linear model applied on the original feature space.

53 Goal Inductive Matrix Completion Multi-label matrix completion technique to reduce the instance features and labels.
(GIMC)

54 Canonical-Correlated Auto-Encoder Combination of a label space auto-encoder with CCA to reduce the features and the
(C2AE) labels and to decode the predicted reduced labels.

TABLE 1b
Short description of all the algorithms presented in the review.
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Family Dependancy Method Ref Year Constraint/ Objective Type of Scale Scale Coupl.
of method Regularization Code transformation w.r.t w.r.t classif

N nx ny

PCA [39] 1901 Orth. Transfo. FI1 Explicit Lin Yes No No
LSI [69] 1990 Uncorr. Space FI2 Implicit Yes No No
LPP [41] 2004 Uncorr. Space FI3 Explicit Lin No No No

CNMF [70] 2006 Uncorr. Space FI1 Implicit Yes Yes No
RPCA [71] 2006 Orth. Transfo. FI1 Explicit Lin Yes Yes No

Label AE [40] 2006 FI2 Explicit Non Lin Yes No No
Independent MSSBoost [72] 2007 R Explicit Lin No No No

OLPP [73] 2007 Uncorr. Space FI3 Explicit Lin No No No
ONPP [73] 2007 Orth. Transfo. FI3 Explicit Lin No No No

Feature PLS [74] 1983 Orth. Transfo. FD1 Explicit Lin Yes No No
Space MLSI [47] 2005 Uncorr. Space FD3 Explicit Lin Yes No No

Reduction OPLS [75] 2006 Uncorr. Space FD1 Explicit Lin Yes No No
HSL [46] 2008 Uncorr. Space FD2/C3 Explicit Lin No No Yes

MLLS [76] 2008 Orth. Transfo. FD3 Explicit Lin Yes No No
MLSVM [67] 2009 Orth. Transfo. C2 Explicit Lin Yes No Yes
MDDM [35] 2010 Orth. Transfo. FD1 Explicit Lin Yes No No

Label SSDR-MC [77] 2010 Uncorr. Space FD2/C3 Implicit No No Yes
Dependent SOLPP [68] 2010 Orth. Transfo. FD2/C3 Explicit Lin No No Yes

MLDA [78] 2010 Orth. Transfo. FD1 Explicit Lin Yes No No
DMLDA [79] 2013 Orth. Transfo. FD1 Explicit Lin Yes No No
VPCME [80] 2013 Orth. Transfo. FD2/C3 Explicit Lin No No Yes
HOPLS [81] 2014 Uncorr. Space FD1/C3 Explicit Lin No No Yes

SSMDDM [82] 2015 Regularization FD1/FD3 Explicit Lin Yes Yes No
LM-kNN [83] 2015 C3 Explicit Lin Yes No Yes
MVMD [48] 2016 Orth. Transfo. FI1/FD1 Explicit Lin Yes No No

ML-ARP [84] 2017 C2 Explicit Lin No Yes Yes

CS [25] 2009 R Explicit Lin Yes Yes No
PLST [49] 2012 Orth. Transfo. LI1 Explicit Lin Yes No No

Feature MLC-BMaD [85] 2012 Binary Space LI2 Implicit No No No
Independent MOPLMS [86] 2012 Selection LI2 Explicit Yes Yes No

Label ML-CSSP [87] 2013 Selection LI1 Explicit Yes No No
Space CLEMS [50] 2016 LI3 Implicit No Yes No

Reduction

CPLST [51] 2012 Orth. Transfo. LD Explicit Lin Yes No No
MSE [88] 2012 C2 Implicit No No Yes

BML-CS [89] 2012 C1 Explicit Non Lin Yes No Yes
Feature FaIE [90] 2014 Uncorr. Space LD Implicit Yes No No

Dependent Rembrandt [91] 2015 LD Explicit Lin Yes Yes No
DMLR [52] 2015 Orth. Transfo. LD Explicit Lin Yes No No

Independent IDSR [61] 2013 Orth. Transfo. LFI Explicit Lin Yes No No

CCA [92] 1936 Uncorr. Space LFD1 Explicit Lin Yes No No
SSI [60] 2009 LFD2 Explicit Lin Yes Yes No

LS-CCA [92] 2011 Uncorr. Space LFD1 Explicit Lin Yes Yes No
rCCA [92] 2011 Uncorr. Space LFD1 Explicit Lin Yes No No

WSABIE [93] 2011 LFD2 Explicit Lin Yes Yes No
Feature TRANS [66] 2012 Regularization C1 Implicite Yes Yes Yes
Space DCCA [94] 2013 Uncorr. Space LFD1 Explicit Non Lin Yes Yes No

and Label 2SDSR [59] 2013 Several LFD1 Explicit Lin Yes No No
Space Dependent ILA [95] 2014 LFD2 Explicit Lin Yes Yes No

Reduction LEML [96] 2014 Regularization C2 Explicit Yes Yes Yes
Bi-Dir [53] 2014 C1 Both Yes Yes Yes

BMLPL [97] 2015 C1 Implicit Yes Yes Yes
SLEEC [37] 2015 Regularization C3 Both Yes Yes Yes
COMB [98] 2015 Uncorr. Space LFD1 Explicit Non Lin Yes No No
REML [99] 2016 Regularization C2 Both Yes Yes Yes
GIMC [100] 2016 Regularization LFD2 Explicit Non Lin Yes Yes No
C2AE [101] 2017 Orth. Transfo. C1 Explicit Lin Yes Yes Yes

TABLE 2
Dimensionality reduction methods, their typological family and criteria. We report ”yes” for scalability if the complexity is strictly under quadratic.

