S. Kachalaki, M. Ebrahimi, L. M. Khosroshahi, S. Mohammadinejad, and B. Baradaran, Cancer chemoresistance; biochemical and molecular aspects: a brief overview, Eur. J. Pharm. Sci, vol.89, pp.20-30, 2016.

L. Groth-pedersen and M. Jaattela, Combating apoptosis and multidrug resistant cancers by targeting lysosomes, Cancer Lett, vol.332, pp.265-274, 2013.

U. Repnik, M. Hafner-cesen, and B. Turk, Lysosomal membrane permeabilization in cell death: concepts and challenges, Mitochondrion, vol.19, pp.49-57, 2014.

C. Sanchez, D. E. Hajj-diab, V. Connord, P. Clerc, E. Meunier et al., Targeting a G-proteincoupled receptor overexpressed in endocrine tumors by magnetic nanoparticles to induce cell death, ACS Nano, vol.8, pp.1350-1363, 2014.

M. Domenech, I. Marrero-berrios, M. Torres-lugo, and C. Rinaldi, Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields, ACS Nano, vol.7, pp.5091-5101, 2013.

M. Creixell, A. C. Bohorquez, M. Torres-lugo, and C. Rinaldi, EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise, ACS Nano, vol.5, pp.7124-7129, 2011.

D. Fourmy, J. Carrey, and V. Gigoux, Targeted nanoscale magnetic hyperthermia: challenges and potentials of peptide-based targeting, Nanomedicine (Lond.), vol.10, pp.893-896, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01990989

J. C. Reubi, Targeting CCK receptors in human cancers, Curr. Top. Med. Chem, vol.7, pp.1239-1242, 2007.

A. C. Silva, T. R. Oliveira, J. B. Mamani, S. M. Malheiros, L. Malavolta et al., Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment, Int. J. Nanomedicine, vol.6, pp.591-603, 2011.

R. P. Tan, J. Carrey, and M. Respaud, Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power, Phys. Rev. B, vol.90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01994693

A. Gewies and S. Grimm, Cathepsin-B and cathepsin-L expression levels do not correlate with sensitivity of tumour cells to TNF-alpha-mediated apoptosis, Br. J. Cancer, vol.89, pp.1574-1580, 2003.

W. Li, X. M. Yuan, G. Nordgren, H. Dalen, G. M. Dubowchik et al., Induction of cell death by the lysosomotropic detergent MSDH, FEBS Lett, vol.470, pp.35-39, 2000.

T. Uchimoto, H. Nohara, R. Kamehara, M. Iwamura, N. Watanabe et al., Mechanism of apoptosis induced by a lysosomotropic agent, L-Leucyl-L-leucine methyl ester, Apoptosis, vol.4, pp.357-362, 1999.

T. Cirman, K. Oresic, G. D. Mazovec, V. Turk, J. C. Reed et al., Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins, J. Biol. Chem, vol.279, pp.3578-3587, 2004.

S. Leung-theung-long, E. Roulet, P. Clerc, C. Escrieut, S. Marchal-victorion et al., Essential interaction of Egr-1 at an islet-specific response element for basal and gastrin-dependent glucagon gene transactivation in pancreatic alpha-cells, J. Biol. Chem, vol.280, pp.7976-7984, 2005.

F. Watson, R. S. Kiernan, D. G. Deavall, A. Varro, and R. Dimaline, Transcriptional activation of the rat vesicular monoamine transporter 2 promoter in gastric epithelial cells: regulation by gastrin, J. Biol. Chem, vol.276, pp.7661-7671, 2001.

V. Connord, P. Clerc, N. Hallali, D. E. Hajj-diab, D. Fourmy et al., Real-time analysis of magnetic hyperthermia experiments on living cells under a confocal microscope, Small, vol.11, pp.2437-2445, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01990950

T. Kurz, B. Gustafsson, and U. T. Brunk, Intralysosomal iron chelation protects against oxidative stress-induced cellular damage, FEBS J, vol.273, pp.3106-3117, 2006.

P. Ghosh, C. Kumar, A. N. Samanta, and S. Ray, Comparison of a new immobilized Fe3+ catalyst with homogeneous Fe3 + H2O2 system for degradation of 2,4-dinitrophenol, J. Chem. Technol. Biotechnol, vol.87, pp.914-923, 2012.

N. D. Yang, S. H. Tan, S. Ng, Y. Shi, J. Zhou et al., Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin, J. Biol. Chem, vol.289, pp.33425-33441, 2014.

P. Boya and G. Kroemer, Lysosomal membrane permeabilization in cell death, Oncogene, vol.27, pp.6434-6451, 2008.

H. Cable and J. B. Lloyd, Cellular uptake and release of two contrasting iron chelators, J. Pharm. Pharmacol, vol.51, pp.131-134, 1999.

S. Dikalov, Cross talk between mitochondria and NADPH oxidases, Free Radic, Biol. Med, vol.51, pp.1289-1301, 2011.

F. Mazuel, A. Espinosa, N. Luciani, M. Reffay, R. L. Borgne et al., Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels, ACS Nano, vol.10, pp.7627-7638, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01518784

F. Mazuel, A. Espinosa, G. Radtke, M. Bugnet, S. Neveu et al., Magneto-thermal metrics can mirror the long-term intracellular fate of magneto-plasmonic nanohybrids and reveal the remarkable shielding effect of gold, Adv. Funct. Mater, p.27, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01479779

R. J. Wydra, P. G. Rychahou, B. M. Evers, K. W. Anderson, T. D. Dziubla et al., The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity, Acta Biomater, vol.25, pp.284-290, 2015.

