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G-equivariance of formal models of flag varieties

Andrés Sarrazola Alzate

Abstract

Let G be a split connected reductive group scheme over the ring of integers o of a finite extension L|ℚp and � ∈ X(T )
an algebraic character of a split maximal torus T ⊆ G. Let us also consider Xrig the rigid analytic flag variety of G and
G = G(L). In the first part of this paper, we introduce a family of �-twisted differential operators on a formal model Y
of Xrig. We compute their global sections and we prove coherence together with several cohomological properties. In
the second part, we define the category of coadmissible G-equivariant arithmetic D(�)-modules over the family of formal
models of the rigid flag variety Xrig. We show that if � is such that � + � is dominant and regular (� being the Weyl
character), then the preceding category is anti-equivalent to the category of admissible locally analytic G-representations,
with central character �. In particular, we generalize the results in [25] for algebraic characters.

Key words: Flag varieties, formal models, Beilinson-Bernstein correspondence, admissible locally analytic representa-
tions, localization.
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1 Introduction
Let L|ℚp be a finite extension and o its ring of integers. Throughout this work G will always denote a split connected
reductive group scheme over o. We will fix a Borel subgroup B ⊂ G which contain a split maximal torus T ⊂ B of G. We
will also denote byX ∶= G∕B the smooth flag o-scheme associated to G and by X the smooth formal scheme. In [25] the
authors have introduced certain sheaves of differential operators (with congruence level k ∈ ℕ) D†

Y,k on a family of formal
modelsY ofXrig the rigid analytic flag variety. They study their cohomological properties and show thatY is D†

Y,k-affine,
which is a fundamental result. Moreover, it is proved in [25, Theorem 5.3.12] that the category of admissible locally
analytic representations of the L-analytic group G(L) can be described in terms of G(L)-equivariant families (MY,k) of
modules over D†

Y,k on the projective system of all formal models Y of Xrig.

Our motivation is to study the preceding localization theorem in the twisted situation. In this work we will treat the
algebraic case. This is, we will only consider characters of the Lie algebra t = Lie(T ) arriving from characters � ∈
X(T ) = Hom(T ,Gm) via differentiation. In this situation � induces an invertible sheaf L (�) on X and we define D†

X,k(�)
as the sheaf of differential operators (with conguence level k) acting on L (�). We will follow the philosophy described
in [25] introducing sheaves of differential operators on each admisisble blow-up of X. Let pr ∶ Y → X be an admissible
blow-up, then for k >> 01

D†
Y,k(�) ∶= pr∗D†

X,k(�) = OY ⊗pr−1OX
pr−1D†

X,k(�)

is a sheaf of rings onY. Let us denote by � the so-calledWeyl character and let us assume that �+� ∈ t∗L = HomL(t⊗oL,L)
is a dominant and regular character of tL ∶= t⊗oL. In this situation, we will show that the direct image functor pr∗ induces
an equivalence of categories between the category of coherent D†

Y,k(�)-modules and the category of coherent D†
X,k(�)-

modules. In addition, we have pr∗D
†
Y,k(�) = D†

X,k(�), which implies that

H0(Y,D†
Y,k(�)) = H

0(X,D†
X,k(�)).

It is shown thatH0(X,D†
X,k(�)) can be identifiedwith the central redactionD

an(G(k)◦)�2 of Emerton’s analytic distribution
algebra Dan(G(k)◦) of the wide open rigid-analytic k-th congruence group G(k)◦. Our first result is

Theorem 1. Let pr ∶ Y → X be an admissible blow-up. Suppose that � ∈ Hom(T ,Gm) is an algebraic character such that
� + � ∈ t∗L is a dominant and regular character of tL. Then H0(Y, ∙) induces an equivalence between the categories of
coherent D†

Y,k(�)-modules and finitely presented Dan(G(k)◦)�-modules.

As in the classical case, the inverse functor is determined by the localization functor

L oc†Y,k(�)(∙) ∶= D†
Y,k(�)⊗Dan(G(k)◦)� (∙).

Let us now describe the most important tools in our localization theorem. On the algebraic side, we will first assume that
G0 = G(o) and thatD(G0, L) is the algebra of locally analytic distributions of the compact analytic group G0 (in the sense

1This technical condition is clarified in proposition 4.1.2. It is also explained in (2) below.
2Via the classical isomorphism of Harish-Chandra � induces a character �� ∶ Z(Lie(G)⊗o L)→ L which allows to consider the central redaction.
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of [34]). The key point will be to construct a structure of weak Fréchet-Stein algebra on D(G0, L) (in the sense of [14,
Definition 1.2.6]) that will allow us to localize the coadmissible D(G0, L)-modules (relative to this weak Fréchet-Stein
structure). In fact, if Ccts(G0, L)G(k)◦−an is the vector space of locally analytic vectors of the space of continuous L-valued
functions and D(G(k)◦, G0) ∶= (Ccts(G0, L)G(k)◦−an)′b is its strong dual, then we have an isomorphism

D(G0, L)
≃
←←←←←←←→ lim

←←←←←←←←←←←
k∈ℕ

D(G(k)◦, G0)

which defines the structure of weak Fréchet-Stein algebra and such that

D(G(k)◦, G0) =
⨁

g∈G0∕Gk

Dan(G(k)◦)�g . (1)

HereGk ∶= G(k)(o) is a normal subgroup ofG0, the direct sum runs through a set of representatives of the cosets ofGk in
G0 and �g is the Dirac distribution supported in g. We will denote by CG0,� the category of coadmssibleD(G0, L)-modules
with central character � (coadmissible D(G0, L)�-modules, where D(G0, L)� denotes the central reduction).

Now, on the geometric side, wewill consider pr ∶ Y → X aG0-equivariant admssible blow-up such that the invertible sheaf
L (�) is equipped with a G0-action that allows us to define a left G0-action Tg ∶ D†

Y,k(�) → (�g)∗D
†
Y,k(�) on D†

Y,k(�)
3,

in the sense that for every g, ℎ ∈ G0 we have the cocycle condition Tℎg = (�g)∗Tℎ ◦ Tg . So, we will say that a coherent
D†

Y,k(�)-module M is strongly G0-equivariant if there is a family ('g)g∈G0 of isomorphisms 'g ∶ M → (�g)∗M of
sheaves of L-vector spaces, which satisfy the following properties (conditions (†)) :

∙ For every g, ℎ ∈ G0 we have (�g)∗'ℎ ◦ 'g = 'ℎg .

∙ If U ⊆ Y is an open subset, P ∈ D†
Y,k(�)(U ) and m ∈ M (U ) then 'g(P ∙ m) = Tg(P ) ∙ 'g(m).

∙ 4 For any g ∈ Gk+1 the application 'g ∶ M → (�g)∗M is equal to the multiplication by �g ∈ Dan(G(k))�.

A morphism between two strongly G0-equivariant D
†
Y,k(�)-modules (M , ('M

g )g∈G0 ) and (N , ('N
g )g∈G0 ) is a morphism

 ∶ M → N which is D†
Y,k(�)-linear and such that, for every g ∈ G0, we have '

N
g ◦  = (�g)∗ ◦ 'M

g . We denote by
Coh(D†

Y,k(�), G0) the category of strongly G0-equivariant D
†
Y,k(�)-modules. We have the following result 5

Theorem 2. Let � ∈ Hom(T ,Gm) be an algebraic character such that � + � ∈ t∗L is a dominant and regular character of
tL. The functors L oc†Y,k(�) andH

0(Y, ∙) induce equivalences between the categories of finitely presentedD(G(k)◦, G0)-
modules (with central character �) and Coh(D†

Y,k(�), G0).

Still on the geometric side, let us consider the set FX of couples (Y, k) such that Y is an admissible blow-up of X and
k ≥ kY, where

kY ∶= min
I

min{k ∈ ℕ | $k ∈ I } (2)

and I is an ideal subsheaf of OX, such that Y ≃ V (I ). This set carries a partial order. As is shown in [25] the group
G0 acts on FX and this action respects the congruence level. This means that for every couple (Y, k) ∈ FX there is a
couple (Y.g, kY.g) ∈ FX with an isomorphism �g ∶ Y → Y.g and such that kY = kY.g . So, we will say that a family
M ∶= (MY,k)(Y,k)∈FX

of coherent D†
Y,k(�)-modules is a coadmissible G0-equivariant D(�)-module on FX if for any

g ∈ G0, with morphism �g ∶ Y → Y.g, there is an isomorphism

' ∶ MY.g,k → (�g)∗MY,k

3Here g ∈ G0 and �g ∶ Y → Y is the morphism induced by G0-equivariance.
4We identify hereH0(Y,D†

Y,k(�)) with D
an(G(k)◦)� and we use lemma 4.3.2 to give a sense to this condition.

5We use the relationship (1) to give a sense to the assertion of the theorem.
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that satisfies the conditions (†) and such that, if (Y′, k′) ⪰ (Y, k) with � ∶ Y′ → Y, then there is a transition morphism
�∗MY′,k′ → MY,k which satisfies obvious transitivity conditions. Moreover, a morphism M → N between two such a
modules is a morphism MY,k → NY,k of D†

Y,k(�)-modules which is compatible with the additional structures. We will

note this category CG0X,� and for every M ∈ CG0X,�, we will consider the projective limit

Γ(M ) ∶= lim
←←←←←←←←←←←

(Y,k)∈FX

H0(Y,MY,k)

in the sense of the Abelian groups.

Now, letM be a coadmissible D(G0, L)�-module and V ∶=M ′
b its associated locally analytic representation. The vector

space of G(k)◦-analytic vectors VG(k)◦−an ⊆ V is stable under the action of G0 and its dualMk ∶= (VG(k)◦−an)′b is a finitely
presented D(G(k)◦, G0)-module. In this situation, theorem 2 produces a coherent D†

Y,k(�)-module

L oc†Y,k(�)(Mk) ∶= D†
Y,k(�)⊗Dan(G(k)◦)� Mk

for each element (Y, k) ∈ FX. We will note this family

L ocG0� (M) ∶=
(

L oc†Y,k(�)(Mk)
)

(Y,k)∈FX

.

Theorem 3. Let � ∈ Hom(T ,Gm) be an algebraic character such that � + � ∈ t∗L is a dominant and regular character
of tL. The functors L ocG0� (∙) and Γ(∙) induce equivalences of categories between the category CG0,� (of coadmissible
D(G0, L)�-modules) and the category CG0X,�.

Finally, the last part of this work is devoted to the study of coadmissibleD(G,L)�-modules, whereG ∶= G(L)6. To do this,
we will consider the Bruhat-Tits building B of G ([9] and [10]). It is a simplicial complex equipped with a G-action. For
any special vertex v ∈ B, the theory of Bruhat and Tits associates a reductive group Gv whose generic fiber is canonically
isomorphic to G ×Spec(o) Spec(L). Let Xv be the flag scheme of Gv, and Xv its formal completion along its special fiber.
We consider the set F composed of triples (Yv, k, v) such that v is a special vertex, Yv → Xv is an admissible blow-up
of Xv and k ≥ kYv . According to (7.0.2) F is partially ordered. In addition, for each special vertex v ∈ B, each element
g ∈ G induces an isomorphism �vg ∶ Xv → Xvg , such that if (�vg)

♮ ∶ OXvg → (�vg)∗OXv is the comorphism map and
� ∶ Yv → Xv is an admissible blow-up along V (I ), then the (admissible) blow-up along V ((�vg)

−1(�vg)∗I ) produces a
scheme Yvg with an isomorphism �vg ∶ Yv → Yvg , such that kYv = kYvg and for every g, ℎ ∈ G we have �vgℎ ◦ �vg = �

v
gℎ.

A coadmissibleG-equivariant arithmeticD(�)-module onF , consists of a family (M(Yv,k,v))(Yv,k,v)∈F of coherentD†
Yv,k

(�)-
modules satisfying the condition (†) plus some compatibility properties (definition 7.0.4) that allow us to form the projec-
tive limit

Γ(M ) ∶= lim
←←←←←←←←←←←

(Yv,k,v)∈F
H0(Yv,M(Yv,k,v)),

which, as we will show, has a structure of coadmissible D(G,L)�-module. On the other hand, given a coadmissible
D(G,L)�-moduleM , we consider V ∶=M ′

b its continuous dual, which is a locally analytic representation of G. Then let
Mv,k be the dual space of the subspace VGv(k)◦−an ⊆ V of Gv(k)◦-analytic vectors. For every (Yv, k, v) ∈ F , we have a
coherent D†

Yv,k
(�)-module

L oc†Yv,k(�)(Mv,k) = D†
Yv,k

(�)⊗Dan(Gv(k)◦)� Mv,k.

6Here G0 is a (maximal) compact subgroup of G. This compactness property allows to define the structure of weak Fréchet-Stein algebra.
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We note this family L ocG� (M). We will show the following result (theorem 7.0.6).

Theorem 4. Let � ∈ Hom(T ,Gm) be an algebraic character such that � + � ∈ t∗L is a dominant and regular character of
tL. The functors L ocG� (∙) and Γ(∙) give an equivalence between the categories of coadmissible D(G,L)�-modules and
coadmissible G-equivariant arithmetic D(�)-modules.

The last task will be to study the projective limit

X∞ ∶= lim
←←←←←←←←←←←

(Yv,k,v)
Yv.

This is the Zariski-Riemann space associated to the rigid flag variety Xrig. We can also form the projective limit D(�) of
the sheaves D†

Y,k(�) which is a sheaf of G-equivariant differential operators on X∞. Similarly, if (M(Yv,k,v))(Yv,k,v)∈F is a
coadmissibleG-equivariant arithmetic D(�)-module, then we can form the projective limit M∞. The data M(Yv,k,v)∈F ⇝

M∞ induces a faithful functor from the category of coadmissible G-equivariant arithmetic D(�)-modules on F to the
category of G-equivariant D(�)-modules on X∞ (theorem 7.0.8). In fact, this is a fully faithful functor as we will briefly
explain in our Final remark (7.0.9).

We summarize the main results of this work with the following commutative diagrams of functors (cf. [31, Theorem
5.4.10])

{

Coadmissible
D(G,L)� −modules

} {

Coadmissible G − equivariant
arithmetic D(�) −modules

}

{

Coadmissible
D(G0, L)� −modules

} {

Coadmissible G0 − equivariant
arithmetic D(�) −modules

}

LocG�
≃

LocG0�
≃

Here the left-hand vertical arrow is the restriction functor coming from the homomorphism

D(G0, L)� → D(G,L)�

and the right-hand vertical arrow is the forgetful functor.