The objective codes, which refer to the type of objective considered by the methods, are detailed in Section 2.
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2.3.1 Explicit Transformations

The vast majority of the methods presented in that re-
view reduce dimensionality with projections (X ′ = XPx

or Y ′ = Y Py). They are consequently explicit and linear.
These linear transformations can be extended to a non linear
transformation with the classical kernel trick and most of the
linear methods have a kernel extension (e.g. kPCA [102] for
PCA, kCCA [103] for CCA).

Additional non linear explicit approaches have been
adapted for the multi-label case. They can be classified into
three categories:

1) Locally Linear Embeddings [37] [104]: they pro-
duce a non linear transformation, deduced from a
piecewise linear transformation, by partitioning the
label and/or feature space and computing a specific
linear transformation per region.

2) Representation learning with neural networks. The
target output depends on the network architecture.
For the auto-encoders [40] the output is a recon-
struction of the input layer. For the multi-label
neural networks [105] [106] [107] the output is a
prediction of Y (resp. X) and the input is X (resp. Y).
More complex architectures, which combine auto-
encoders and multi-layer perceptrons, have been re-
cently investigated [101] [53]. For details, we refer to
the complete review [27] on representation learning
which includes several methods which have been
adapted to multi-label classification [108].

3) Probabilistic process [109] [89] [97]. The transforma-
tion from the initial space (X or Y ) to the reduced
space (X ′ or Y ′) is a combination of parameter-
ized probability laws (often Normal, Dirichlet and
Gamma distributions). In that case, the construction
of the reduced space is achieved by inference.

2.3.2 Implicit Transformations

The implicit transformations directly provide the reduced
space without explicitely computing the transformation op-
erator (e.g. using Multi-Dimensional Scaling (MDS) [110]
or Matrix Factorization [111]). They consequently have no
reason to be linear. Direct learning of the reduced spaces
X ′ or Y ′ offers more degree of freedom in the optimization
problem but it is more frequently confronted to overfitting
[112]. Moreover, it is not adapted to incremental processes:
when a new item is added, the reduction must be fully
relaunched. Nevertheless, the recent rise of extreme multi-
label classification [19] [113] stimulates the development of
implicit transformations [93] [37] [96] [90] [50]. They are
adapted to the label space reduction because the online
reduction of a label vector is not required. On the contrary,
explicit transformations are more suitable for feature space
reduction because the transformation of new feature vectors
is necessary in the prediction phase.

2.4 Regularization and Constraints

Adding a regularization function r to the objective function
fd or a set of constraints to the optimization problem (1)
aims at (i) reducing the degree of freedom of the problem,
(ii) providing simpler transformations of the initial spaces

into the reduced ones by restricting the parameters, (iii)
improving generalization and limiting overfitting and (iv)
building more classification-friendly training sets. These
objectives, which are common to many machine learning
problems, are integrated in the optimization problem in a
variety of ways:

• Sparse transformations. Some methods impose spar-
sity on the reduced space variables or on the reduc-
tion function parameters [37] [96]. Formally, sparsity
of a matrix is computed from its L0-norm, but due to
its non-continuity and non differentiality the authors
usually resort to the L1-trick and relax the L0-norm
into a L1-norm [114]. In practice, this approach limits
overfitting, optimizes storage and speeds training
and prediction up ;

• Limited search space. A major part of the algorithms
impose the minimization of the L2-norm of the
parameters. This benefits solutions with low-value
parameters [53] [29].

• Sparse and small parameter sets. This is achieved
with an Elastic Net Regularization [115] which is a
linear combination of L1 and L2 regularizations [37].

• Parameter clipping. This regularization restrains the
parameter definition domain to a fixed interval with
thresholding techniques [116].

• Dropout regularization. Some neural network based
approaches regularize their parameters by using the
dropout strategy [117] which selects a different ran-
dom parameters subset at each training step.

Moreover, constraints are also introduced to limit noise
and variable correlations which are enemies of most clas-
sifiers [118]. Two usual constraints aim at facilitating the
classification task :

• Uncorrelated space. Classification is easier when
the correlations in the variable space are limited.
Such a constraint can be express in the matrix form
X ′TX ′ = I (or Y ′TY ′ = I). Let us remark that
this constraint leads to a L2-norm regularization
(|X ′|2 = tr(X ′TX) = tr(I)).

• Orthonormal projection. This constraint is expressed
in the popular linear case by PTP = I .

Some authors have also proposed a trade-off PT ((1 −
µ)XTX + µI)P = I between these two constraints [48] [35].

