C. S. Dandeneau, Y. Jeon, C. T. Shelton, T. K. Plant, D. P. Cann et al., Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts, Thin Solid Films, vol.517, issue.15, pp.4448-4454, 2009.

N. D. Hoa, S. Y. An, N. Q. Dung, N. Van-quy, and D. Kim, Synthesis of p-type semiconducting cupric oxide thin films and their application to hydrogen detection, Sens. Actuators B, Chem, vol.146, issue.1, pp.239-244, 2010.

C. Wang, X. Q. Fu, X. Y. Xue, Y. G. Wang, and T. H. Wang, Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption, Nanotechnology, vol.18, issue.14, pp.145506-145511, 2007.

H. T. Hsueh, Ethanol gas sensor of crabwise CuO nanowires prepared on glass substrate, J. Electrochem. Soc, vol.158, issue.4, pp.106-109, 2011.

P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong et al., Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction, Ceram. Int, vol.35, issue.2, pp.649-652, 2009.

G. Zhu, H. Xu, Y. Xiao, Y. Liu, A. Yuan et al., Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures, ACS Appl. Mater. Interfaces, vol.4, issue.2, pp.744-751, 2012.

A. S. Zoolfakar, Nanostructured copper oxides as ethanol vapour sensors, Sens. Actuators B, Chem, vol.185, pp.620-627, 2013.

L. Liao, Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors, Nanotechnology, vol.20, issue.8, p.85203, 2009.

Y. Kim, I. Hwang, S. Kim, C. Lee, and J. Lee, CuO nanowire gas sensors for air quality control in automotive cabin, Sens. Actuators B, Chem, vol.135, issue.1, pp.298-303, 2008.

X. Zhou, Q. Cao, H. Huang, P. Yang, and Y. Hu, Study on sensing mechanism of CuO-SnO 2 gas sensors, Mater. Sci. Eng. B, vol.99, issue.1-3, pp.44-47, 2003.

J. Chen, K. Wang, L. Hartman, and W. Zhou, H 2 S detection by vertically aligned CuO nanowire array sensors, J. Phys. Chem. C, vol.112, issue.41, pp.16017-16021, 2008.

N. S. Ramgir, Sub-ppm H 2 S sensing at room temperature using CuO thin films, Sens. Actuators B, Chem, vol.151, issue.1, pp.90-96, 2010.

Q. Zhang, CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Prog. Mater. Sci, vol.60, pp.208-337, 2014.

N. D. Hoa, N. Van-quy, H. Jung, D. Kim, H. Kim et al., Synthesis of porous CuO nanowires and its application to hydrogen detection, Sens. Actuators B, Chem, vol.146, issue.1, pp.266-272, 2010.

S. Aygün and D. Cann, Hydrogen sensitivity of doped CuO/ZnO heterocontact sensors, Sens. Actuators B, Chem, vol.106, issue.2, pp.837-842, 2005.

O. Lupan, Influence of CuO nanostructures morphology on hydrogen gas sensing performances, Microelectron. Eng, vol.164, pp.63-70, 2016.

P. Samarasekara, N. T. Kumara, and N. U. Yapa, Sputtered copper oxide (CuO) thin films for gas sensor devices, J. Phys., Condens. Matter, vol.18, issue.8, pp.2417-2420, 2006.

C. V. Reddy, S. V. Manorama, and V. J. Rao, Preparation and characterization of ferrites as gas sensor materials, J. Mater. Sci. Lett, vol.19, issue.9, pp.775-778, 2000.

S. Singh, B. C. Yadav, R. Prakash, B. Bajaj, and J. R. Lee, Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor, Appl. Surf. Sci, vol.257, issue.24, pp.10763-10770, 2011.

S. Tao, F. Gao, X. Liu, and O. T. Sørensen, Preparation and gassensing properties of CuFe 2 O 4 at reduced temperature, Mater. Sci. Eng. B, vol.77, issue.2, pp.473-479, 2000.

T. P. Sumangala, C. Mahender, A. Barnabe, N. Venkataramani, and S. Prasad, Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique, J. Magn. Magn. Mater, vol.418, pp.48-53, 2016.

T. P. Sumangala, Study on the effect of cuprite content on the electrical and CO 2 sensing properties of cuprite-copper ferrite nanopowder composites, J. Alloys Compounds, vol.695, pp.937-943, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01764766

T. Ishihara, K. Kometani, M. Hasida, and Y. Takita, Application of mixed oxide capacitor to the selective carbon dioxide sensor: I. Measurement of carbon dioxide sensing characteristics, J. Electrochem. Soc, vol.138, issue.1, pp.173-176, 1991.

Y. F. Gu, H. M. Ji, B. Zhang, and T. X. Xu, Preparation and CO 2 gas sensitive properties of CuO-SrTiO 3 -based semiconductor thin films, Key Eng. Mater, pp.311-314, 2007.

J. C. Xu, G. W. Hunter, D. Lukco, C. Liu, and B. J. Ward, Novel carbon dioxide microsensor based on tin oxide nanomaterial doped with copper oxide, IEEE Sensors J, vol.9, issue.3, pp.235-236, 2009.