Acknowledgements: The present article contains a part of the author PhD thesis written at the Universities of Strasbourg
and Rennes 1 under the supervision of C. Huyghe and T. Schmidt. Both have always been very patient and attentive
supervisors. For this, I express my deep gratitude to them.

Notation: Throughout this work$ will denote the uniformizer of o. Furthermore, if Y is an arbitrary noetherian scheme
over o, then for every j ∈ ℕ we will denote by Yj ∶= Y ×Spec(o) Spec(o∕$j+1) the reduction modulo$j+1, and by

Y = lim
←←←←←←←←←←→
j
Yj

the formal completion of Y along the special fiber. Moreover, if E is a sheaf of o-modules on Y then its $-completion
E ∶= lim

←←←←←←←←←←←j
E∕$j+1E will be considered as a sheaf on Y. Finally, the base change of a sheaf of o-modules on Y (resp. on

Y) to L will always be denoted by the subscript ℚ. For instance Eℚ ∶= E ⊗o L (resp. Eℚ ∶= E ⊗o L).
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2 Arithmetic definitions

2.1 p-adic coefficients and divided powers

Let p be a prime number and let us fix a positive integer m. Throughout this work, we will denote by ℤp the ring of p-adic
integers and by ℤ(p) the localization of ℤ with respect to the prime ideal (p). Moreover, if k ∈ ℕ, we will note qk the
quotient of the euclidean division of k by pm. Berthelot has introduced in [3] the following coefficients for any two integers
k, k′ with k ≥ k′

{

k
k′

}

∶=
qk!

q′k!q
′′
k !
, k′′ ∶= k − k′.

In fact, we can generalize these coefficients for multi-indexes k = (k1, ..., kN ) ∈ ℕN by defining qk! ∶= qk1 ! ... qkN ! and

{

k
k′

}

∶=
qk!

qk′ !qk′′ !
∈ ℕ and

⟨

k
k′

⟩

∶=
(

k
k′

){

k
k′

}−1
∈ ℤp.

Now, let A be a ℤ(p) algebra. We say that a triple (I, J , 
) is an m-PD ideal of A, if 
 defines a structure of divided powers
on J (a PD-structure in the sense of [5]) and I is endowed of a system of partial divided powers, meaning that for any
integer k, which decomposes as k = pmq + r (with r < pm), there exists an operation defined for every x ∈ I by

xk = xr
k
(

xp
m)
.

Example 2.1.1. Let o be a discrete valuation ring of unequal characteristic (0, p) and uniformizing parameter $. Let us
write p = u$e, with u a unit of o and e a positive integer (called the absolute ramification index of o). Let k ∈ ℕ. Then

v(x) ∶= xv∕v! defines a PD-structure on ($)k if and only if e ≤ k(p − 1) [5, Section 3, examples 3.2 (3)]. In particular,
we dispose of a PD-structure on (p) ⊆ ℤ(p). We let x[k] ∶= 
k(x) and we denote by ((p), []) this PD-ideal. Moreover, if
k ≤ e − 1 and m ≥ logp(k), then ($)k endowed with the preceding PD-structure defines an m-PD-structure on ($) [3,
Section 1.3, examples (i)].

2.2 Arithmetic differential operators

Let us suppose that o is endowed with the m-PD-structure (a, b, [ ]) defined in example 2.1.1. LetX be a smooth o-scheme,
and I ⊂ OX a quasi-coherent ideal. Let us consider the sheaf of principal parties P(m)(X) [3, Section 2.1],which contains
an m-PD structure (Ī , Ĩ , [ ]) and the sequence of ideals (Ī{n})n∈ℕ defining the m-PD-filtration [4, 1.3].
For every n ∈ ℕ, the algebra

Pn
X,(m) ∶= Pn

(m)(I)∕Ī
{n}

is quasi-coherent and can be considered as a sheaf on X. Moreover, the projections p1, p2 ∶ X ×o X → X induce two
morphisms d1, d2 ∶ OX → Pn

X,(m) endowing P
n
X,(m) of a left and a right structure of OX-algebra, respectively.

Definition 2.2.1. Let m, n be positive integers. The sheaf of differential operators of level m and order less or equal to n
on X is defined by

D(m)
X,n ∶= H omOX

(Pn
X,(m),OX).
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If n ≤ n′ then [3, Proposition 1.4.1] gives us a canonical surjection Pn′
X,(m) → Pn

X,(m) which induces the injection D
(m)
X,n →

D(m)
X,n′ and the sheaf of differential operators of level m is defined by

D(m)
X ∶=

⋃

n∈ℕ
D(m)
X,n.

We remark for the reader that by definitionD(m)
X is endowed with a natural filtration called the order filtration, and like the

sheaves Pn
X,(m), the sheaves D

(m)
X,n are endowed with two natural structures ofOX-modules. Moreover, the sheaf D(m)

X acts

on OX : if P ∈ D(m)
X,n, then this action is given by the composition OX

d1
←←←←←←←←←←→ Pn

X,(m)
P
←←←←←←←←→ OX .

Finally, let us give a local description of D(m)
X,n. Let U be a smooth open affine subset of X endowed with a family of local

coordinates x1, . . . , xN . Let dx1, . . . , dxN be a basis of ΩX(U ) and )x1 , . . . , )xN the dual basis of TX(U ) (as usual,
TX and ΩX denote the tangent and cotangent sheaf on X, respectively). Let k ∈ ℕN . Let us denote by |k| =

∑N
i=1 ki and

)[ki]i = )xi∕ki! for every 1 ≤ i ≤ N . Then, using multi-index notation, we have )[k] =
∏N

i=1 )
[ki]
i and )<k> = qk!)[k]. In

this case, the sheaf D(m)
X,n has the following description on U

D(m)
X,n(U ) =

{

∑

|k|≤n
ak)

<k>
| ak ∈ OX(U ) and k ∈ ℕN

}

. (3)

2.3 Symmetric algebra of finite level

In this subsection we will focus on introducing the constructions in [20]. As before, let X denote a smooth o-scheme
and let us consider L a locally free OX-module of finite rank, SX(L) the symmetric algebra associated to L and I the
ideal of homogeneous elements of degree 1. If PSX (L),(m)(I) denotes the m-divided power enveloping of (SX(L), I) ([3,
Proposition 1.4.1]) then we can consider the coherent sheaves on X

ΓX,(m)(L) ∶= PSX (L),(m)(I) and ΓnX,(m)(L) ∶= ΓX,(m)(L)∕Ī
{n+1}. (4)

Those algebras are graded [20, Proposition 1.3.3] and if �1, ..., �N is a local basis of L, we have

ΓnX,(m)(L) =
⨁

|l|≤n
OX�

{l}.

As before �{l} =
∏N

i=1 �
{li}
i and qi!�

{li}
i = �li . We define by duality

Sym(m)(L) ∶=
⋃

k∈ℕ
H omOX

(

ΓkX,(m)(L
∨),OX

)

,

By [20, Propositions 1.3.1, 1.3.3 and 1.3.6] we know that Sym(m)(L) = ⊕n∈ℕSym(m)
n (L) is a commutative graded algebra

with noetherian sections over any open affine subset. Moreover, locally over a basis �1, ..., �N of L we have the following
description

Sym(m)
n (L) =

⨁

|l|=n
OX�

<l>, where
li!
qi!
�<li>i = �lii .

Remark 2.3.1. By [5, A.10] we have that S(0)X (L) is the symmetric algebra of L, which justifies the terminology.

We end this subsection by remarking the following results from [20]. Let I be the kernel of the comorphism Δ♯ of the
diagonal embeddingΔ ∶ X → X×Spec(o)X. In [20, Proposition 1.3.7.3] Huyghe shows that the graded algebra associated
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to the m-PD-adic filtration of PX,(m) it is identified with the graded m-PD-algebra ΓX,(m)(I∕I2) = ΓX,(m)(Ω1X). More
exactly, we dispose of a canonical morphism of OX-algebras

SX(ΩX)→ gr∙PX,(m)

which extends, via universal property [3, Proposition 1.4.1], to a morphism ΓnX,(m)(Ω
1
X)

≃
←←←←←←←→ gr∙(Pn

X,(m)). By definition, it
induces a graded morphism

Sym(m)(TX)→ gr∙D
(m)
X (5)

which is in fact an isomorphism of OX-algebras.

2.4 Arithmetic distribution algebra of finite level

As in the introduction, let us consider G a split connected reductive group scheme over o and m ∈ ℕ fixed. We propose
to give a description of the algebra of distributions of level m introduced in [22]. Let I denote the kernel of the surjective
morphism of o-algebras �G ∶ o[G] → o, given by the identity element of G. We know that I∕I2 is a free o = o[G]∕I-
module of finite rank. Let t1, . . . , tl ∈ I such that modulo I2 these elements form a basis of I∕I2. The m-divided power
enveloping algebra of (o[G], I), denoted by P(m)(G), it is a free o-module with basis the elements t{k} = t{k1}1 . . . t{kl}l ,
where qi!t

{ki}
i = tkii , for every ki = p

mqi + ri and 0 ≤ ri < pm. These algebras are endowed with a decreasing filtration by
ideals I{n} (the m-PD filtration), such that I{n} = ⊕

|k|≥no t{k}. The quotients P n(m)(G) ∶= P(m)(G)∕I{n+1} are therefore
o-modules generated by the elements t{k} with |k| ≤ n [3, Proposition 1.5.3 (ii)]. Moreover, there exists an isomorphism
of o-modules

P n(m)(G) ≃
⨁

|k|≤n
o t{k}

and for any two integers n, n′ such that n ≤ n′ we have a canonical surjection �n′,n ∶ P n′(m)(G) → P n(m)(G). The module of
distributions of level m and order n is D(m)n (G) ∶= Hom(P n(m)(G), o). The algebra of distributions of level m is

D(m)(G) ∶= lim
←←←←←←←←←←→
n
D(m)n (G),

where the limit is formed respect to the maps Homo(�n
′,n, o). The multiplication is defined as follows. By universal

property ([3, Proposition 1.4.1]) there exists a canonical application �n,n′ ∶ P n+n′(m) (G) → P n(m)G) ⊗o P n
′

(m)(G). If (u, v) ∈
D(m)n (G) ×D(m)n′ (G), we define u.v as the composition

u.v ∶ P n+n
′

(m) (G)
�n,n′

←←←←←←←←←←←←←←←←←→ P n(m)(G)⊗o P
n′
(m)(G)

u⊗v
←←←←←←←←←←←←←←←←←→ o.

Let us denote by g ∶= Homo(I∕I2, o) the Lie algebra of G. This is a free o-module with basis �1, . . . , �l defined as the
dual basis of the elements t1, . . . , tl. If for every multi-index k ∈ ℕl, |k| ≤ n, we denote by �<k> the dual of the element
t{k} ∈ P n(m)(G), then D

(m)
n (G) is a free o-module of finite rank with a basis given by the elements �<k> with |k| ≤ n [22,

proposition 4.1.6].

Remark 2.4.1. 7 Let A be an o-algebra and E a free A-module of finite rank with base (x1, ..., xN ). Let (y1, ..., yN ) be
the dual base of E∨ ∶= HomA(E,A). As in the preceding subsection, let S(E∨) be the symmetric algebra and I(E∨) the
augmentation ideal. Let Γ(m)(E∨) be the m-divided power enveloping algebra of (S(E∨), I(E∨)). We put Γn(m)(E

∨) ∶=

7This remark exemplifies the local situation when X = Spec(A) with A a ℤ(p)-algebra [20, Subsection 1.3.1].
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Γ(m)(E∨)∕I
{n+1}

. These are free A-modules with base y{k1}1 ...y{kN}N with
∑

ki ≤ n [20, 1.1.2]. Let {x<k>}
|k|≤n be the

dual base of HomA(Γn(m)(E
∨), A). We define

Sym(m)(E) ∶=
⋃

n∈ℕ
HomA

(

Γn(m)(E
∨), A

)

.

This is a free A-module with a base given by all the x<k>. The inclusion Sym(m)(E) ⊆ Sym(m)(E)⊗o L gives the relation

x<ki>i =
ki!
qi!
xki . (6)

Moreover, it also has a structure of algebra defined as follows. By [20, Proposition 1.3.1] there exists an application
Δn,n′ ∶ Γn+n

′

(m) (E
∨) → Γn(m)(E

∨) ⊗A Γn
′

(m)(E
∨), which allows to define the product of u ∈ HomA(Γn(m)(E

∨), A) and v ∈
HomA(Γn

′

(m)(E
∨), A) by the composition

u.v ∶ Γn+n
′

(m) (E
∨)

Δn,n′
←←←←←←←←←←←←←←←←←←←→ Γn(m)(E

∨)⊗A Γn
′

(m)(E
∨)

u⊗v
←←←←←←←←←←←←←←←←←→ A.

This maps endows Sym(m)(E) of a structure of a graded noetherian o-algebra [20, Propositions 1.3.1, 1.3.3 and 1.3.6].

We have the following important properties [22, Proposition 4.1.15].

Proposition 2.4.2. (i) There exists a canonical isomorphism of graded o-algebras gr∙(D(m)(G)) ≃ Sym(m)(g).

(ii) The o-algebras gr∙(D(m)(G)) and D(m)(G) are noetherian.

2.5 Integral models

In this section we will assume that X is a smooth o-scheme endowed with a right G-action.

Definition 2.5.1. Let A be an L-algebra (resp. a sheaf of L-algebras). We say that an o-subalgebra A0 (resp. a subsheaf
of o-algebras) is an integral model of A if A0 ⊗o L = A.

Remark 2.5.2. Let us recall that throughout this paper g denotes the Lie algebra of the split connected reductive group
o-scheme G and U (g) its universal enveloping algebra. As we have remarked in the introduction, if gL denotes the L-Lie
algebra of the algebraic group GL = G ×Spec(o) Spec(L) and U (gL) its universal enveloping algebra, then U (g) is an
integral model of U (gL). Moreover, the algebra of distributions of level m, introduced in the preceding subsection, it is
also an integral model of U (gL) [22, subsection 4.1]. This latest example will be specially important in this work.

Proposition 2.5.3. The right G-action induces a canonical homomorphism of filtered o-algebras

Φ(m) ∶ D(m)(G)→ H0(X,D(m)
X ).