3 TWO GENERIC PROBLEM FORMULATIONS

The previous section highlights the great variability of the
different ways to adress the issue of dimensionality reduc-
tion for multi-label classification. In the literature analysis,
where each author resorts to his/her own formulation,
this variability is an obstacle to a fine understanding of
the similarities and differences between the approaches. To
make the comparisons easier, we here propose two generic
formulations of the general problem (1). The first one,
closely linked to a generic scheme of resolution based on
eigendecomposition, allows to express more than half of the
problems. The second one is an extension which covers all
cases. It is associated to a large variety of optimization pro-
cesses (e.g. gradient descents, Newton method, Lagrangian
techniques).
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3.1 The Basic Framework

As we show in Table 3, a large number of problems can be
written as follows :

optimize
U

tr(UTAXY U)

subject to UTBXY U = I
(3)

where :

1) AXY and BXY are matrices which are function of X
and Y .

2) according to the space that is reduced and the type
of transformation, the parameter U is one of the
following matrices : X ′, Y ′, Px, or Py .

3) the optimization goal is either a minimization or a
maximization objective.

Problems expressed by (3) can be solved with an eigen-
decomposition. It is well-known that, using the Lagrangian
method [120], the problem (3) is equivalent to optimize λ in
the following generalized eigenvalue problem:

AXY u = λBXY u (4)

The solution U of (3) in the maximization (resp. min-
imization) case is therefore the matrix of the eigenvectors
associated to the k largest (resp. smallest) eigenvalues of (4).
In the frequent case where the matrix AXY is symmetric
positive, the eigenvectors of AXY can also be retrieved by a
singular value decomposition [121] of the square root RXY

of AXY defined by RT
XY RXY = AXY .

Despite its elegant solution, the eigenvalue decomposi-
tion (4) is computationally complex: in the order of n2 real-
valued numbers for spatial complexity and n3 operations for
temporal complexity [122]. For scaling, different approaches
are used: fast eigendecomposition techniques (e.g. Jacobi
[123] and QR [124]), approximation of the largest eigen-
values (power iteration algorithm [125], Lanczos method
[126]), matrix sketching [127] (e.g. in randomized PCA [71]
or Rembrandt [91]). In addition, a reformulation of problem
(3) in a least square form is also popular to resort to a
numerical optimization method (e.g. least square version
of CCA [92] or LDA [128]). Indeed, the initial least square
form minU minM ‖RXY −MUT ‖2F , where RXY is the square
root of AXY , is equivalent to maxU tr(UTAXY U) with the
constraint UTU = I .

For illustration let us consider the classical formulation
of PCA maxPx

tr(PT
x (XTX)Px). Subject to PT

x Px = I , it
can be reformulated into the mean squared reconstruction
error minimization problem minX′,Px

‖X − X ′PT
x ‖2F with

simple algebra. The strong constraint UTU = I is sometimes
replaced with a simpler L2-regularization on U .

Let us note that a portion of the methods expressed with
the basic framework (3) are based on graph spectral decom-
positions [129] [130]. They follow a two-step procedure: (i)
build a graph which links the instances with a proximity
property (e.g distance on the label space) and (ii) embed
the instances in a reduced space by preserving the graph
neighborhood structure. The transformation is computed
by an eigendecomposition of the normalized Laplacian of
the graph (AXY is the normalized Laplacian and BXY the
identity matrix).

3.2 Towards a General Framework

The equivalence between the basic framework (3) and a least
square formulation highlights both its flexibility and its lim-
its. L1-regularizations [131], multi-label loss functions other
than mean square error [15] and many other items cannot
be expressed as a matrix trace. An attempt at generalization
has been proposed in [96]. The problem is set as a problem
of minimization of the empiral risk (ERM) [132] which does
not require a specific loss function nor any specified regu-
larization. Let us denote by h(x;Z) : x 7→ ŷ the classification
model of parameter Z, by l(y, ŷ) = l(y, h(x;Z)) the loss
function between the predicted label vector ŷ and the true
label vector y, and by r(Z) the parameter regularization. The
low rank empirical risk minimization problem is expressed
as follow:

Ẑ = argmin
Z

N∑

i=1

ny∑

j=1

l(Yij , h
j(xi;Z)) + λr(Z)

subject to rank(Z) ≤ k

(5)

Let us remark that this formulation differs from the
classical ERM problem: the added rank constraint on Z ∈
R

nx×ny entails a dimensionality reduction [133].

The formulation (5) covers a large part of the methods
of the literature but to include the remaining uncovered
cases, we propose a generic formulation of the objective
function which is an additive combination of the essential
ingredients encountered in the multi-label dimensionality
reduction typology:

J(X ′, Y ′, Zx, Zy, Zxy) = αxex(X
′, X, Zx)

+ αyey(Y
′, Y, Zy)

+ αxyexy(X
′, X, Y, Y ′, Zxy)

+ αpp(X
′, Y ′)

+ αrr(X
′, Y ′, Zx, Zy, Zxy)

(6)

where:

• ex is a reconstruction error between X and its re-
duced version X ′.

• ey is a reconstruction error between Y and its re-
duced version Y ′.

• exy is a joint error between X , Y , X ′, and Y ′ which
can, for instance, express the classification error.

• r is a parameter regularization.
• Zx,Zy ,Zxy are the parameters of the reduction and

the classification functions.
• p are additional properties imposed on both reduced

spaces.