A. Riedinger, P. Guardia, A. Curcio, M. A. Garcia, R. Cingolani et al., Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles, Nano Lett, vol.13, pp.2399-2406, 2013.

H. Huang, S. Delikanli, H. Zeng, D. M. Ferkey, and A. Pralle, Remote control of ion channels and neurons through magnetic-field heating of nanoparticles, Nat. Nanotechnol, vol.5, pp.602-606, 2010.

Y. Xu, J. Wang, X. Song, R. Wei, F. He et al., Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats, Brain Res. Bull, vol.120, pp.97-105, 2016.

T. Nomura and N. Katunuma, Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells, J. Med. Invest, vol.52, pp.1-9, 2005.

B. Turk, J. G. Bieth, I. Bjork, I. Dolenc, D. Turk et al., Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins, Biol. Chem. Hoppe Seyler, vol.376, pp.225-230, 1995.

C. S. Pillay and C. Dennison, Cathepsin B stability, but not activity, is affected in cysteine:cystine redox buffers, Biol. Chem, vol.383, pp.1199-1204, 2002.

D. J. Buttle, M. Murata, C. G. Knight, and A. J. Barrett, CA074 methyl ester: a proinhibitor for intracellular cathepsin B, Arch. Biochem. Biophys, vol.299, pp.377-380, 1992.

L. Galluzzi, J. M. Bravo-san-pedro, I. Vitale, S. A. Aaronson, J. M. Abrams et al., Cell Death Differ, vol.22, pp.58-73, 2015.

L. Galluzzi, I. Vitale, J. M. Abrams, E. S. Alnemri, E. H. Baehrecke et al., Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death, vol.19, pp.107-120, 2012.

G. Fantuzzi and C. A. Dinarello, Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1), J. Clin. Immunol, vol.19, pp.1-11, 1999.

E. A. Miao, J. V. Rajan, and A. Aderem, Caspase-1-induced pyroptotic cell death, Immunol. Rev, vol.243, pp.206-214, 2011.

P. R. Watson, A. V. Gautier, S. M. Paulin, A. P. Bland, P. W. Jones et al., Salmonella enterica serovars typhimurium and Dublin can lyse macrophages by a mechanism distinct from apoptosis, Infect. Immun, vol.68, pp.3744-3747, 2000.

J. L. Scemama, D. Fourmy, A. Zahidi, L. Pradayrol, C. Susini et al., Characterisation of gastrin receptors on a rat pancreatic acinar cell line (AR42J). A possible model for studying gastrin mediated cell growth and proliferation, Gut, vol.28, pp.233-236, 1987.

R. Magnan, B. Masri, C. Escrieut, M. Foucaud, P. Cordelier et al., Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists, J. Biol. Chem, vol.286, pp.6707-6719, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00615477

W. A. Tseng, T. Thein, K. Kinnunen, K. Lashkari, M. S. Gregory et al., NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration, Invest. Ophthalmol. Vis. Sci, vol.54, pp.110-120, 2013.

V. Derangere, A. Chevriaux, F. Courtaut, M. Bruchard, H. Berger et al., Liver X receptor beta activation induces pyroptosis of human and murine colon cancer cells, Cell Death Differ, vol.21

, the European Community's Seventh Framework Programm under grant agreement no. 262943 "MULTIFUN" and INSERM grant no. PC201310. We greatly appreciate the gift of plasmids encoding GFP CathB WT and GFP CathB C29A from Klaudia Brix (Jacobs University Bremen, Germany) and pMSCV2.2 IRES GFP Caspase 1 C284A from Petr Broz, Conflicts of interest, pp.1914-1924, 2014.

M. A. Brennan and B. T. Cookson, Salmonella induces macrophage death by caspase-1-dependent necrosis, Mol. Microbiol, vol.38, pp.31-40, 2000.

E. A. Miao, I. A. Leaf, P. M. Treuting, D. P. Mao, M. Dors et al., Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria, Nat. Immunol, vol.11, pp.1136-1142, 2010.

P. Broz, J. Moltke, J. W. Jones, R. E. Vance, and D. M. Monack, Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing, Cell Host Microbe, vol.8, pp.471-483, 2010.

B. Guey, M. Bodnar, S. N. Manie, A. Tardivel, and V. Petrilli, Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.17254-17259, 2014.

F. Martinon, A. Mayor, and J. Tschopp, The inflammasomes: guardians of the body, Annu. Rev. Immunol, vol.27, pp.229-265, 2009.

N. A. Thornberry, H. G. Bull, J. R. Calaycay, K. T. Chapman, A. D. Howard et al., A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes, Nature, vol.356, pp.768-774, 1992.

K. Vancompernolle, F. Van-herreweghe, G. Pynaert, M. Van-de-craen, K. De et al., Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity, FEBS Lett, vol.438, pp.150-158, 1998.

H. Hentze, X. Y. Lin, M. S. Choi, and A. G. Porter, Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin, Cell Death Differ, vol.10, pp.956-968, 2003.

V. Hornung, F. Bauernfeind, A. Halle, E. O. Samstad, H. Kono et al., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization, Nat. Immunol, vol.9, pp.847-856, 2008.

Z. L. Newman, S. H. Leppla, and M. Moayeri, CA-074Me protection against anthrax lethal toxin, Infect. Immun, vol.77, pp.4327-4336, 2009.