Proof. The reader can find the proof of this proposition in [22, Proposition 4.4.1 (ii)], we will briefly discuss the construc-
tion of Φ(m). The central idea in the construction is that if � ∶ X ×o G → X denotes the G-action, then the comorphism
�♮ ∶ OX → OX ⊗o o[G] induces a morphism

�(n)m ∶ Pn
X,(m) → OX ⊗o P

n
(m)(G)

for every n ∈ ℕ. Those applications are compatible when varying n. Let u ∈ D(m)n (G) we define Φ(m)(u) by

Φ(m)(u) ∶ Pn
X,(m)

�(n)m
←←←←←←←←←←←←←←→ OX ⊗o P

n
(m)(G)

id⊗u
←←←←←←←←←←←←←←←←←←←←→ OX .
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Again, those applications are compatible when varying n and we get the morphism of the proposition.

Remark 2.5.4. (i) If X is endowed with a left G-action, then it turns out that Φ(m) is an anti-homomorphism.

(ii) In [22, Theorem 4.4.8.3] Huyghe and Schmidt have shown that if X = G and we consider the right (resp. left)
regular action, then the morphism of the preceding proposition is in fact a canonical filtered isomorphism (resp. an
anti-isomorphism) between D(m)(G) andH0(G,D(m)

G )G, the o-submodule of (left) G-invariant global sections. This
isomorphism induces a bijection between D(m)n (G) andH0(G,D(m)

G,n)
G, and it is compatible when varying m.

We will denote by

Φ(m)X ∶ OX ⊗o D
(m)(G)→ D(m)

X

the morphism of sheaves (of o-modules) defined by: if U ⊂ X is an open subset and f ∈ OX(U ), u ∈ D(m)(G), then

Φ(m)X,U (f ⊗ u) ∶= f ⋅Φ(m)(u)|U .

Let us define A(m)
X = OX ⊗o D(m)(G), and let us remark that we can endow this sheaf with the skew ring multiplication

coming from the action of D(m)(G) on OX via the morphism Φ(m)X . This is

(f ⊗ u) ⋅ (g ⊗ v) ∶=
(

f ⋅Φ(m)X (u)
)

g ⊗ v + fg ⊗ uv. (7)

This multiplication defines overA(m)
X a structure of a sheaf of associative o-algebras, such that it becomes an integral model

of the sheaf of L-algebras U◦ ∶= OXL ⊗L U (gL). To see this, let us recall how the multiplicative structure of the sheaf
U◦ is defined (cf. [30, subsection 5.1] or [29, section 2]).

Differentiating the right action of GL on XL we get a morphism of Lie algebras

� ∶ gL → H0(XL, TXL ). (8)

This implies that gL acts on OXL by derivations and we can endow U◦ with the skew ring multiplication

(f ⊗ �)(g ⊗ � ) = (f�(�)) g ⊗ � + fg ⊗ �� (9)

for � ∈ gL, � ∈ U (gL) and f, g ∈ OXL . With this product the sheaf U◦ becomes a sheaf of associative algebras [29,
Section 2, page 11].

Remark 2.5.5. As in (7) we can define a morphism (called the operator-representation) of sheaves of L-algebras

ΨXL ∶ OXL ⊗L U (gL)→ DXL ; f ⊗ � → f �(�) (f ∈ OXL , � ∈ gL.).

We get the following commutative diagram

D(m)(G) H0(X,D(m)
X )

U (gL) H0(XL,DXL ).

Φ(m)

ΨXL

Given that D(m)(G) is an integral model of the universal enveloping algebra U (gL), then by (7) and (9) we can conclude
that A(m)

X is also a sheaf of associative o-algebras being a subsheaf of U◦.
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Proposition 2.5.6. [22, Corollary 4.4.6]

(i) The sheaf A(m)
X is a locally free OX-module.

(ii) There exists a unique structure over A(m)
X of filtered OX-ring and there is a canonical isomorphism of graded OX-

algebras gr(A(m)
X ) = OX ⊗o Sym(m)(g).

(iii) The sheaf A(m)
X (resp. gr(A(m)

X )) is a coherent sheaf of OX-rings (resp. a coherent sheaf of OX-algebras), with
noetherian sections over open affine subsets of X.

3 Twisted arithmetic differential operators with congruence level
In this chapter we will introduce congruence levels to the constructions given in the preceding sections. This means,
deformations of our (integral) differential operators. This notion will be a fundamental tool to define differential operators
on an admissible blow-up of the flag o-scheme X.

3.1 Linearization of group actions

Let us start with the following definition from [17, Chapter II, exercise 5.18] (cf. [8, Definition 3.1.1]).

Definition 3.1.1. Let Y be an o-scheme. A (geometric) line bundle over Y is a scheme L together with a morphism
� ∶ L → Y such that Y admits an open covering (Ui)i∈I satisfying the following two conditions:

(i) For any i ∈ I there exists an isomorphism  i ∶ �−1(Ui)
≃
←←←←←←←→ A1Ui .

(ii) For any i, j ∈ I and for any open affine subset V = Spec(A[x]) ⊆ Ui ∩ Ui the automorphism �ij ∶  j◦ −1i |V ∶
A1V → A1V of A1V is given by a linear automorphism �♮ij of A[x]. This means, �♮ij(a) = a for any a ∈ A, and

�♮ij(x) = aijx for a suitable aij ∈ A.

In the preceding definition, the scheme L is obtained by glueing the trivial line bundles p1,i ∶ Ui ×A1o → Ui via the linear
transition functions (aij). Thus, each fibre Lx is a line, in the sense that it has a canonical structure of a 1-dimensional
affine space.

Definition 3.1.2. Given a line bundle � ∶ L → Y and a morphism � ∶ Y ′ → Y , the pull-back �∗(L) is the fiber product
L ×Y Y ′ equipped with its projection to Y ′.

Now, let � ∶ L → Y be a line bundle over Y , then a section of � over an open subset U ⊂ Y is a morphism s ∶ U → L
such that �◦s = idU . Moreover the presheaf L defined by

U ⊆ Y → {s ∶ U → L | s is a section over U}

is a sheaf called the sheaf of sections of the line bundle L. This is an invertible sheaf (i.e., a locally free sheaf of rank 1).

On the other hand, if E is a locally free sheaf of rank 1 on Y and we let

V(E ) ∶= Spec
Y

(

SymOY
(E )

)

be the line bundle over Y associated to E [16, 1.7.8], then we have a one-to-one correspondence between isomorphism
classes of locally free sheaves of rank 1 on Y and isomorphic classes of (geometric) line bundles over Y [17, Chapter II,
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Exercises 5.1 (a) and 5.18 (d)]

{Isomorphism classes of locally free sheaves of rank 1} ↔ {Isomorphic classes of line bundles}
E → V(E∨)
L ↤ L

(10)

Let � ∶ L → Y be a line bundle over Y , let L be its sheaf of sections and � ∶ Y ′ → Y a morphism of schemes; an easy
calculation shows that the sheaf of sections of the pull-back line bundle �∗(L) ∶= L ×Y Y ′ → Y ′ is equal to �∗(L).

Let us suppose now that Y is endowed with a right G-action � ∶ Y ×Spec(o) G → Y . In particular, for every g ∈ G(o) we
dispose of a translation morphism

�g ∶ Y = Y ×Spec(o) Spec(o)
idY ×g
←←←←←←←←←←←←←←←←←←←←←←←→ Y ×Spec(o) G

�
←←←←←←→ Y

In the next lines we will study (geometric) line bundles which are endowed with a right G-action.

Definition 3.1.3. Let � ∶ L → Y be a line bundle. A G-Linearization of L is a right G-action � ∶ L ×Spec(o) G → L
satisfying the following two conditions:

(i) The diagram

L ×Spec(o) G L

Y ×Spec(o) G Y

�

�×idG �

�

is commutative.

(ii) The action on the fibers is o-linear.

Let g ∈ G(o) and let us suppose that Ψ ∶ �∗(L)→ p∗1(L) is a morphism of line bundles over Y ×Spec(o) G. Let us consider
the translation morphism

�g ∶ Y = Y ×Spec(o) Spec(o)
idY ×g
←←←←←←←←←←←←←←←←←←←←←←←→ Y ×Spec(o) G

�
←←←←←←→ Y .

We have the relations (idY ×g)∗�∗(L) = �∗g(L) and (idY ×g)
∗p∗1(L) = L. So every morphism of line bundlesΨ ∶ �∗(L)→

p∗1(L) induces morphisms Ψg ∶ �∗g(L) → L for all g ∈ G(o). The following reasoning can be found in [12, Page 104] or
[8, Lemma 3.2.4].

Proposition 3.1.4. Let � ∶ L → Y be a line bundle over Y endowed with a G-linearization � ∶ L ×Spec(o) G → L. Then
there exists an isomorphism

Ψ ∶ �∗(L)→ p∗1(L)

of line bundles over L ×Spec(o) G, such that Ψgℎ = Ψg◦�∗g(Ψℎ) for all g, ℎ ∈ G(o).
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Proof. By definition of linearization we have the following commutative diagram

L ×Spec(o) G

�∗(L) Y ×Spec(o) G

L Y .

�×idG

�

 
p2

p1 �

�

By universal property there exists a unique morphism of line bundles  ∶ p∗1(L) → �∗(L), which is linear on the fibers
since so is �. Let g ∈ G(o). To see that  is an isomorphism we can use the correspondence (10). In this case, if x ∈ Y ,
g ∈ G(o) and  (x,g) ∶ Lx → Lxg denotes the respective morphism between the stalks, then  (x,g) is an isomorphism,
being  (xg,g−1) the inverse.

Let g, ℎ ∈ G(o). Applying (idX × g)∗ to  we get the morphism  g ∶ L → �∗g(L) and given that � is a right action
(�ℎ ◦ �g = �gℎ), it fits into the following commutative diagram

L �∗g(L)

�∗g�
∗
ℎ(L) = �

∗
gℎ(L).

 g

 gℎ �∗g( ℎ)

Moreover, since  g ∶ L → �∗g(L) is an isomorphism for every g ∈ G(o) (the fiber over x ∈ Y coincides with  (x,g)) then
we can consider the morphism Ψg ∶=  −1g ∶ �∗g(L)→ L which coincides with the fibers of the morphism

Ψ ∶=  −1 ∶ �∗(L)→ p∗1(L).

By construction, these morphism satisfy the cocycle condition of the proposition. This means that for every g, ℎ ∈ G(o),
we have

Ψgℎ = Ψg ◦ �∗g(Ψℎ).

3.2 Associated Rees rings and arithmetic differential operators with congruence level

Throughout this sections X will denote a smooth scheme over o. As usual, we will denote by D(m)
X the sheaf of level m

differential operators on X. As we have remarked in the previous chapter, those sheaves come equipped with a filtration

OX ⊆ D(m)
X,1 ⊆ ... ⊆ D(m)

X,d ⊆ ... ⊆ D(m)
X ,

with D(m)
X,d the sheaf of level m differential operators of order less or equal than d.

8 Now, let A be a sheaf of o-algebras endowed with a positive filtration (FdA)d∈ℕ and such that o ⊂ F0A. The sheaf A
gives rise to a subsheaf of graded rings R(A) of the polynomial algebra A[t] over A. This is defined by

R(A) ∶=
⨁

i∈ℕ
FiA ⋅ ti,

8This digression can be found before the proof of [25, Proposition 3.3.7].
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its associated Rees ring. This subsheaf comes equipped with a filtration by the sheaves of subgroups

Rd(A) ∶=
d

⨁

i=0
FiA ⋅ ti ⊆ R(A).

Specializing R(A) in an element � ∈ o we get a sheaf of filtered subrings A� of A. More exactly, A� equals the image
under the homomorphism of sheaves of rings �� ∶ R(A) → A, sending t → �, and it is equipped with the filtration
induced by A. Moreover, if the sheaf of graded rings gr(A), associated to the filtration (FdA)d∈ℕ, is flat over o then9

FdA� =
d
∑

i=0
�iFiA. (11)

If  ∶ A → B is a morphism of positive filtered o-algebras (with o ⊆ F0A and o ⊆ F0B), then the commutative diagram

R(A) R(B)

A B

ad td → (ad )td

�� ��
 

gives us a filtered morphism of rings  � ∶ A� → B�. This in particular implies that for � ∈ o fixed, the preceding process
is functorial.

Remark 3.2.1. The previous digression is well-known for rings. In this setting we have results completely analogues to
the ones presented so far ([28, Chapter 12, section 6]). We will use these results in the next sections.

Now, let k be a non-negative integer called a congruence level [24, Subsection 2.1]. By using the order filtration (D(m)
X̃
)d∈ℕ

of the sheafD(m)
X , we can define the sheaf of arithmetic differential operators of congruence level k,D(m,k)

X , as the subsheaf
of D(m)

X given by the specialization of R(D(m)
X ) in$k ∈ o. This means

D(m,k)
X ∶=

∑

d∈ℕ
$kdD(m)

X,d .

By (5) and [20, Proposition 1.3.4.2] we can also conclude that, if (D(m,k)
X,d )d∈ℕ denotes the order filtration induced byD(m)

X ,
then

D(m,k)
X,d =

d
∑

i=0
$kiD(m)

X,i.

In local coordinates we can describe the sheaf D(m,k)
X in the following way. Let U ⊆ X be an open affine subset endowed

with coordinates x1, ..., xN . Let dx1, ..., dxN be a basis of ΩX(U ) and )x1 , ..., )xN the dual basis of TX(U ). By using the
notation in section 2.2, one has the following description [24, Subsection 2.1]

D(m,k)
X (U ) =

{ <∞
∑

v
$k|v|av)

<v>
| av ∈ OX(U )

}

.

3.3 Arithmetic differential operators acting on a line bundle

Throughout this subsection X ∶= G∕B will always denote the flag scheme. For technical reasons (cf. Proposition 2.5.3)
in this work we will always suppose that the group G, and the schemeX are endowed with the right regular G-action. This

9This is [25, Claim 3.3.10.].
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means that for any o-algebra A and g0, g ∈ G(A) we have

g0 ∙ g = g−1g0, g0 N(A) ∙ g = g−1g0 N(A) and g0 B(A) ∙ g = g−1g0 B(A).

Under this action, the canonical projection G → X is clearly G-equivariant.

Finally, we recall for the reader that the sheaf D(m)
X is endowed with a left and a right structure of OX-module. These

structures come from the canonical morphisms of rings d1, d2 ∶ OX → Pn
X,(m), which are induced by universal property

and the projections. By construction, these actions also endow the sheaf D(m,k)
X with a left and a right structure of OX-

module.