The reconstruction error ex can be expressed with both
the encoding loss lx1 (reconstruction of X ′ from X) and the
decoding loss lx2 (reconstruction of X from X ′):

αxex(X
′, X, Zx) = αx1lx1(X

′, fx1(X,Zx))

+ αx2lx2(X, fx2(X
′, Zx))

(7)

where the f functions are parametric models. This is also
valid for ey and exy .
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Method U AXY Dependancy BXY Constraint Year Ref

PCA Px XTX No I Orth. Transfo. 1901 [39]
CCAx Px XTY (Y TY )−1Y TX Yes XTX Uncorr. Space 1936 [23] [92]
PLS Px XTY Y TX Yes I Orth. Transfo. 1983 [74]

KPCA Px φ(X)Tφ(X) No I Orth. Transfo. 1997 [102]
LPP Px XTLX No XDXT Uncorr. Space 2004 [41]

MLSI Px XT ((1− θ)XTX + θY TY )X Yes XTX Uncorr. Space 2005 [47]
OPLS Px XTY Y TX Yes XTX Uncorr. Space 2006 [75]
RPCA Px XTX No I Orth. Transfo. 2006 [71]
KDA Px S−

w 1Sb Yes I Orth. Transfo. 2007 [119]
OLPP Px XTLX No I Orth. Transfo. 2007 [73]
ONPP Px XT (I −W )(I −WT )X No I Orth. Transfo. 2007 [73]
HSL Px XLnX

T No XTX Uncorr. Space 2008 [46]
MLLS Px S−1

2
S1 Yes I Orth. Transfo. 2008 [76]

MLSVM Px (XTX)†XTY Y TX Yes I Orth. Transfo. 2009 [67]
MDDM Px XTHY Y THX Yes I Orth. Transfo. 2010 [35]
MLDA Px S−

w 1Sb Yes I Orth. Transfo. 2010 [78]
SOLPP Px XT (I −W )(I −WT )X Yes I Orth. Transfo. 2010 [68]

SSDR-MC X ′ XT (I −W )(I −W )TX Yes XTX Uncorr. Space 2010 [77]
rCCAx Px XTY (Y TY )†Y TX Yes XTX Uncorr. Space 2011 [92]
CPLST Py Y TH(XXT )†HY Yes I Orth. Transfo. 2012 [51]
PLST Py Y TY No I Orth. Transfo. 2012 [49]

DMLDA Px XTHYW−1Y THX Yes I Orth. Transfo. 2013 [79]
IDSRx Px XTX No I Orth. Transfo. 2013 [61]
IDSRy Py Y TY No I Orth. Transfo. 2013 [61]

VPCME Px SC − θSM Yes I Orth. Transfo. 2013 [80]
FaIE Y ′ Y Y T + θX(XTX)−1XT Yes I Orth. Transfo. 2014 [90]

FaIE Linear Py Y T (Y TY + θX(XTX)−1XT )Y Yes Y TY Uncorr. Space 2014 [90]
HOPLS Px XT (Y Y T + θS)X Yes XTX Uncorr. Space 2014 [81]
DMLR Py Y T (I + θHXXTH)Y Yes I Orth. Transfo. 2015 [52]
MVMD Px (1− θ)XTX + θXTHY Y THX Yes I Orth. Transfo. 2016 [48]

Notations:
M†: pseudo-inverse of a matrix M
L (resp. Ln): graph (resp. normalized) Laplacian
φ: kernel transformation
W , SC , SM ,Sb, Sw , S: pairwise weight matrices
θ, α , β: trade-off parameters
H = (δij −

1

N
)ij where δ is the Kronecker delta

S1 = I − αT−1 and S2 = T−1XTY Y TXT−1 where T = 1

N
XTX + (α+ β)I

TABLE 3
Connection between dimensionality reduction methods and the basic objective framework (3)

In most cases, the regularization r can be additively
decomposed:

αrr(X
′, Y ′, Zx, Zy, Zxy) = αr1r1(X

′) + αr2r2(Y
′)

+ αr3r3(Zx) + αr4r4(Zy)

Y + αr5r5(Zxy)

(8)

In (6), (7) and (8), the α constants are weights that allow
trade-offs between the different components of the problem.

All forms of (6) are tackled with customized numerical
optimization methods [134] [135]. Considering the convex-
ity, the smoothness, the order, the differentiability and the
conditioning of the formulation, the problem is sometimes
reformulated (convex relaxation [136], primal/dual conver-
sion [137], preconditioning [138]) and the resolution is either
performed with an adapted variant of the gradient descent
[139] [140], a coordinate descent [141] or higher order al-
gorithms such as Newton method [142] or Frank Wolfe’s
algorithm [143]. Also, constrained problems are generally
solved with a Lagrangian method [144], with one of its
diverse extensions (e.g Augmented Lagrangian like ADMM
[145] [37]) or with a projected gradient descent. The choice

of the couple formulation/resolution is essential: it affects
the spatial and temporal complexities of the computations
and the quality of the convergence towards the solution.

To be complete, let us point out that two families of
dimensionality reduction methods explored for multi-label
classification reach the limits of the generic formulation. The
first one includes approaches based on mixture models [97]
and solved with the suitable state-of-the-art EM algorithm
and its variants [146] [147]. The second one includes the
ensemble strategies (bagging [80] [88] and boosting strategy
[72]) where multiple dimensionality reducing transforma-
tions are trained on bootstraps and aggregated according to
two main strategies. Each transformation produces its own
reduced space and either the reduced spaces are aggregated
into a global reduced space and the classifier is trained on
it or a classifier is trained on each reduced space and the
predictions of each classifier are aggregated.