G. Zhang and M. Liu, Effect of particle size and dopant on properties of SnO 2 -based gas sensors, Sens. Actuators B, Chem, vol.69, issue.2, pp.144-152, 2000.

A. Chapelle, Improved semiconducting CuO/CuFe 2 O 4 nanostructured thin films for CO 2 gas sensing, Sens. Actuators B, Chem, vol.204, pp.407-413, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01170563

A. Barnabé, A. Chapelle, L. Presmanes, and P. Tailhades, Copper and iron based thin film nanocomposites prepared by radio frequency sputtering. Part I: Elaboration and characterization of metal/oxide thin film nanocomposites using controlled in situ reduction process, J. Mater. Sci, vol.48, issue.9, pp.3386-3394, 2013.

A. Chapelle, A. Barnabé, L. Presmanes, and P. Tailhades, Copper and iron based thin film nanocomposites prepared by radio-frequency sputtering. Part II: Elaboration and characterization of oxide/oxide thin film nanocomposites using controlled ex-situ oxidation process, J. Mater. Sci, vol.48, issue.8, pp.3304-3314, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00864120

M. Seo, M. Yuasa, T. Kida, J. Huh, K. Shimanoe et al., Gas sensing characteristics and porosity control of nanostructured films composed of TiO 2 nanotubes, Sens. Actuators B, Chem, vol.137, issue.2, pp.513-520, 2009.

B. Ahn, B. J. Mccoy, and J. M. Smith, Separation of adsorption and surface reaction rates: Dynamic studies in a catalytic slurry reactor, AIChE J, vol.31, issue.4, pp.541-550, 1985.

L. A. Arrua, B. J. Mccoy, and J. M. Smith, Effect of catalyst poisoning on adsorption and surface reaction rates in liquid-phase hydrogenation, Ind. Eng. Chem. Res, vol.29, issue.6, pp.1050-1057, 1990.

K. Mukherjee and S. B. Majumder, Analyses of response and recovery kinetics of zinc ferrite as hydrogen gas sensor, J. Appl. Phys, vol.106, issue.6, p.64912, 2009.

S. Ahlers, G. Müller, and T. Doll, A rate equation approach to the gas sensitivity of thin film metal oxide materials, Sens. Actuators B, Chem, vol.107, issue.2, pp.587-599, 2005.

S. K. Biswas and P. Pramanik, Studies on the gas sensing behaviour of nanosized CuNb 2 O 6 towards ammonia, hydrogen and liquefied petroleum gas, Sens. Actuators B, Chem, vol.133, issue.2, pp.449-455, 2008.

A. Chapelle, Structural and gas-sensing properties of CuO-Cu x Fe 3?x O 4 nanostructured thin films, Sens. Actuators B, Chem, vol.153, issue.1, pp.117-124, 2011.

M. Tonezzer, D. T. Le, T. Q. Huy, and S. Iannotta, Dualselective hydrogen and ethanol sensor for steam reforming systems, Sens. Actuators B, Chem, vol.236, pp.1011-1019, 2016.

N. Barsan, M. Schweizer-berberich, and W. Göpel, Fundamental and practical aspects in the design of nanoscaled SnO 2 gas sensors: A status report, Fresenius' J. Anal. Chem, vol.365, issue.4, pp.287-304, 1999.

Y. Chen, C. L. Zhu, and G. Xiao, Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method, Nanotechnology, vol.17, issue.18, pp.4537-4541, 2006.

E. Wongrat, P. Pimpang, and S. Choopun, Comparative study of ethanol sensor based on gold nanoparticles: ZnO nanostructure and gold: ZnO nanostructure, Appl. Surf. Sci, vol.256, issue.4, pp.968-971, 2009.

L. Rajan, P. Chinnamuthan, V. Krishnasamy, and V. Sahula, An investigation on electrical and hydrogen sensing characteristics of RF sputtered ZnO thin-film with palladium Schottky contacts, IEEE Sensors J, vol.17, issue.1, pp.14-21, 2017.

A. Umar, J. Lee, R. Kumar, O. Al-dossary, A. A. Ibrahim et al., Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures, Mater. Des, vol.105, pp.16-24, 2016.

A. Guyton and J. Hall, Physical principles of gas exchange; diffusion of oxygen and carbon dioxide through the respiratory membrane, Textbook of Medical Physiology, p.39, 2005.

J. D. Fenske and S. E. Paulson, Human breath emissions of VOCs, J. Air Waste Manage. Assoc, vol.49, issue.5, pp.594-598, 1999.

F. Wang, A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol-gel method, RSC Adv, vol.6, issue.83, p.79343, 2016.

T. Morimoto, M. Nagao, and F. Tokud, Desorbability of chemisorbed water on metal oxide surfaces. I. Desorption temperature of chemisorbed water on hematite, rutile and zinc oxide, Bull. Chem. Soc. Jpn, vol.41, issue.7, pp.1533-1537, 1968.

A. Chapelle, F. Oudrhiri-hassani, L. Presmanes, A. Barnabé, and P. Tailhades, CO 2 sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin film, Appl. Surf. Sci, vol.256, pp.4715-4719, 2010.