3.3.1. Dominant and regular characters.

Let us consider the positive systemΛ+ ⊂ Λ ⊂ X(T ) (X(T ) = Hom(T ,Gm) the group of algebraic characters) associated to
the Borel subgroup scheme B ⊂ G. The Weyl subgroupW = NG(T )∕T acts naturally on the space t∗L ∶= HomL(tL, L),
and via differentiation d ∶ X(T ) → t∗ we may view X(T ) as a subgroup of t∗ in such a way that X∗(T )⊗o L = t∗L. Let
� = 1

2
∑

�∈Λ+ � be the so-called Weyl vector. Let �̌ be a coroot of � ∈ Λ viewed as an element of tL. An arbitrary weight
� ∈ t∗L is called dominant if �(�̌) ≥ 0 for all � ∈ Λ+. The weight � is called regular if its stabilizer under theW -action
is trivial.

3.3.2. Line bundles on homogeneous spaces.

Let us suppose now thatX ∶= G∕B is again the smooth flag o-scheme. We dispose of a canonical isomorphism T ≃ B∕N
which in particular implies that every algebraic character � ∈ Hom(T ,Gm) induces a character of the Borel subgroup
� ∶ B → Gm. Let us consider the locally free action of B on the trivial fiber bundle G × o over G given by

b.(g, u) ∶= (gb−1, �(b)u); (g ∈ G, b ∈ B, u ∈ o).

We denote by L(�) ∶= B⟍(G × o) the quotient space obtained by this action.
Let � ∶ G → X be the canonical projection. Since the map G × o → X, (g, u) → �(x) is constant on B-orbits, it induces
a morphism �� ∶ L(�) → X. Moreover, given that � is locally trivial [26, Part II, 1.10 (2)] �� ∶ L(�) → X defines a line
bundle over X [26, Part I, 5.16]. Furthermore, the right G-action on G × o given by

(g0, u) ∙ g → (g−1g0, u) (g ∈ G, (g0, u) ∈ G × o)

induces a right action on L(�) for which L(�) turns out to be a G-linearized line bundle on X. By proposition 3.1.4, the
sheaf of sections L(�) of the line bundle L(�) is a G-equivariant invertible sheaf.

Definition 3.3.3. Let � ∈ Hom(T ,Gm) be an algebraic character. For every congruence level k ∈ ℕ, we define the sheaf
of level m arithmetic differential operators acting on the line bundle L(�) by

D(m,k)
X (�) ∶= L(�)⊗OX

D(m,k)
X ⊗OX

L(�)∨.

The multiplicative structure of the sheafD(m,k)
X (�) is defined as follows. If �∨, �∨ ∈ L(�)∨, P ,Q ∈ D(m,k)

X and �, � ∈ L(�)
then

� ⊗ P ⊗ �∨ ∙ � ⊗ Q⊗ �∨ = � ⊗ P
⟨

�∨, �
⟩

Q⊗ �∨. (12)

Moreover, the action of D(m,k)
X (�) on L(�) is given by

(

t ⊗ P ⊗ t∨
)

∙ s ∶=
(

P ∙ < t∨, s >
)

t (s, t ∈ L(�) and t∨ ∈ L(�)∨).
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Remark 3.3.4. Given that the locally free OX-modules of rank one L(�)∨ and L(�) are in particular flat, the sheaf
D(m,k)
X (�) is filtered by the order of twisted differential operators. This is, the subsheaf D(m,k)

X,d of D(m,k)
X , of differential

operators of order less that d, induces a subsheaf of twisted differential operators of order less than d defined by

D(m,k)
X,d (�) ∶= L(�)⊗OX

D(m,k)
X,d ⊗OX

L(�)∨,

and given than the tensor product preserves inductive limits, we obtain

D(m,k)
X (�) = lim

←←←←←←←←←←→
d

D(m,k)
X,d (�).

Moreover, the exact sequence

0 → D(m,k)
X,d−1 → D(m,k)

X,d → D(m,k)
X,d ∕D

(m,k)
X,d−1 → 0

induces the exact sequence

0 → D(m,k)
X,d−1(�)→ D(m,k)

X,d (�)→ L(�)⊗OX
D(m,k)
X,d ∕D

(m,k)
X,d−1 ⊗OX

L(�)∨ → 0

which tells us that

gr
(

D(m,k)
X (�)

)

≃ L(�)⊗OX
gr

(

D(m,k)
X

)

⊗OX
L(�)∨ ≃ gr

(

D(m,k)
X

)

.

The second isomorphism is defined by � ⊗ P ⊗ �∨ → �∨(�)P . This is well defined because gr
(

D(m,k)
X

)

is in particular
a commutative ring.

Proposition 3.3.5. There exists a canonical isomorphism of graded sheaves of algebras

gr∙
(

D(m,k)
X (�)

) ≃
←←←←←←←→ Sym(m)($kTX).

Proof. By (5), and the fact that D(m,k)
X and $kTX are locally free sheaves (and therefore free $-torsion) we have the

following short exact sequence

0 → D(m,k)
X,d−1 → D(m,k)

X,d → Sym(m)
d

(

$kTX
)

→ 0,

which gives us the isomorphisms

Sym(m) ($kTX
)

≃ gr∙
(

D(m,k)
X

)

≃ gr∙
(

D(m,k)
X (�)

)

.

In the next proposition we will use the notation introduced in subsections 2.1 and 2.2.

Proposition 3.3.6. There exists a covering S of X by affine open subsets such that, over every open subset U ∈ S the
rings D(m,k)

U (�) and D(m,k)
U are isomorphic.

Proof. Let us star by considering U ⊂ X an affine open subset endowed with local coordinates x1, ..., xM . For every
v ∈ ℕM and f ∈ OX(U ) we have the following relation [3, proposition 2.2.4, iv]

)<v>f =
∑

v′+v′′=v

{

v
v′

}

)<v
′>(f ))<v

′′> ∈ D(m,0)
U = D(m)

U .

16



Now, let’s take an affine covering S of X such that for every U ∈ S , U is endowed with local coordinates and there
exists a local section � ∈ L(�)(U ) such that L(�)|U = �OU and L (�)∨|U = �∨OU , where �∨ denotes the dual element
associated to �. Let us show that

D(m,k)
U (�) =

⨁

v
$k|v|OU� ⊗ )<v> ⊗ �∨. (13)

It is enough to show that for every v ∈ ℕM and f, g ∈ OU the section � ⊗ $k|v|f)<v> ⊗ g�∨ belongs to the right side
of (13). In fact, from the first part of the proof

� ⊗$k|v|f)<v> ⊗ g�∨ = � ⊗$k|v|f)<v>g ⊗ �∨ =
∑

v′+v′′=v
$k|v|f

{

v
v′

}

)<v
′>(g)� ⊗ )<v

′′> ⊗ �∨

and we get the relation (13). Let us define � ∶ D(m,k)
U (�) → D(m,k)

U by �
(

$k|v|f� ⊗ )<v> ⊗ �∨
)

= $k|v|f)<v> and
let us see that � is a homomorphism of rings (the multiplication on the left is given by (12)). By (13), the elements in
D(m,k)
U (�) are linear combinations of the terms$k|v|f� ⊗ )<v> ⊗ �∨ and therefore, it is enough to show that � preserves

the multiplicative structure over the elements of this form. So, let us take v, u ∈ ℕ and f, g ∈ OU . On the one hand

�($k|v|f� ⊗ )<v> ⊗ �∨ ∙$k|u|g� ⊗ )<u> ⊗ �∨) = �($k|v|f� ⊗ )<v>$k|u|g)<u> ⊗ �∨)

=
∑

v′+v′′=v
$k|v|f

{

v
v′

}

)<v
′>($k|u|g))<v

′′>)<u>,

and on the other hand

�($k|v|f� ⊗ )<v> ⊗ �∨) ∙ �($k|u|g� ⊗ )<u> ⊗ �∨) = $k|v|f)<v> ∙$k|u|g)<u>

=
∑

v′+v′′=v
$k|v|f

{

v
v′

}

)<v
′>($k|u|g))<v

′′>)<u>.

Both equations show that � is a ring homomorphism.
Finally, a reasoning completely analogous shows that the morphism �−1 ∶ D(m,k)

U → D(m,k)
U (�) defined by

�−1($k|v|f)<v>) = $k|v|f� ⊗ )<v> ⊗ �∨

it is also a homomorphism of rings and �◦�−1 = �−1◦� = id. This ends the proof of the lemma.

3.3.7. Congruence subgroups and wide open congruence subgroups

Let us denote by Fq = o∕($) the residue field of o, and let us consider GL ∶= G ×Spec(o) Spec(L) the generic fiber of
G and GFq ∶= G ×Spec(o) Spec(Fq) the special fiber. For every k ∈ ℕ, there exists a smooth model G(k) of G such that
Lie(G(k)) = $kg. In fact, we take G(0) ∶= G and we construct G(1) as the dilatation of the trivial subgroup of GFq in G
[7, Chapter 3, Section 3.2]. This is a flat o-scheme which is an integral model of GL [36, Proposition 1.1]. In general, we
let G(k + 1) be the dilatation of the trivial subgroup of G(k)Fq in G(k), in such a way that for every k ∈ ℕ we dispose of a
canonical morphism G(k + 1) → G(k).

We end this briefly discussion about the congruence subgroups with the following description of the distribution algebra
D(m)(G(k)).10. Let us take a triangular decomposition g = n⊕ t⊕ n and let us consider basis (fi), (ℎj) and (el) of the
o-Lie algebras n, t and n, respectively. Then D(m)(k) equals the o-subalgebra of U (g)⊗o L generated as an o-module by

10This is exactly as in [25, 3.3.2]
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the elements

qv!$k|v|
f v

v!
qv′ !$k|v′|

(

ℎ
v′

)

qv′′ !$k|v′′| e
v′′

v′′!
. (14)

An element of the preceding form has order d = |v|+ |v′|+ |v′′| and the o-spam of elements of order less or equal than d
forms an o-submodule D(m)d (G(k)) ⊂ D(m)(G(k)). In this way D(m)(G(k)) becomes a filtered o-algebra, such that by (14)
and the well known Poincaré–Birkhoff–Witt theorem we have D(m)(G(k))⊗o L = U (g)⊗o L.

The preceding discussion also tells us that

D(m)(G(0))$k = D(m)(G(k)).

Finally, let us introduce a family of certain rigid-analytic "wide-open" groups G(k)◦, which will be important in our work.
To do this, let us first consider the formal completion G(k) of the group scheme G(k) along its special fiber, which is a
formal scheme of topological finite type over Spf(o). Now, we consider Ĝ(k)◦ be the completion of G(k)◦ along its unit
section Spf(o) → G(k), and we denote by G(k)◦ its associated rigid-analytic space [4, (0.2.6)], which is a rigid-analytic
group.

We recall for the reader that in subsection 2.5 we have introduced the sheavesA(m,k)
X ∶= OX⊗oD(m)(G(k)), which carries

a structure of filtered OX-ring, such that gr(A
(m,k)
X ) = OX ⊗o Sym(m)($kg).

Proposition 3.3.8. There exists a canonical surjective homomorphism of sheaves of filtered o-algebras

Φ(m,k)X ∶ A(m,k)
X → D(m,k)

X (�).

Proof. Let us star by showing the existence of such a morphism. By [22, Corollary 4.5.2], there exists a morphism of
sheaves of filtered o-algebras

A(m,0)
X → D(m,0)

X (�). (15)

Let’s first show that after specialising in$k the Rees ring associated to the twisted order filtration ofD(m,0)
X0,�

we getD(m,k)
X (�).

To do that, we consider D(m,0)
X filtered by the order of differential operators and we define the following homomorphisms

of OX-modules

L(�)⊗OX
R
(

D(m,0)
X

)

⊗OX
L(�)∨ R

(

D(m,0)
X (�)

)

,
�

�−1
(16)

by

�

(

� ⊗
∑

i
Pit

i ⊗ �∨
)

=
∑

i
(� ⊗ Pi ⊗ �∨)ti and �−1

(

∑

j
(�j ⊗ Pj ⊗ �∨j )t

j

)

=
∑

j
�j ⊗ Pj t

j ⊗ �∨j

with ord(Pi) = i for every i in the sum (resp. ord(Pj) = j for every j). It’s clear that �◦�−1 = �−1◦� = id and therefore
(16) is an isomorphism of OX-modules. We remark that an easy calculation shows that (16) is in fact an isomorphism of
rings.
Let’s denote by �1 ∶ R

(

D(m,0)
X (�)

)

→ D(m,k)
X (�); t → $k and by �2 ∶ R

(

D(m,0)
X

)

→ D(m,k)
X ; t → $k, and let’s consider
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the following diagrams

L(�)⊗OX
R
(

D(m,0)
X

)

⊗OX
L(�)∨ R

(

D(m,0)
X (�)

)

D(m,k)
X (�)

idL(�)⊗�2⊗idL(�)∨

�

�−1

�1

It is straightforward to check that both diagrams are commutative and we can conclude that
(

D(m,0)
X0

(�)
)

$k
= Im(�1) = Im(idL(�) ⊗ �2 ⊗ idL(�)∨ ) = L(�)⊗OX

Im(�2)⊗OX
L(�)∨ = D(m,k)

X (�).

On the other hand, taking the natural filtration of A(m,0)
X we have

R
(

A(m,0)
X

)

= OX ⊗o R
(

D(m)(G(0))
)

and therefore (A(m,0)
X )$k = A(m,k)

X . The above two calculations tell us that passing to the Rees rings and specialising in
$k the map (15), we get the desired homomorphism of filtered sheaves of o-algebras

Φ(m,k)X ∶ A(m,k)
X → D(m,k)

X (�). (17)

Let us finally show that this morphism is surjective. To do that, let us recall that the rightG-action onX induces a canonical
application

OX ⊗o $
kg → $kTX (18)

which is surjective by [21, Subsection 1.6]. By using proposition 3.3.5 and gr(A(m,k)
X ) = OX ⊗o Sym(m)(g), we can

conclude that Φ(m,k)X is surjective.

Proposition 3.3.6 and the same reasoning given in [24, Proposition 2.2.2 (iii)] imply the following meaningful result.11

Proposition 3.3.9. The sheaf D(m,k)
X (�) is a sheaf of OX-rings with noetherian sections over all open affine subsets of X.

3.4 Finiteness properties

Throeught this section � ∈ X(T ) will denote an algebraic character. By abuse of notation, we will denote again by � the
character d� ∈ Homo−mod(t, o) induced via differentiation. In this subsection we will show one important property about
the p-torsion of the cohomology groups of coherent D(m,k)

X,� -modules, when the character � + � ∈ HomL−mod(tL, L) is
dominant and regular. We will follow the arguments of [21].