4 META-ANALYSIS

Our previous generic frameworks allow to explicitly iden-
tify the different ingredients involved in the various ap-
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proaches proposed in the literature and to help to under-
stand their common points and differences. However in
practice, a question persists: which are the most efficient ap-
proaches? It is difficult to answer because only partial com-
parisons are generally reported in the articles and to the best
of our knowledge there exist no experimental studies which
compare all the approaches presented in Table 2. Moreover,
the computational implementations are very diverse and for
some approaches the source codes or the parameter settings
are even not available. Hence, a normalized comparison
would entail a recoding of all the algorithms and a new
battery of tests on a unified framework that remains to be
defined in the research community. With the large set of al-
gorithms to be considered, this would require a considerable
time-consuming effort, and consequently the exploitation
of the outcomes of the existing published research works
appears as a more realistic alternative. The experimental
protocols (datasets, classifiers, performance measures, etc...)
varying from one publication to another, we here propose a
new meta-analysis methodology.

Often defined as “the statistical analysis of a large col-
lection of analysis results from individual studies for the
purpose of integrating the findings” [148], the meta-analysis
has known an increasing development from its pioneering
works in the 30’s [149] [150]. One of its favored field is
medicine where aggregation of the available pieces of infor-
mation is required to make as rational as possible decisions.
In computer science, this approach is still unusual as the
great majority of researchers prefer to compare their own
approaches with a restricted subset of existing ones on a
set of benchmarks they habitually use but the first attempts
(e.g. [151] [152] [153]) seem promising.

In this paper we aim at identifying the dimensionality
reduction approaches used in multi-label classification for
which several pieces of evidence show their domination
over others: these approaches statistically obtain the best
performances in the results published in the international
conferences and journals with a review process. As it is well-
known in multi-label classification that the performances
can be evaluated with a wide range of measures we extract
the relevant methods for each of the most frequently used
and independent quality measures. In the following we first
present a descriptive analysis of the observed occurrences
and co-occurrences of the algorithms and of the measures,
then we detail the process to extract the dominant ap-
proaches, and finally we discuss the obtained results.

4.1 Methodology

From all the papers referenced in Table 2, we have retained a
corpus C of 27 papers –marked in bold type- which present
relevant and exploitable results for a meta-analysis. More
precisely, we have first extracted the 32 papers that compare
at least two methods, and then we have removed the 5
papers whose results are given on graphics only since they
are difficult to exploit.

4.1.1 The Considered Algorithm Set

Let us denote by A the set of the 42 algorithms that appear in
the selected papers of the corpus C. The published pairwise
comparisons can be described by a multigraph Gc: the

vertices represent the algorithms of A and an edge is added
between two algorithms when they are compared in a paper.
In the graph layout (Figure 2), the vertex diameter is propor-
tional to the frequency of the associated algorithm and the
edge set between a vertex pair is represented by a single
edge whose width is proportional to the set cardinality.
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Fig. 2. Algorithm comparison multigraph for the 27 selected articles. The
larger and the darker blue, the higher the weights of the edges and
degrees of the vertices. The number of articles in which each algorithm
appears is in parentheses.

The obtained layout is very different from the one of
a complete graph which would be the ideal model, but
far from reality, where each algorithm is compared to all
others in many experiments. However, it highlights two

11



01
L

o
ss

A
U

C

A
cc

u
ra

cy

A
v

er
ag

eP
re

ci
si

o
n

C
o

v
er

ag
e

E
rr

o
rR

at
e

F
1

H
am

m
in

g
L

o
ss

M
ac

ro
F

1

M
ic

ro
F

1

O
n

eE
rr

o
r

P
@

3

P
re

ci
si

o
n

R
an

k
in

g
L

o
ss

R
ec

al
l

S
u

b
se

tA
cc

u
ra

cy

M
ac

ro
P

re
ci

si
o

n

M
ic

ro
P

re
ci

si
o

n

01Loss 1
AUC 0 9

Accuracy 1 0 3
AveragePrecision 0 1 0 1

Coverage 0 1 0 1 1
ErrorRate 0 0 0 0 0 1

F1 1 0 3 0 0 0 7
HammingLoss 1 3 2 1 1 0 3 12

MacroF1 0 3 0 1 1 0 0 5 7
MicroF1 0 3 0 1 1 0 0 5 7 7

OneError 0 3 0 1 1 0 0 2 2 2 5
P@3 0 2 0 0 0 0 0 1 0 0 4 4

Precision 0 0 1 0 0 0 2 1 0 0 0 0 2
RankingLoss 0 1 0 1 1 0 0 1 1 1 1 0 0 1

Recall 0 0 1 0 0 0 2 1 0 0 0 0 2 0 2
SubsetAccuracy 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1
MacroPrecision 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
MicroPrecision 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

TABLE 4
Matrix of the quality measure co-occurrences computed on the 27-article set. The occurrence of each measure is on the diagonal.

communities that correspond to two families of algorithms
which have been mostly studied separately. This confirms
that the published comparisons have been done on subsets
of algorithms which share common properties. The first
community C1 regroups approaches that reduce the feature
space dimension and the second one C2 regroups label
space and co-label and feature space reduction algorithms
including those developed in the context of extreme multi-
label learning. Moreover, two vertices (CCA and MDDM)
appear at the intersection of C1 and C2: they have been
considered as baselines for a long time and CCA, which
reduces both feature and label spaces, naturally belongs to
both communities. Three algorithms (BiDir, MLSVM, MSE)
are linked to CCA or MDDM only and consequently, in
addition to C1 and C2, we consider an ”in-between subset”
C1−2 which includes those five algorithms. Edges between
C1, C2 and C1−2 are mainly originated from the reference
[62] which is a recent comparison of different multi-label
classification approaches. The vertex diameters allow high-
lighting the most frequently occurring methods which are
often mentioned among the pioneers in their community:
CCA, MDDM, LEML, PCA, CS, PLST and CPLST. In the
following we aim at identifying the significant relationships
from the multigraph Gc.

4.1.2 The Evaluation Measures

Table 4 shows the occurrences and co-occurrences of the
different measures used in the articles of the corpus C. It
underlines the great variability of the considered criteria,
and the frequency distribution allows to distinguish the
most popular measures: Hamming Loss (44%), AUC (33%),
F1 (26%), Macro-F1 (26%), and Micro-F1 (26%). In addition
to these observations, our selection of the suitable measures
for the meta-analysis is guided by a recent comparison [154]
which has experimentally proved that some measures are
highly correlated whereas some others are independent.

More precisely, their authors have tested a set of 16 measures
(those present in Table 4 plus some variants) and have
compared them with the Pearson and Spearman correlations
on 100 000 simulations. Results show that Hamming Loss,
Coverage and Ranking Loss are independent, but here only
Hamming Loss is taken into account because the frequency
of the two others is very low on C. Results also detect
a strong correlation between the measures of a large set
M = {Subset Accuracy or 01Loss, Accuracy, Precision,
Recall, F1, One Error, Average Precision, Micro Precision,
Macro Precision, Micro F1, Macro F1, Micro Recall, Macro
Recall}. Consequently, when several measures of M are
used for a comparison of two algorithms in a same paper,
we only retain the most frequent one. Let us precise that
AUC and P@3 have not been considered in [154]. But they
have been here added to M as the computation on our
data of their Pearson correlation coefficients with the other
measures of M confirms the correlation: its value is ranging
between 0.829 (with Macro-F1) and 0.576 (with One-error)
for AUC and is close to 1 (with One-error) for P@3. The
two studies with Hamming Loss and the subset of selected
measures from M (respectively referred to in the following
as H and M) are conducted separately on the article subsets
of C which take them into account (12 articles for H and 24
for M).

4.1.3 The Consensus Based Approach

Our meta-analysis inspired by the consensus theory [33] [34]
is decomposed into two successive steps: (i) filtering the sta-
tistically significant domination relationships for the mea-
sures H and M, and (ii) extracting the dominant algorithms
for each measure. Finally we identify the algorithms which
statistically dominate the others in the two cases. With a
similar process we complete the analysis by distinguishing
the algorithms which are dominated.
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Fig. 3. Domination multigraphs for Hamming Loss (a) and for the set of correlated measures M (b). Each directed edge is labeled with the reference
of the article from which it is extracted. Different colors are associated to different articles.

More precisely, the significant domination relationships
are extracted with a Friedman and post-hoc Nemeyi tests
[155] with a standard confidence level α = 0.05. And, for
each measure, we build a directed domination multigraph
- denoted respectively by GD(H) and GD(M)- from Gc

by retaining the significant edges and by orienting them
according to the direction of the domination: a directed edge
from Ai to Aj means that the algorithm Ai significantly
outperforms the algorithm Aj in a paper of the corpus C. The
first stage of a topological sorting [156] on each multigraph
allows identifying the subsets D(H) and D(M) of A which
contains the dominant algorithms: Ai is dominant when
its indegree is null and its outdegree is strictly positive.
Similarly, the dominated algorithms are those with a null

outdegree and a strictly positive indegree.

4.2 Results

A multigraph overview reveals communities of algorithms
with similar behaviors. A detailed analysis of these commu-
nities helps identifying the dominant algorithms.

4.2.1 Algorithm community detection

The two directed multigraphs GD(H) and GD(M) are rep-
resented in Figure 3. They both have a lot less relationships
than the co-occurrence graph Gc. With greater alpha thresh-
olds additional directed edges appear but the confidence
that can be placed in them is weaker. As a consequence, for
the standard threshold α = 0.05, the directed multigraphs
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become digraphs with at most one directed edge between
each vertex pairs and some algorithms of A with a null
degree are no more represented. Indeed in some articles the
number of experiments is too low to detect a domination
which is statistically significant. Table 5 indicates, for each
article of C and regardless of the considered quality measure,
the ratio CD/rmax between the critical difference CD of the
post-hoc Neymeni test for α = 0.05 and the theoretical
maximal ranking difference rmax between the compared
algorithms. If q algorithms are compared, then rmax = q − 1.
The higher this ratio is, the fewer the expected significant
relationships are, and when it is greater than 1 none of them
can be extracted.