Let Y be a projective scheme. There exists a very ample sheaf O(1) on Y [17, Chapter II, remark 5.16.1]. Therefore, for
any arbitrary OY -module E we can consider the twist

E (r) ∶= E ⊗OX
O(r)

where r ∈ ℤ means the r-th tensor product ofO(1) with itself. We recall to the reader that there exists r0 ∈ ℤ, depending
of O(1), such that for every k ∈ ℤ>0 and for every s ≤ r0,Hk(Y ,O(s)) = 0 [17, Chapter II, theorem 5.2 (b)].

Let us start the results of this subsection with the following proposition which states three important properties of coherent
A(m,k)
Y -modules [22, Proposition A.2.6.1]. This is a key result in our work. Let E be a coherent A(m,k)

Y -module.
11Of course, this is also an immediately consequence of proposition 3.3.8 and [20, proposition 1.3.6].
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Proposition 3.4.1. (i) H0(X,A(m,k)
Y ) = D(m)(G(k)) is a noetherian o-algebra.

(ii) There exists a surjection on A(m,k)
Y -modules

(

A(m,k)
Y (−r)

)⊕a
→ E → 0 for suitable r ∈ ℤ and a ∈ ℕ.

(iii) For any k ≥ 0 the groupHk(X, E ) is a finitely generated D(m)(G(k))-module.

Inspired in proposition 3.3.8, in a first time we will be concentrated in coherent A(m,k)
Y -modules. The next two results will

play an important role when we consider formal completions.

Lemma 3.4.2. For every coherentA(m,k)
Y -module E , there exists r = r(E ) ∈ ℤ such thatHk(X, E (s)) = 0 for every s ≥ r.

Proof. Let us fix r0 ∈ ℤ such thatHk(Y ,O(s)) = 0 for every k > 0 and s ≥ r0. We have

Hk(Y ,A(m,k)
Y (s)) = Hk(Y ,O(s))⊗o D

(m)(G(k)) = 0.

The rest of the proof follows the same inductive argument given in [21, Proposition 2.2.1].

Let us suppose now that X ∶= G∕B is the smooth flag o-scheme of G. From proposition 3.3.8 and lemma 3.4.2 we have
the following result.

Lemma 3.4.3. For every coherent D(m,k)
X,� -module E , there exist r = r(E ) ∈ ℤ, a natural number a ∈ ℕ and an epimor-

phism of D(m,k)
X,� -modules

(

D(m,k)
X,� (−r)

)⊕a
→ E → 0.

Proposition 3.4.4. Let us suppose that � + � ∈ t∗L is a dominant and regular character (cf. 3.3.1).

(i) Let us fix r ∈ ℤ. For every positive integer k ∈ ℤ>0, the cohomology groupHk(X,D(m,k)
X,� (r)) has bounded p-torsion.

(ii) For every coherent D(m,k)
X,� -module E , the cohomology groupHk(X, E ) has bounded p-torsion for all k > 0.

Proof. To show (i) we remark for the reader that by construction D(m,k)
X,�,ℚ = D� is the usual sheaf of twisted differential

operators on the flag varietyXL [26, Part I, 5.17]. AsD(m,k)
X,�,ℚ(r) is a coherentD�-module, the classical Beilinson-Bernstein

theorem [1] allows us to conclude thatHk(X,D(m,k)
X,� (r))⊗o L = 0 for every positive integer k ∈ ℤ>0. This in particular

implies that the sheaf D(m,k)
X,� (r) has p-torsion cohomology groups Hk(X,D(m,k)

X,� (r)), for every k > 0 and r ∈ ℤ. Now,
by proposition 3.3.8, we know that D(m,k)

X,� (r) is in particular a coherent A(m,k)
X -module and hence, by the third part of

proposition 3.4.1 we get that for every k ≥ 0 the cohomology groups Hk(X,D(m)
X,�(r)) are finitely generated D(m)(G(k))-

modules. Consequently, of finite p-torsion for every integer 0 < k ≤ dim(X) and r ∈ ℤ.

By lemma 3.4.3 we can use the same inductive reasoning that in [21, Corollary 2.2.4] to show (ii).

3.5 Passing to formal completions

We recall for the reader that throughout this work

X ∶= lim
←←←←←←←←←←→
j∈ℕ

Xj , Xj ∶= X ×Spec(o) Spec(o∕$j+1)

denote the formal completion of X along its special fiber.
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Definition 3.5.1. We will denote by

D̂ (m,k)
X,� ∶= lim

←←←←←←←←←←←
j∈ℕ

D(m,k)
X,� ∕$

j+1D(m,k)
X,�

the$-adic completion of D(m,k)
X,� and we consider it as a sheaf on X. Following the notation given at the beginning of this

work, the sheaf D̂ (m,k)
X,�,ℚ will denote our sheaf of level m twisted differential operators with congruence level k on the formal

flag scheme X.

Proposition 3.5.2. (i) There exists a basis B of the topology of X, consisting of open affine subset, such that for every
U ∈ B the ring D̂ (m,k)

X,� (U) is two-sided noetherian.

(ii) The sheaf of rings D̂ (m,k)
X,�,ℚ is coherent.

Proof. To show (i) we can take an open affine subset U ∈ S and to consider U its formal completion along the special
fiber. We have

H0(U, D̂ (m,k)
X,� ) ≃ ̂H0(U,D(m,k)

X,� ) ≃
̂H0(U,D(m,k)

X ) ≃ H0(U, D̂ (m,k)
X )

The first and third isomorphisms are given by [15, (0I , 3.2.6)] and the second one arises from proposition 3.3.6. By [24,
Proposition 2.2.2 (v)]H0(U, D̂ (m,k)

X ) is twosided noetherian. Therefore, we can take B as the set of affine open subsets of
X contained in the $-adic completion of an affine open subset U ∈ S . This proves (i). By [3, proposition 3.3.4] we can
conclude that (ii) is an immediately consequence of (i) becauseH0(U, D̂ (m,k)

X,�,ℚ) = H
0(U, D̂ (m,k)

X,� )⊗o L [3, (3.4.0.1)].

The objective of this subsection is to prove an analogue of proposition 3.4.4 for coherent D̂ (m,k)
X,�,ℚ-modules and to conclude

thatH0(X, ∙) is an exact functor over the category of coherent D̂ (m,k)
X,�,ℚ-modules.

Proposition 3.5.3. Let E be a coherent D(m,k)
X,� -module and Ê its$-adic completion, which we consider as a sheaf on X.

(i) For all k ≤ 0 one hasHk(X, Ê ) = lim
←←←←←←←←←←←j

Hk(X, E∕$jE ).

(ii) For all k > 0 one hasHk(X, Ê ) = Hk(X, E ).

(iii) The global section functorH0(X, ∙) satisfiesH0(X, Ê ) = lim
←←←←←←←←←←←j

H0(X, E )∕$jH0(X, E ).

Proof. Let Et denote the torsion subpresheaf of E . As X is a noetherian space and D(m,k)
X,� has noetherian rings sections

over open affine subsets of X (proposition 3.3.9), we can conclude that Et is in fact a coherent D(m,k)
X,� -module. This is

generated by a coherent OX-module which is annihilated by a power $c of $, and so is Et. The quotient G ∶= E∕Et is
again a coherentD(m,k)

X,� -module and therefore we can assume, after possibly replacing c by a larger number, that$cEt = 0
and$cHk(X, E ) = $cHk(X,G) = 0 , for all k > 0. From here on the proof of the proposition follows the same lines of
reasoning that in [20, proposition 3.2].

Next proposition is a natural result from lemmas 3.4.2 and 3.4.3. The proof is exactly the same that in [25, Proposition
4.2.2].12

Proposition 3.5.4. Let E be a coherent D̂ (m,k)
X,� -module.

(i) There exists r2 = r2(E ) ∈ ℤ such that for all r ≥ r2 there is a ∈ ℤ and an epimorphism of D̂ (m,k)
X,� -modules

(

D̂ (m,k)
X,� (−r)

)⊕a
→ E → 0

12We skip the proof here, but the reader can take a look to [32, Proposition 4.1.2] when we have treated the case k = 0. The proof for k ∈ ℤ>0 is
exactly the same.
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(ii) There exists r3 = r3(E ) ∈ ℤ such that for all r ≥ r3 we haveHk(X,E ) = 0, for all k > 0.

The same inductive argument exhibited in proposition [20, Proposition 3.4 (i)] shows

Corollary 3.5.5. Let E be a coherent D̂ (m,k)
X,� -module. There exists c = c(E ) ∈ ℕ such that for all k > 0 the cohomology

groupHk(X,E ) is annihilated by$c .

Now, we want to extend the part (i) of the preceding proposition to the sheaves D̂ (m,k)
X,�,ℚ. To do that, we need to show that

the category of coherent D̂ (m,k)
X,�,ℚ-modules admits integral models (definition 2.5.1).

Let Coh(D̂ (m,k)
X,� ) be the category of coherent D̂ (m,k)

X,� -modules and let Coh(D̂ (m,k)
X,� )ℚ be the category of coherent D̂ (m,k)

X,� -
modules up to isogeny. This means that Coh(D̂ (m,k)

X,� )ℚ has the same class of objects as Coh(D̂ (m,k)
X,� ) and, for any two

objects M and N in Coh(D̂ (m,k)
X,� )ℚ one has

HomCoh(D̂(m,k)
X,� )ℚ

(M,N ) = HomCoh(D̂(m,k)
X,� )(M,N )⊗o L.

Proposition 3.5.6. The functorM → M⊗oL induces an equivalence of categories betweenCoh(D̂ (m,k)
X,� )ℚ andCoh(D̂ (m,k)

X,�,ℚ).

Proof. By definition, the sheaf D̂ (m,k)
X,�,ℚ satisfies [3, conditions 3.4.1] and therefore [3, proposition 3.4.5] allows to conclude

the proposition.

The proof of the next theorem follows exactly the same lines than in [25, theorem 4.2.8].

Theorem 3.5.7. Let E be a coherent D̂ (m,k)
X,�,ℚ-module.

(i) There is r(E ) ∈ ℤ such that, for every r ≥ r(E ) there exists a ∈ ℕ and an epimorphism of D̂ (m,k)
X,�,ℚ-modules

(

D̂ (m,k)
X,�,ℚ(−r)

)⊕a
→ E → 0.

(ii) For all i > 0 one hasH i(X,E ) = 0.

Proof. By the preceding proposition, there exists a coherent D̂ (m,k)
X,� -moduleF such thatF⊗oL ≃ E . Therefore, applying

proposition 3.5.4 to F gives (i). Moreover, as X is a noetherian space, corollary 3.5.5 allows us to conclude that

H i(X,E ) = H i(X,F )⊗o L = 0

for every k > 0 [3, (3.4.0.1)].

3.6 The arithmetic Beilinson-Bernstein theorem with congruence level

3.6.1 Calculation of global sections

We recall for the reader that throughout this section �+� ∈ t∗L denotes a dominant and regular character, which is induced
by an algebraic character � ∈ X(T ). Insppired in the arguments exhibited in [23], in this subsection we propose to calculate
the global sections of the sheaf D̂ (m,k)

X,�,ℚ.

Let us identify the universal enveloping algebra U (tL) of the Cartan subalgebra tL with the symmetric algebra S(tL), and
let Z(gL) denote the center of the universal enveloping algebra U (gL) of gL. The classical Harish-Chandra isomorphism
Z(gL) ≃ S(tL)W (the subalgebra of Weyl invariants) [11, theorem 7.4.5], allows us to define for every linear form � ∈ t∗L
a central character [11, 7.4.6]

�� ∶ Z(gL)→ L
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which induces the central reduction U (gL)� ∶= U (gL)⊗Z(gL),��+� L. If Ker(��+�)o ∶= D
(m)(G(k)) ∩ Ker(��+�), we can

consider the central redaction

D(m)(G(k))� ∶= D(m)(G(k))∕D(m)(G(k))Ker(��+�)o

and its $-adic completion D̂(m)(G(k))�. It is clear that D(m)(G(k))� is an integral model of U (gL)�. We will denote by
D†(G(k)) the limit of the inductive system D̂(m)(G(k))⊗o L→ D̂(m+1)(G(k))⊗o L.

Theorem 3.6.1. The homomorphism of o-algebras Φ(m,k)� ∶ D(m)(G(k)) → H0(X,D(m,k)
X,� ), defined by taking global

sections in (3.3.8), induces an isomorphism of o-algebras

D̂(m)(G(k))� ⊗o L
≃
←←←←←←←→ H0

(

X, D̂ (m,k)
X,�,ℚ

)

.

Proof. The key in the proof of the theorem is the following commutative diagram

D(m)(G(k)) H0(X,D(m,k)
X,� )

U (gL) H0(XL,D�).

Φ(m,k)�

Φ�

Here Φ� is the morphism in [19, (11.2.2)]13. By the classical Beilinson-Bernsein theorem [1] and the preceding commu-
tative diagram, we have that Φ(m,k)� factors through the morphism Φ

(m,k)
� ∶ D(m)(G(k))� → H0(X,D(m,k)

X,� ) which becomes

an isomorphism after tensoring with L. By [23, Lemma 3.3] we have that Φ
(m)
� gives rise to an isomorphism

D̂(m)(G(k))� ⊗o L
≃
←←←←←←←→

̂H0(X,D(m,k)
X,� )⊗o L,

and proposition 3.5.3 together with the fact that X is in particular a noetherian topological space end the proof of the
theorem.

3.6.2 The localization functor

In this section we will introduce the localization functor. Let E be a finitely generated D̂(m)(G(k))� ⊗o L-module. We
define L oc(m,k)X,� (E) as the associated sheaf to the presheaf on X defined by

U → D̂ (m,k)
X,�,ℚ(U)⊗D̂(m)(G(k))�⊗oL

E.

It is clear that L oc(m,k)X,� is a functor from the category of finitely generated D̂(m)(G(k))� ⊗o L-modules to the category of
coherent D̂ (m,k)

X,�,ℚ-modules.

3.6.3 The arithmetic Beilinson-Bernstein theorem

We are finally ready to prove one of the principal results of this work. To start with, we will enunciate the following
proposition whose proof can be founded in [32, Proposition 4.4.1].

Proposition 3.6.2. Let E be a coherent D̂ (m,k)
X,�,ℚ-module. Then E is generated by its global sections as D̂ (m)

X,�,ℚ-module.