Ref. CD/rmax Ref. CD/rmax Ref. CD/rmax

[35] 0.613 [79] 0.800 [92] 0.576
[37] 0.754 [81] 0.750 [96] 1 0.462
[48] 0.530 [91] 1.657 [96] 2 1.132
[88] 0.653 [49] 0.800 [97] 0.764
[53] 0.877 [51] 0.693 [99] 1 0.867
[67] 1.386 [82] 0.453 [99] 2 0.676
[68] 1.106 [85] 0.800 [100] 0.828
[73] 0.871 [86] 1.172 [87] 0.778
[76] 0.591 [90] 0.750 [84] 0.762
[78] 0.623 [59] 0.672

TABLE 5
Ratio between the critical difference CD of the post-hoc Neymeni test

for α = 0.05 and the theoretical maximal ranking difference rmax

between the algorithms compared in a given paper. Repeated
references are associated to multiple sets of experimental

comparisons.

In the multigraphs GD(H) and GD(M), the communities
identified in sub-section 4.1.1 are associated to different con-
nected components: algorithms from different communities
have been infrequently compared and are not linked by a
significant relationship. Hence, we present the dominant
methods for each community. Results are summarized in
Table 6. Due to the bibliographic effect which favors the
presence of the best approaches at each period, the most
recent (resp. oldest) approaches are more likely to be dom-
inant (resp. dominated) but there are noticeable exceptions
such as MDDM and MLLS.

D(M) D(H)
C1 C1−2 C2 C1 C1−2 C2

MVMD BMLPL MDDM MVMD MLC-BMaD MDDM

SSMDDM REML MLLS SSMDDM

HOPLS SLEEC BiDir LS-CCA
LDA FaIE HCCA

SDSR

TABLE 6
Dominant algorithms detected with the statistical test with α = 0.05 for
each measure H and M and for each community of the multigraph Gc.

Dominant methods for the two measures appear in bold. Different
significant thresholds (α = 0.01 to 0.1) have been tested and, except
for REML for α = 0.01, the highlighted algorithms remain at the top.

4.2.2 In-depth comparison

The three methods (MVMD, SSMDDM and MDDM) that
dominate for both measures belong to community C1 (label-
dependent feature space reduction methods) or to C1−2 and
they have close strategies. Let us recall that MDDM mini-
mizes the Hilbert Schmidt Independence Criteria between

the reduced feature space and the label space and that
MVMD and SSMDDM are hybrid methods whose objective
is a trade-off between the objective of MDDM and that of
another method (see Table 1a). MVDM and SSMDDM are
recent approaches which have been extensively compared
to others but in a single paper whereas MDDM, which is
older, resists to a larger number of comparisons.

However, to the best of our knowledge, these three meth-
ods have not been directly compared to one another. Conse-
quently, in an attempt to better understand their behaviors,
we have compared them within the same framework. More
precisely, the algorithms have been re-implemented (Python
language) and tested in the same computational environ-
ment (standard computer with 16Gb of RAM). We used ten
multi-label datasets often selected in previous multi-label
learning studies. They are divided into train/test sets in the
Python library scikit-multilearn2. The feature (resp. label)
dimensionality varies from 72 to 1836 (resp. from 6 to 983).
The reduction methods are combined with the ML-kNN
classifier and the parameter settings are extracted from the
publications. For each method, ten dimensions kx have been
tested (from 10 to 100 percent of the feature dimensionality
nx) and the best results with the F1-score in the measure
set M and with the Hamming Loss (H) are presented
in Figure 4. With the average rank criterion, SSMDMM
outperforms MVDM and MDDM for both measures and
MVDM is better (resp. worse) than MDDM for M (resp.
H). However, when getting into details, we observe that the
results may depend on the datasets: e.g. SSMDMM obtains
poor results on the Birds’ dataset. This confirms the interest
of the meta-analysis which aggregates results gathered on
different experiments involving a variety of datasets. Even
if a method outperforms the others on average on a limited
number of datasets, it is also worth considering those that
do not dominate it in a meta-analysis.

The community C2 is very small in GD(H): the authors
of the algorithms of C2 are mostly interested in data with
a large number of labels and give more importance to
ranking measures than to global classification errors such
as Hamming Loss. Consequently, there are no methods of
C2 simultaneously dominant for the two measures. For the
M measure, SLEEC and REML dominate in several papers.
These methods have been especially designed for extreme
multi-label learning, and contrary to the others which build
low-rank data representations that can miss the information
brought by the long tail label distribution, they compute
high-rank representation which capture more useful infor-
mation. Due to their efficiency, they have gained popularity
in recent years.

In addition to these most visible results, it is interest-
ing to identify the approaches that are dominant for one
measure and dominated for the other. LS-CCA and HCCA
(resp. LDA) are dominant in GD(H) (resp. GD(M)) and
dominated in GD(M) (resp. GD(H)). These methods are
not intrinsically expected to be more efficient for Hamming
Loss than for the M measures, and due to the absence of
correlation between M and H, it is not surprising to find
different behaviors. This result confirms the interest of this
double analysis.

2. http://scikit.ml/
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Fig. 4. Comparisons of the dominant algorithms (MDDM, MVMD and SSMDDM) on ten multilabel datasets for F1-score and Hamming Loss.

The dominated methods for the two measures are HSL,
DMLDA, MLSI, and CCA. They all belong to C1 or C1−2

due to the lack of Hamming Loss measurements in C2. They
illustrate the bibliographic effect: they are early methods
that have been dominated by more recent proposals. More
precise interpretations should be made very carefully. HSL
performs poorly in the available experiments but it has been
considered only once in the corpus C. Moreover, CCA might
have been implemented in the majority of papers with a
version that is not the optimal one. In the experiments,
the feature, label, and feature/label covariance matrices
are often badly conditioned due to the multi-label dataset
characteristics and it is known that the integration of a slight
regularization with a Penrose generalized inversion leads to
much better performances [92].

For the set of algorithms from A which do not belong to
these two extremal classes, two cases must be considered.
For the algorithms which are not in the GD graphs, our
meta-analysis cannot conclude anything more than the lack
of significance of the comparisons which take them into
account. For the others, which have both non-null indegree
and non-null outdegree, a reasonable recommendation is to
replace them with one of the dominant algorithms of their
community defined for a similar task.

5 CONCLUSION

This review is written in a context where multi-label clas-
sification is getting a growing attention and meets today’s
needs to process high dimensional data. To tackle the com-
plexity of the problems, a large number of multi-label di-
mensionality reduction methods have been published in the
last decades. These publications greatly enrich the literature
but it remains difficult to link them, to pick the right one
for the problem at hand and to determine the work that
remains to be done in the topic. Our review attempts to
provide these elements. More precisely, we have proposed
an overview of the methods through a unifying typology
completed by a generalized formulation of the problems
and a meta-analysis of the experimental results which can
be used as a guideline for algorithm selection and which
gives insights for future research.

Overview of the methods: A construction of a typology has
been required to disentangle the links between the various
methods. It is based on three major criteria. The first one is
the space that the methods reduce (feature space, label space
or both). Feature space reduction approaches are prevalent
for now but with the increasing interest in extreme multi-
label learning, methods that also reduce the label space
dimensionality are quickly catching up. The second one
distinguish the methods which reduce one space by taking
into account the information carried by the other from
those which perform the reduction independently. Unlike
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few years ago, dependent methods predominate today: by
preserving the link between the attributes and the labels,
they are more efficient for the classification task. The third
criterion is the presence/absence of coupling between the
classifier and the dimensionality reduction strategy. Today,
the two scenarios are very imbalanced and the large ma-
jority of the approaches is not coupled with the classifier.
In addition to these major structuring aspects, the methods
differ in two additional components: the type of transforma-
tion (implicit, explicit) that they perform and the constraints
that they impose on the problem resolution. Although these
differences do not distinguish the approaches on their very
nature, they can heavily impact their efficiency and deploy-
ability in real-world applications.

Despite all the variability highlighted by the typology,
strong similarities between the problems are observable and
we have introduced two generic formulations to identify
them. The first one scan the problems that rely on loss
functions and constraints which can be formulated under
a matrix trace minimization and solved by an eigendecom-
position. They represent more than half the publications. A
more general formulation covers almost the integrality of
the publications by integrating the whole set of the imple-
mented ingredients. The combinatorics of these ingredients
gives a glimpse of the variety of the approaches. Although
a wide spectrum of formulations has been explored, most
of the methods focus on ingredients that have interesting
properties in terms of numerical optimization (e.g. differen-
tiable, convex, smooth). Then, the chosen resolution method
is essential because it affects the scalability (i.e. temporal
and spacial complexities) of the reduction algorithm and
therefore its potential applications.

Experimental comparisons of the methods: In addition to the
theoretical specificities of the approaches, the experimental
results remain a major selection criterium. A meta-analysis
has been conducted to identify the most significant algo-
rithm performances from the numerical comparisons inven-
toried in the publications. The results depend on both the
used quality measure and the main information guiding the
dimensionality reduction (feature space v.s label space or co-
label and feature space). Three methods MVMD, SSMDDM
and MDDM based on feature space reduction dominate for
the two uncorrelated retained measures (Hamming Loss
and a selected measure among a large set of correlated
ones including Micro F1, Macro F1 and AUC). For the
latter, results also highlights SLEEC and REML which are
recent approaches especially designed for extreme multi-
label learning. A dual examination of domination relation-
ships completes the analysis by pointing out the methods
dominated for the two measures. However, from a method-
ological point of view the generalization of the conclusions
should be considered cautiously. As numerous pairwise
comparisons are absent of the published experiments, the
meta-analysis has been computed on a non-complete graph.
Moreover, the heterogeneity of both the datasets used in the
different studies and the number of times each algorithm
was evaluated add biases to the comparisons. However,
despite these limitations, we believe that this first meta-
analysis can help identify recurrent properties in the most
efficient approaches and also flaws in the experimental
protocols (e.g. the lack of some pairwise comparisons). More

broadly speaking, the growth of publications in machine
learning will certainly foster meta-analysis procedures in the
near future.

Insights for future research: The rich literature on dimen-
sionality reduction for multi-label classification offers some
major leads of improvement. Theoretical works on stabil-
ity and robustness guaranties are still at their infancy. In
particular, robustness to sampling, to noise, to geometric
transformations and to the type of data (e.g. sparse, dense)
are major concerns and are almost never addressed. Fur-
thermore, the combinatorics of the key components in the
generic formulation could be exploited for future proposals.
The coupling between dimensionality reduction and classi-
fication especially appears, intuitively and in the experimen-
tal comparisons, as a promising component for improving
today’s state-of-the-art. Finally, the meta-analysis opens a
discussion towards the collective construction of a shared
experimental protocol which should allow evaluating the
performances with limited bias.
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