Furthermore, every coherent D̂ (m,k)
X,�,ℚ-module admits a resolution by finite free D̂ (m,k)

X,�,ℚ-modules.
13We recall for the reader that L(�) is a G-equivariant line bundle, which implies the existence of this morphism [19, Section 11.1].
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Theorem 3.6.3. Let us suppose that � ∈ X(T ) is an algebraic character such that � + � ∈ t∗L is a dominant and regular
character of tL. The functors L oc(m,k)X,� and H0(X, ∙) are quasi-inverse equivalence of categories between the abelian

categories of finitely generated D̂(m)(G(k))� ⊗o L-modules and coherent D̂ (m)
X,�,ℚ-modules.

Proof. The proof of [20, Proposition 5.2.1] carries over word by word.

3.7 The sheaves D†
X,k(�)

In this section we will study the problem of passing to the inductive limit when m varies, this means

D†
X,k(�) ∶=

(

lim
←←←←←←←←←←→
m∈ℕ

D̂ (m,k)
X,�

)

⊗o L and D†(G(k))� ∶=

(

lim
←←←←←←←←←←→
m∈ℕ

D̂(m)(G(k))�

)

⊗o L. (19)

As in 3.6.2 let us consider the following localization functorL oc†X,k(�) from the category of finitely presentedD†(G(k))�-
modules to the category of coherentD†

X,k(�). LetE be a finitely presentedD†(G(k))�-module, thenL oc†X,k(�)(E) denotes
the associated sheaf to the presheaf on X defined by

U ⊆ X → D†
X,k(�)⊗D†(G(k))� E.

As before, it is clear thatL oc†X,k(�) is a functor from the category of finitely presentedD†(G(k))�-modules to the category
of coherent D†

X,k(�)-modules.

3.7.1. Analytic distribution algebra

The wide-open rigid analytic groups, defined in 3.3.7, play an important role in the work developed by Emerton in [13],
to treat locally analytic representations of p-adic groups. The analytic distribution of G(k)◦ is defined to be the continuous
dual space of the space of rigid-analytic functions on G(k)◦. This is,

Dan(G(k)◦) ∶=
(

OG(k)◦ (G(k)◦)
)′
b = Homcont

L
(

OG(k)◦ (G(k)◦), L
)

b ,

this is a topological L-algebra of compact type. In [22, Proposition 5.2.1] Huyghe-Schmidt have shown that

D†(G(k)) ≃ Dan(G(k)◦).

As X is a noetherian space, theorem 3.6.1 and the preceding relation tell us that

H0(X,D†
X,k(�)) = D

†(G(k))� = Dan(G(k)◦)� ∶= Dan(G(k)◦)
/

Dan(G(k)◦)(Ker(��+�)). (20)

We will concentrate our efforts to prove the following Beilinson-Bernstein theorem for the sheaves D†
X,k(�).

Theorem 3.7.2. Let � ∈ X(T ) be an algebraic character, such that � + � ∈ t∗L is dominant and regular. The functors
L oc†X,k(�) andH

0(X, ∙) are quasi-inverse equivalence of categories between the abelian categories of finitely presented
(left) D†(G(k))�-modules and coherent D

†
X,k(�)-modules.

Let us start by recalling the following proposition [3, Proposition 3.6.1].

Proposition 3.7.3. Let Y be a topological space, and {Di}i∈J be a filtered inductive system of coherent sheaves of rings
on Y , such that for any i ≤ j the morphisms Di → Dj are flat. Then the sheaf D† ∶= lim

←←←←←←←←←←→i∈J
Di is a coherent sheaf of

rings.

Proposition 3.7.4. The sheaf of rings D†
X,k(�) is coherent.
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Proof. The previous proposition tells us that we only need to show that the transition morphisms D̂ (m,k)
X,�,ℚ → D̂ (m+1,k)

X,k,ℚ are
flat. As this is a local property we can take U ∈ S (covering in proposition 3.3.6) and to verify this property over the
formal completionU. In this case, the argument used in the proof of the first part of proposition 3.5.2 give us the following
commutative diagram

D̂ (m,k)
X,�,ℚ(U) D̂ (m+1,k)

X,�,ℚ (U)

D̂ (m,k)
X,ℚ (U) D̂ (m+1,k)

X,ℚ (U)

≃ ≃
The flatness theorem [24, Proposition 2.2.11 (iii)] states that the lower morphism is flat and so is the morphism on the
top.

Lemma 3.7.5. For every coherent D†
X,k(�)-module E there exists m ≥ 0, a coherent D̂ (m,k)

X,�,ℚ-module Em and an isomor-
phism of D†

X,k(�)-modules

� ∶ D†
X,k(�)⊗D̂

(m,k)
X,�,ℚ

Em
≃
←←←←←←←→ E .

Moreover, if (m′,Em′ , �′) is another such triple, then there exists l ≥ max{m,m′} and an isomorphism of D̂ (l,k)
X,�,ℚ-modules

�l ∶ D̂ (l,k)
X,�,ℚ ⊗D̂

(m,k)
X,�,ℚ

Em
≃
←←←←←←←→ D̂ (l,k)

X,�,ℚ ⊗D̂
(m′ ,k)
X,�,ℚ

Em′

such that �′◦
(

id
D†

X,k(�)
⊗ �l

)

= �.

Proof. This is [3, proposition 3.6.2 (ii)]. We remark that X is quasi-compact and separated, and the sheaf D̂ (m,k)
X,�,ℚ satisfies

the conditions in [3, 3.4.1].

Proposition 3.7.6. Let E be a coherent D†
X,k(�)-module.

(i) There exists an integer r(E ) such that, for all r ≥ r(E ) there is a ∈ ℕ and an epimorphism of D†
X,k(�)-modules

(

D†
X,k(�)(−r)

)⊕a
→ E → 0.

(ii) For all i > 0 one hasH i(X,E ) = 0.

Proof. 14 Let E be a coherent D†
X,k(�)-coherent module. The preceding proposition tells us that there exists m ∈ ℕ, a

coherent D̂ (m,k)
X,�,ℚ-module Em and an isomorphism of D†

X,k(�)-modules

� ∶ D†
X,k(�)⊗D̂

(m,k)
X,�,Q

Em
≃
←←←←←←←→ E .

Now we use proposition 3.5.7 for Em and we get the desired surjection in (i) after tensoring with D†
X,k(�). To show (ii) we

may use the fact that, as X is a noetherian topological space, cohomology commutes with direct limites. Therefore, given
14This is exactly as in [25, theorem 4.2.8].
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that D̂ (l,k)
X,�,ℚ ⊗D̂

(m,k)
X,�,ℚ

Em is a coherent D (l,k)
X,�,ℚ-module for every l ≥ m, we have for every i > 0

H i(X,E ) = lim
←←←←←←←←←←→
l≥m

H i
(

X, D̂ (l,k)
X,�,ℚ ⊗D̂

(m,k)
X,�,ℚ

Em

)

= 0.

Proposition 3.7.7. Let E be a coherent D†
X,k(�)-module. Then E is generated by its global sections as D†

X,k(�)-module.
Moreover, E has a resolution by finite free D†

X,k(�)-modules andH
0(X,E ) is a D†(G(k))� ⊗o L-module of finite presen-

tation.

Proof. 15 Theorem 3.7.5 gives us a coherent D̂ (m,k)
X,�,ℚ-module Em such that E ≃ D†

X,k(�)⊗D̂
(m,k)
X,�,ℚ

Em. Moreover, Em has a

resolution by finite free D̂ (m,k)
X,�,ℚ-modules ( proposition 3.6.2). Both results clearly imply the first and the second part of

the lemma. The final part of the lemma is therefore a consequence of the first part and the acyclicity of the the functor
H0(X, ∙).

Proof of theorem 3.7.2. All in all, we can follow the same arguments of [21, corollary 2.3.7]. We start by taking

(D†(G(k))� ⊗o L)⊕a → (D†(G(k))� ⊗o L)⊕b → E → 0

a finitely presentedD†(G(k))�⊗o L-module. By localizing and applying the global sections functor, we obtain a commu-
tative diagram

(D†(G(k))� ⊗o L)⊕a (D†(G(k))� ⊗o L)⊕b E 0

(D†(G(k))� ⊗o L)⊕a (D†(G(k))� ⊗o L)⊕b H0(X,ℒoc†X,k(�)(E)) 0.

which tells us that E → H0(X,L oc†X,k(�)(E)) is an isomorphism. To show that if E is coherent D†
X,k(�)-module then the

canonical morphism D†
X,k(�)⊗D†(G(k))�⊗oL H

0(X,E ) → E is an isomorphism the reader can follow the same argument
as before. As we have remarked, the second assertion follows because any equivalence between abelian categories is
exact.

4 Twisted differential operators on formal models of flag varieties
Through out this sectionX = G∕Bwill denote the smooth flag o-scheme and � ∈ X(T ) = Hom(T ,Gm)will always denote
an algebraic character. As before, we will denote be L(�) the (algebraic) line bundle on X induced by � (subsection 3.1).
In this section we will generalize the construction given in [25] by introducing sheaves of twisted differential operators on
an admissible blow-up of the smooth formal flag o-scheme X. The reader will figure out that some reasoning are inspired
in the results of Huyghe-Patel-Strauch-Schmidt in [25].

4.1 Differential operators on admissible blow-ups

We start with the following definition.

Definition 4.1.1. Let I ⊆ OX be a coherent ideal sheaf. We say that a blow-up pr ∶ Y → X along the closed subset
V (I) is admissible if there is k ∈ ℕ such that$kOX ⊆ I .

15This is exactly as in [20, theorem 5.1].

26



Let us fix I ⊆ OX an open ideal and pr ∶ Y → X an admissible blow-up along V (I). We point out to the reader that I is
not uniquely determined by the space Y . In the sequel we will denote by

kY ∶= min
I

min{k ∈ ℕ | $k ∈ I},

where the first minimum runs over all open ideal sheaves I such that the blow-up along V (I) is isomorphic to Y .

Now, as I is an open ideal sheaf, the blow-up induces a canonical isomorphism YL ≃ XL between the generic fibers.
Moreover, as $ is invertible on XL, we have D(m,k)

X |XL = DX|XL = DXL , the usual sheaf of (algebraic) differential

operators onXL. Therefore pr−1
(

D(m,k)
X

)

|YL = DYL . In particular,OYL has a natural structure of (left) pr
−1

(

D(m,k)
X

)

|YL -
module. The idea is to find those congruence levels k ∈ ℕ such that the preceding structure extends to a module structure
on OY over pr−1

(

D(m,k)
X

)

. Let us denote by

D(m,k)
Y ∶= pr∗

(

D(m,k)
X

)

= OY ⊗pr−1OX
pr−1D(m,k)

X . (21)

The problem to find those congruence levels was studied in [25] and [24]. In fact, we have the following condition [25,
Corollary 2.1.18].

Proposition 4.1.2. Let k ≥ kY . The sheaf D
(m,k)
Y is a sheaf of rings on Y . Moreover, it is locally free over OY .

Explicitly, if )1, )2 are both local sections of pr−1
(

D(m,k)
X

)

, and if f1, f2 are local sections of OY , then

(f1 ⊗ )1) ∙ (f2 ⊗ )2) = f1)1(f2)⊗ )2 + f1f2 ⊗ )1)2.

We have all the ingredients that allow us to construct the desired sheaves over Y , this is, to extend the sheaves of rings
defined in the preceding chapter to an admissible blow-up Y of X. Let k ≥ kY fix. Let us first recall that taking arbitrary
sections P ,Q ∈ D(m,k)

X , s, t ∈ L(�) and s∨, t∨ ∈ L(�)∨ (the last two not necessarily the duals of s and t) over an arbitrary
open subset U ⊂ X, the multiplicative structure of the sheaf D(m,k)

X,� is defined by (cf. (12))

s ⊗ P ⊗ s∨ ∙ t ⊗ Q⊗ t∨ = s ⊗ P
⟨

s∨, t
⟩

Q⊗ t∨.

Now, if pr∶ Y → X denotes the projection, we put

D(m,k)
Y (�) ∶= pr∗

(

D(m,k)
X,�

)

= pr∗L(�)⊗OY
pr∗D(m,k)

X ⊗OY
pr∗L(�)∨.

Proposition 4.1.2 allows us to endow the sheaf of OY -modules D(m,k)
Y (�) with a multiplicative structure for every k ≥ kY .

On local sections we have

s ⊗ P ⊗ s∨ ∙ t ⊗ Q⊗ t∨ = s ⊗ P
⟨

s∨, t
⟩

Q⊗ t∨,

where s, t ∈ pr∗L(�), s∨, t∨ ∈ pr∗L(�)∨ and P ,Q ∈ D(m,k)
Y , are local sections.

Let Y be the completion of Y along its special fiber YFq = Y ×Spec(o) Spec(o∕$).

4.1.3. In this work we will only consider formal blow-ups Y arising from the formal completion along the special fiber of
an admissible blow-up Y → X [25, Proposition 2.2.9]. Under this assumption we will identify kY = kY.

Definition 4.1.4. Let pr ∶ Y → X be an admissible blow-up of the flag variety X and let k ≥ kY . The sheaves

D̂ (m,k)
Y,ℚ (�) ∶=

(

lim
←←←←←←←←←←←
i∈ℕ

D(m,k)
Y (�)∕$i+1D(m,k)

Y (�)

)

⊗o L and D†
Y,k(�) ∶= lim

←←←←←←←←←←→
m∈ℕ

D̂ (m,k)
Y,ℚ (�).
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are called sheaves of �-twisted arithmetic differential operators on Y.

Proposition 4.1.5. (i) The sheaves D(m,k)
Y (�) are filtered by the order of twisted differential operators and there is a

canonical isomorphism of graded sheaves of algebras

gr
(

D(m,k)
Y (�)

)

≃ Sym(m)
(

$kpr∗TX
)

,

where k ≥ kY .

(ii) There is a basis for the topology of Y , consisting of affine open subsets, such that for any open subset U ∈ Y in this
basis, the ring D(m,k)

Y (�) (U ) is noetherian. In particular, the sheaf of rings D(m,k)
Y (�) is coherent.

(iii) The sheaf D̂ (m,k)
Y,ℚ (�) is coherent.

Proof. By 5, we have an exact sequence of OX-modules

0 → D(m,k)
X,d−1 → D(m,k)

X,d → Sym(m)
d

(

$kTX
)

→ 0.

Taking the tensor product with L(�) and L(�)∨ on the left and on the right, respectively, and applying pr∗ we obtain the
exact sequence (since Sym(m)

d ($kTX) is a locally free OX-module of finite rank)

0 → D(m,k)
Y ,d−1(�)→ D(m,k)

Y ,d (�)→ pr∗L(�)⊗OY
Sym(m)

d
(

$kpr∗TX
)

⊗OY
pr∗L(�)∨ → 0,

which implies (i) because

pr∗L(�)⊗OY
Sym(m) ($kpr∗TX

)

⊗OY
pr∗L(�)∨ ≃ Sym(m) ($kpr∗TX

)

by commutativity of the symmetric algebra.

Let U ⊆ X be an affine open subset endowed with local coordinates x1, ..., xM and such that L(�)|U = sOU for some
s ∈ L(�)(U ). Then, by lemma 3.3.6 we have the following local description for D(m,k)

Y (�) on V = pr−1(U )

D(m,k)
Y (�)(V ) =

{<∞
∑

v
$k|v|av)⟨

v⟩
| v = (v1, ..., vM ) ∈ ℕM and av ∈ OY (V )

}

.

By (i), the graded algebra gr∙
(

D(m,k)
Y (�)(V )

)

is isomorphic to Sym(m) ($kpr∗TX(V )
)

which is known to be noetherian
[20, Proposition 1.3.6]. Therefore, taking as a basis the set of affine open subsets of Y that are contained in some pr−1(U )
we get (ii). We also remark that, as D(m,k)

Y (�) is OY -quasi-coherent, and by (ii) in the actual proposition, it has noetherian
sections over the affine open subsets of Y (cf. [24, Proposition 2.2.2 (iii)]), it is certainly a sheaf of coherent rings [3,
proposition 3.1.3]. Finally, by definition, we see that D̂ (m,k)

Y (�) satisfies the conditions (a) and (b) of 3.3.3 in [3] and hence
[3, Proposition 3.3.4] gives us (iii).

Let us briefly study the problem of passing to the inductive limit when m varies.

Let U ⊂ X such that D(m,k)
X (�)|U ≃ D(m,k)

X |U and let us take V ⊆ Y an affine open subset such that V ⊆ pr−1(U ). We
have the commutative diagram

V Y

U X,

iV

pr pr
iU
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which implies that D(m,k)
Y (�)|V ≃ D(m,k)

Y |V , as sheaves of rings. In particular, if V denotes the formal p-adic completion
of V along the special fiber VFq we have the commutative diagram (cf. proposition 3.7.4)

D̂ (m,k)
Y,ℚ (�)(V) D̂ (m+1,k)

Y,ℚ (�)(V)

D̂ (m,k)
Y,ℚ (V) D̂ (m+1,k)

Y,ℚ (V).

≃ ≃ (22)

Given that the morphism of sheaves D̂ (m,k)
Y,ℚ → D̂ (m+1,k)

Y,ℚ is left and right flat [24, Proposition 2.2.11 (iii)], the preceding

diagram allows us to conclude that the morphism D̂ (m,k)
Y,ℚ (�) → D̂ (m+1,k)

Y,ℚ (�) is also left and right flat. By proposition 3.7.3
we have the following result.

Proposition 4.1.6. The sheaf of rings D†
Y,k(�) is coherent.

As we will explain later, there exists a canonical epimorphism of sheaves of filtered o-algebras16

A(m,k)
Y ∶= OY ⊗o D

(m)(G(k))→ D(m,k)
Y (�)

which allows to conclude the following proposition exactly as we have done in the proof of proposition 3.6.2 (cf. [25,
Proposition 4.3.1]).

Proposition 4.1.7. Let � ∈ Hom(T ,Gm) be an algebraic character such that � + � ∈ t∗L is a dominant and regular
character of tL.

(i) Let E be a coherent D̂ (m,k)
Y,ℚ (�)-module. Then E is generated by its global sections as D̂ (m,k)

Y,ℚ (�)-module. Furthermore,

E has a resolution by finite free D̂ (m,k)
Y,ℚ (�)-modules.

(ii) Let E be a coherent D†
Y,k(�)-module. Then E is generated by its global sections as D†

Y,k(�)-module. Furthermore,

E has a resolution by finite free D†
Y,k(�)-modules.

4.2 An Invariance theorem for admissible blow-ups

Let pr ∶ Y → X be an admissible blow-up along a closed subset V(I ) defined by an open ideal sheaf I ⊆ OX. Using
(4.1.3), we can suppose that Y is obtained as the formal completion of an admissible blow-up Y → X (we will abuse of
the notation and we will denote again by pr ∶ Y → X the canonical morphism of this (algebraic) blow-up) along a closed
subset V(I) defined by an open ideal sheaf I ⊆ OX , such that I is the restriction of the formal $-adic completion of
I . Let us denote by Yi ∶= Y ×Spec(o) Spec(o∕$i+1) the redaction module $i+1 and by 
i ∶ Yi → Y the canonical closed
embedding. In [24] the authors have studied the cohomological properties of the sheaves

D̂ (m,k)
Y,ℚ ∶= lim

←←←←←←←←←←←
i∈ℕ


∗i D
(m,k)
Y ⊗o L and D†

Y,k ∶= lim
←←←←←←←←←←→
m∈ℕ

D̂ (m,k)
Y,ℚ .

Let us consider the commutative diagram

Yi Xi

Y X.

pri


i 
i
pr

16We construct this morphism in (55). The arguments given there are independent and we won’t introduce a circular argument.
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Here pri ∶ Yi → Xi denotes the redaction of the morphism pr module $i+1. We put L (�)∨ ∶= lim
←←←←←←←←←←←i


∗i pr
∗L(�)∨ and

L (�) ∶= lim
←←←←←←←←←←←i


∗i pr
∗L(�). By using the preceding commutative diagram we have


∗i D
(m,k)
Y (�) = 
∗i

(

pr∗L(�)⊗OY
D(m,k)
Y ⊗OY

pr∗L(�)∨
)

= 
∗i
(

pr∗L(�)
)

⊗OYi

∗i D

(m,k)
Y ⊗OYi


∗i
(

pr∗L(�)∨
)

.

Taking the projective limit we get the following description of the sheaves D̂ (m,k)
Y,ℚ (�)

D̂ (m,k)
Y,ℚ (�) = L (�)

ℚ
⊗OY,ℚ

D̂ (m,k)
Y,ℚ ⊗OY,ℚ

L (�)∨
ℚ
,

and by taking the inductive limit we get the characterization

D†
Y,k(�) = L (�)

ℚ
⊗OY,ℚ

D†
Y,k ⊗OY,ℚ

L (�)∨
ℚ
. (23)

As in the preceding section, the sheaf L (�)
ℚ
is endowed with the following (left) D†

Y,k(�)-action

(

t ⊗ P ⊗ t∨
)

∙ s ∶=
(

P ∙ < t∨, s >
)

t (s, t ∈ L (�) and t∨ ∈ L (�)∨).

We end this first discussion by remarking that the relation pr∗i ◦ 
∗i = 
∗i ◦ pr∗, which comes from the preceding
commutative diagram, implies that

D†
Y,k(�) = pr∗D†

X,k(�). (24)

Let us suppose that � ∶ Y ′ → Y is a morphism of admissible blow-ups (abusing of the notation, we will also denote by
� ∶ Y′ → Y the respective morphism of formal admissible blow-ups in the sense of [6, Part II, chapter 8, section 8.2,
definition 3]). This means that we have a commutative diagram

Y ′ Y

X.

pr′
�

pr resp.
Y′ Y

X.

pr′

�

pr

Let k ≥ {kY ′ , kY }. Let us denote by D
(m,k)
X,i (�) ∶= D(m,k)

X (�)∕$i+1D(m,k)
Y (�) (we will use the same notations over Y ′i and

Yi) and by �i ∶ Y ′i → Yi the redaction module$i+1. The preceding commutative diagram implies that

D(m,k)
Y ′,i (�) = (pr

′
i)
∗D(m,k)

Xi
(�) = �∗i D

(m,k)
Yi

(�). (25)

In this way, she sheaf D(m,k)
Y ′,i (�) can be endowed with a structure of right �−1i D(m,k)

Yi
(�)-module. Passing to the projective

limit, the sheaf D̂ (m,k)
Y′ (�) is a sheaf of right �−1D̂ (m,k)

Y (�)-modules. So, passing to the inductive limit over m we can
conclude that D†

Y′,k(�) is a right �
−1D†

Y,k(�)-module. For a D†
Y,k(�)-module E , we define

�!E ∶= D†
Y′,k(�)⊗�−1D†

Y,k(�)
�−1E ,

with analogous definitions for D̂ (m,k)
Y,ℚ (�).

Theorem 4.2.1. Let � ∶ Y ′ → Y be a morphism over X of admissible blow-ups. Let k ≥ max{kY ′ , kY }.

(i) If E is a coherent D†
Y′,k(�), then Rj�∗E = 0 for every j > 0. Moreover, �∗D

†
Y′,k(�) = D†

Y,k(�), so �∗ induces an
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exact functor between coherent modules over D†
Y′,k(�) and D†

Y,k(�), respectively.

(ii) The formation �! is an exact functor from the category of coherent D†
Y,k(�)-modules to the category of coherent

D†
Y′,k(�)-modules.

(iii) The functors �∗ and �! are quasi-inverse equivalences between the categories of coherent D†
Y′,k(�)-modules and

coherent D†
Y,k(�)-modules.

We remark for the reader that this theorem has an equivalent version for the sheaves D̂ (m,k)
Y,ℚ (�) and D̂ (m,k)

Y′,ℚ (�).

Proof. Let us first assume that E = D†
Y′,k(�). Let us consider the covering B of X, defined in proposition 3.5.2 and let us

take U ∈ B. We put V ′ ∶= pr′−1(U ) and V ∶= pr−1(U ). By assumption V ′ = �−1(V) in such a way that

Rj�∗
(

D†
Y′,k(�)

)

|V ′ = Rj�∗
(

D†
Y′,k(�)|V

)

= Rj�∗
(

D†
Y′,k|V

)

= Rj�∗
(

D†
Y′,k

)

|V ′ .

No we can use [24, Theorem 2.3.8 (i)] to conclude that Rj�∗D
†
Y′,k(�) = 0 for every j > 0. Furthermore, by (25) there

exists a canonical map

D†
Y,k(�)→ �∗D

†
Y′,k(�)

which is in fact an isomorphism by the preceding reasoning and [24, Theorem 2.3.8 (i)].

To handle with the second part let us consider the following assertion for every j ≥ 1. Let aj : for any coherent D†
Y′,k(�)-

module E and for all l ≥ j, Rl�∗E = 0. The assertion is true for j = dim(Y) + 1. Let us suppose that aj+1 is true and
let us take a coherent D†

Y′,k(�)-module E . By proposition 4.1.7 there exists b ∈ ℕ and a short exact sequence of coherent
D†

Y′,k(�)-modules

0 → F →
(

D†
Y′,k(�)

)⊕b
→ E → 0.

Since Rj�∗D
†
Y′,k(�) = 0, the long exact sequence for �∗ gives us

Rj�∗E ≃ Rj+1�∗F ,

which is 0 by induction hypothesis. This ends the proof of (i).

Let us show (ii) for the sheavesD†
Y,k(�). The case for the sheaves D̂ (m,k)

Y,ℚ (�) being equal. Given that �!D†
Y,k(�) = D†

Y′,k(�),
and since the tensor product is right exact, we can conclude that �! preserves coherence.

Now, we have a morphism �−1E → �!E sending m → 1 ⊗ m. This maps induces the morphism E → �∗�!E . To
show that this is an isomorphism is a local question on Y. If V ⊆ Y is the formal completion of an affine open subset
V ⊆ pr−1(U ), and U ⊆ X is an affine open subset such that D(m,k)

X (�)|U ≃ D(m,k)
X |U (lemma 3.3.6), then by (22) and [24,

Corollary 2.2.15] we can conclude that the previous map is in fact an isomorphism over V17. Finally, if F is a coherent
D†

Y′,k(�)-module, then we have the map �!�∗F → F , sending P ⊗m → Pm. To see that this is an isomorphism we can
use the preceding reasoning.

Let us recall that if � ∈ Hom(T ,Gm) is an algebraic character such that � + � ∈ t∗L is a dominant and regular character of
tL, then by (20) we have

H0
(

X,D†
X,k(�)

)

= D†(G(k))� = Dan(G(k)◦)� ∶= Dan(G(k)◦)
/

Dan(G(k)◦)(Ker).
17This is the same reasoning that we have used in (i).
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The previous theorem implies

Corollary 4.2.2. Let � ∈ Hom(T ,Gm) be an algebraic character such that �+� ∈ t∗L is a dominant and regular character
of tL. In the situation of the preceding theorem we have

H0
(

Y,D†
Y,k(�)

)

= H0
(

X,D†
X,k(�)

)

= D†(G(k))� = H0
(

Y′,D†
Y′,k(�)

)

.

Theorem 4.2.3. Let pr∶ Y → X be an admissible blow-up. Let us suppose that � ∈ Hom(T ,Gm) is an algebraic character
such that � + � ∈ t∗L is a dominant and regular character of tL.

(i) For any coherent D†
Y,k(�)-module E and for all q > 0 one hasHq(Y,E ) = 0.

(ii) The functor H0(Y, ∙) is an equivalence between the category of coherent D†
Y,k(�)-modules and the category of

finitely presented D†(G(k))�-modules.

The same statement holds for coherent modules over D̂ (m,k)
Y,ℚ (�).

Proof. The first part of the theorem follows from the fact thatH0(Y, ∙) = H0(X, ∙) ◦ �∗. Now we only have to apply the
preceding theorem and theorem 3.7.2.

Let us denote by Loc†Y,k(�) the exact functor defined by the composition

Finitely presented D†(G(k))� −modules
L oc†X,k(�)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Coherent D†

X,k(�) −modules
�!
←←←←←←←←←→ CoherentD†

Y,k(�) −modules.

Let us compute this functor. To do that, we may fix a finitely presented D†(G(k))�-module E. Then

�!
(

L oc†X,k(�)(E)
)

= D†
Y,k(�)⊗�−1D†

X,k(�)
�−1D†

X,k(�)⊗D†(G(k))� E = L oc†Y(�)(E).

Now, to show that

H0
(

Y, �!
(

L oc†X,k(�)(E)
))

= H0
(

Y,D†
Y,k(�)⊗D†(G(k))� E

)

= E,

we can take a resolution

(

D†(G(k))�
)⊕b

→
(

D†(G(k))�
)⊕a

→ E → 0,

to get the following diagram

(

D†(G(k))�
)⊕b (

D†(G(k))�
)⊕a E 0

(

D†(G(k))�
)⊕b (

D†(G(k))�
)⊕a H0

(

Y,D†
Y,k(�)⊗D†(G(k))� E

)

0.

where the sequence on the top is clearly exact. By definition L oc†Y,k(�)(∙) is an exact functor and by (i) the global section
functor H0(Y, ∙) is also exact. This shows that the sequence at the bottom is also exact and we end the proof of the
theorem.

In the sequel we will denote by G0 the compact locally L-analytic group G0 ∶= G(o).
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4.3 Group action on blow-ups

Let G be the formal completion of the group o-scheme G, along its special fiber GFp ∶= G ×Spec(o) Spec(o∕$). Let us
denote by � ∶ X ×Spf(o) G → X the induced right G-action on the formal flag o-scheme X (cf. subsection 3.3). For every
g ∈ G(o) = G0 we have an automorphism �g of X given by

�g ∶ X = X ×Spf(o) Spf(o)
idX×g
←←←←←←←←←←←←←←←←←←←←←←←←→ X ×Spf(o) G

�
←←←←←←→ X.

As G acts on the right, we have the following relation

(

�g
)

∗

(

�♮ℎ
)

◦�♮g = �
♮
ℎg (g, ℎ ∈ G0). (26)

Here �♮g ∶ OX → (�g)∗OX denotes the comorphism of �g .

LetH ⊆ G0 be an open subgroup. We say that an open ideal sheaf I ⊆ OX isH-stable if for all g ∈ H the comorphism
�♮g maps I ⊆ OX into (�g)∗I ⊆ (�g)∗OX. In this case �♮g induces a morphism of sheaves of graded rings

⨁

d∈ℕ
I d →

(

�g
)

∗

(

⨁

d∈ℕ
I d

)

on X. This morphism of sheaves induces an automorphism of the blow-up Y = Proj
(

⊕d∈ℕI d), let us say �g by abuse
of notation, and the action of H on X lifts to a right action of H on Y, in the sense that for every g, ℎ ∈ G0 the relation
(26) is verified and we have a commutative diagram

Y Y

X X.

�g

pr pr
�g

(27)

Definition 4.3.1. Let H ⊆ G0 be an open subgroup and pr ∶ Y → X and admissible blow-up defined by an open ideal
subsheaf I ⊂ OX. We say that Y isH-equivariant if I isH-stable.

We will need the following result in the next sections. The reader can find its proof in [25, Lemma 5.2.3].

Lemma 4.3.2. Let pr ∶ Y → X be an admissible blow-up, and let us assume that k ≥ kY = kY. ThenY is Gk = G(k)(o)-
equivariant and the induced action of every g ∈ Gk+1 on the special fiber of Y is the identity. Therefore,Gk+1 acts trivially
on the underlying topological space of Y.

By proposition 3.1.4 (cf. [22, 3.3.2]), for every g ∈ G(o) = G(o) = G0 there exists an isomorphism

�g ∶ X
idX×g
←←←←←←←←←←←←←←←←←←←←←←←←→ X ×Spec(o) X

�
←←←←←←→ X,

which induces an OX-linear isomorphism Φg ∶ L (�)→ (�g)∗(L (�)) verifying the cocycle condition

Φℎg = (�g)∗(Φℎ) ◦ Φg and (g, ℎ ∈ G(o)). (28)

In particular, we have an induced G0-action on the sheaf D†
X,k(�)

Tg ∶ D†
X,k(�)→ (�g)∗D

†
X,k(�), P → Φg ◦ P ◦ (Φg)−1. (29)
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Locally, if U ⊆ X and P ∈ D†
X,k(�)(U ) then the cocycle condition (28) tells that the diagram

L (�)(U .(ℎg)−1) = L (�)(U .g−1ℎ−1) L (�)(U .g−1ℎ−1)

L (�)(U .g−1) L (U .g−1)

L (�)(U ) L (�)(U )

Tgℎ, (U (P )

Φ−1
ℎ, U .g−1

= (�g)∗Φ−1ℎ, U

Φ−1g, U

Φℎ, U .g−1 = (�g)∗Φℎ, U

P

Φg, U

(30)

is commutative and we get the relation

Tℎg =
(

�g
)

∗ Tℎ ◦ Tg (g, ℎ ∈ G0). (31)

Let us suppose that H ⊆ G0 is an open subgroup and that pr ∶ Y → X is an H-equivariant admissible blow-up. Pulling
back the isomorphism (�g)∗L (�) → L (�), via (pr)∗, and using the commutative diagram (27) we get pr∗(�g)∗L (�) =
(�g)∗pr∗L (�) = (�g)∗L (�) (notation given at the beginning of the preceding subsection). By adjontion we get the map

Rg ∶ L (�)
≃
←←←←←←←→

(

�g
)

∗ L (�)

which satisfies, by functoriality, the cocycle condition

Rℎg =
(

�g
)

∗Rℎ ◦ Rg (g, ℎ ∈ H). (32)

As in (29) we can define (from now on we will work on admissible blow-ups of Y so we will use the same notation)

Tg ∶ D†
Y,k(�)→

(

�g
)

∗ D†
Y,k(�); P → Rg ◦ P ◦ R−1g (33)

and exactly as we have done in (30) we can conclude that

Tℎg =
(

�g
)

∗ Tℎ ◦ Tg ,

for every g, ℎ ∈ H .

5 Localization of locally analytic representations
We recall for the reader thatG0 denotes the compact locallyL-analytic groupG0 = G(o). In this section we will show how
to localize admissible locally analytic representations of G0. We will denote by Can(G0, L) the space of L-valued locally
L-analytic functions on G0 and by D(G0, L) its strong dual (the space of locally analytic distributions in the sense of [34,
Section 11]). This space contains a set of delta distributions {�g}g∈G0 defined by �g(f ) = f (g), if f ∈ Can(G0, L), in such
a way that the map g → �g is an injective group homomorphism from G0 into D(G0, L)×. We also recall that given that
G0 is compact, this space carries a structure of nuclear Fréchet-Stein algebra [34, Theorem 24.1]. To our work it will be
enough to define a weak Fréchet-Stein structure (in the sense of [14, Definition 1.2.8]) on the algebra D(G0, L).

We finally recall that in (3.7.1) we have introduced Emerton’s distribution algebra as the continuous dual space of the space
of rigid-analytic functions on G(k)◦

Dan(G(k)◦) ∶= HomCont
L

(

OG(k)◦ (G(k)◦), L
)

.
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5.1 Coadmissible modules

let us start by recalling that G0 acts on the space Ccts(G0, L), of continuous L-valued functions, by the formula

(g ∙ f )(x) ∶= f (g−1x) (g, x ∈ G0, f ∈ Ccts(G0, L)).

Moreover, given an admissible locally analytic representation V ofG0 [34, First definition of lecture VI] then, by definition,
its strong dualM ∶= (V )′b is a coadmissible module over D(G0, L)18.

Given a continuous representation W of G0, we can consider the subspace WG(k)◦ ⊆ W of G(k)◦-analytic vectors [14,
3.4.1]. In particular, the G0-action on Ccts(G0, L), defined at the beginning of this subsection, gives us

lim
←←←←←←←←←←→
k

Ccts(G0, L)G(k)◦−an
≃
←←←←←←←→ Can(G0, L). (34)

As in [14, Proposition 5.3.1], for each k ∈ ℤ>0 we put

D(G(k)◦, G0) ∶=
(

Ccts(G0, L)G(k)◦−an
)′
b

the strong dual of the space of G(k)◦-analytic vectors of Ccts(G0, L) [14, 3.4.1]. The ring structure on Dan(G(k)◦) extends
naturally to a ring structure on D(G(k)◦, G0), such that

D(G(k)◦, G0) =
⨁

g∈G0∕Gk

Dan(G(k)◦)�g . (35)

Dualizing the isomorphism (34) yields an isomorphism of topological L-algebras

D(G0, L)
≃
←←←←←←←→ lim

←←←←←←←←←←←
k∈ℤ>0

D(G(k)◦, G0). (36)

This is the weak Fréchet-Stein structure on the locally analytic distribution algebra D(G0, L) ([14, Proposition 5.3.1]).

Let V be an admissible locally analytic representation andM ∶= V ′b . By [14, Lemma 6.1.6] the subspace VG(k)◦−an ⊆ V is
a nuclear Fréchet space and therefore its strong dualMk ∶=

(

VG(k)◦−an
)′
b is a space of compact type and a finitely generated

topological D(G(k)◦, G0)-module by [14, Lemma 6.1.13]. By [14, Theorem 6.1.20] the module M is a coadmissible
D(G0, L)-module relative to the weak Fréchet -Stein structure of D(G0, L) defined in the previous paragraph.

We have the following result from [25, Lemma 5.1.7].

Lemma 5.1.1. (i) The D(G(k)◦, G0)-moduleMk is finitely generated.

(ii) There are natural isomorphisms

D(G(k − 1)◦, G0)⊗D(G(k)◦,G0)Mk
≃
←←←←←←←→Mk−1.

(iii) The natural map D(G(k − 1)◦, G0)⊗D(G0,L)M →Mk is bijective.

Now, let � ∈ Hom(T ,Gm) be an algebraic character such that �+ �+ t∗L is a dominant and regular character of tL. Let us
recall that we have identifications

Dan(G(k)◦)� = D†(G(k))� = lim
←←←←←←←←←←→
m∈ℕ

(

D̂(m)(G(k))�
)

⊗o L.

18We recall for the reader, that the category of coadmisisbleD(G0, L)-modules is a full abelian subcategory of the category ofD(G0, L)-modules and
the "strong dual" functor induces an anti-equivalence of categories to the category of admissible locally analytic representations [34, Theorem 20.1].
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The preceding relation and the fact that the ring structure ofDan(G(k)◦) extends naturally to a ring structure onD(G(k)◦, G0)
allow us to consider the ring

D(G(k)◦, G0)� ∶= D(G(k)◦, G0)∕Ker(��)D(G(k)◦, G0).

From now on, we will denote CG0 the full subcategory of Mod(D(G0, L)) consisting of coadmissible modules, with respect
to the preceding weak Fréchet-Stein structure on D(G0, L).

Definition 5.1.2. We define the category CG0,� of coadmissibleD(G0, L)-modules with central character � ∈ Hom(T ,Gm)
by

CG0,� ∶=Mod
(

D(G0, L)
/

Ker(��)D(G0, L)
)

∩ CG0 .

We point out that the preceding definition is completely legal because the centerZ(gL) of the universal enveloping algebra
U (gL) lies in the center of D(G0, L) [35, Proposition 3.7]. We also recall that the group Gk ∶= G(k)(o) is contained in
Dan(G(k)◦) as a set of Dirac distributions. For each g ∈ Gk we will write �g for the image of the Dirac distribution
supported at g in

H0
(

Y,D†
Y,k(�)

)

= Dan(G(k)◦)�.

Inspired in [25, Definition 5.2.7] we have the following definition.

Definition 5.1.3. Let H ⊂ G0 be an open subgroup and Y an H-equivariant admissible blow-up of X. Let us suppose
that k ≥ kY (notation as in 4.1.3). A strongly H-equivariant D†

Y,k(�)-module is a D†
Y,k(�)-module M together with a

family ('g)g∈H of isomorphisms

'g ∶ M → (�g)∗M

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, ℎ ∈ H we have
(

�g
)

∗
(

'ℎ
)

◦'g = 'ℎg .

(ii) For all open subset U ⊂ Y, all P ∈ D†
Y,k(�)(U ), and all m ∈ M (U ) we have 'g(P ∙ m) = Tg(P ) ∙ 'g(m).

(iii) 19 For all g ∈ H ∩Gk+1 the map 'g ∶ M →
(

�g
)

∗ M = M is equal to multiplication by �g ∈ H0
(

Y,D†
Y,k(�)

)

.

A morphism between two strongly H-equivariant D†
Y,k(�)-modules (M , ('M

g )g∈H ) and (N , ('N
g )g∈H ) is a D†

Y,k(�)
linear morphism  ∶ M → N such that for all g ∈ H

'N
g ◦  = (�g)∗( ) ◦ 'M

g .

We denote the category of stronglyH-equivariant coherent D†
Y,k(�)-modules by Coh

(

D†
Y,k(�), G0

)

.

Commentary 1. Let M ∈ Coh
(

D†
Y,k(�), G0

)

. In what follows we will use the notation gm ∶= 'g, U (m) ∈ M (U .g−1),
for U ⊆ Y an open subset, g ∈ G0 and m ∈ M (U ). This notation is inspired in property (ii) of the previous definition. In
fact, if g, ℎ ∈ G0, then by (ii) we have ℎ(g m) = (ℎg) m.

Theorem 5.1.4. Let � ∈ Hom(T ,Gm) be an algebraic character such that �+� ∈ t∗L is a dominant and regular character of
tL. Let pr ∶ Y → X be aG0-equivariant admissible blow-up, and let k ≥ kY. The functorsL oc†Y,k(�) andH

0(Y, ∙) induce

quasi-inverse equivalences between the category of finitely presented D(G(k)◦, G0)�-modules and Coh
(

D†
Y,k(�), G0

)

.
19This conditions makes sense because the elements g ∈ Gk+1 acts trivially on the underlying topological space of Y, cf. Lemma 4.3.2.
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Before starting the proof, we recall for the reader that the functor L oc†Y,k(�) has been defined in the proof of theorem
4.2.3. An explicitly expression is given in (37) below.

Proof. If M ∈ Coh
(

D†
Y,k(�), G0

)

, then in particular M is a coherent D†
Y,k(�)-module. Since by corollary 4.2.2 and

theorem 4.2.3 we have that H0(Y,M ) is a finitely presented Dan(G(k)◦)�-module, then by (35) we can conclude that
H0(Y,M ) is a finitely presented D(G(k)◦,G0)�-module.

On the other hand, let us suppose thatM is a finitely presented D(G(k)◦,G0)�-module. By (35) we can consider

M ∶= L oc†Y,k(�)(M) = D†
Y,k(�)⊗Dan(G(k)◦)� M. (37)

For every g ∈ G0 we want to define an isomorphism of sheaves of L-vector spaces

'g ∶ M →
(

�g
)

∗ M

satisfying the conditions (i), (ii) and (iii) in the preceding definition. As we have remarked, the Dirac distributions induce
an injective morphism from G0 to the group of units of D(G0, L), since by (36)M is in particular a G0-module, we have
an isomorphism

M →
(

(

�g
)

∗ D†
Y,k(�)

)

⊗Dan(G(k)◦)� M,

which on local sections is defined by 'g, U (P ⊗ m) ∶= Tg, U (P )⊗ gm. Here P ∈ D†
Y,k(�)(U ), U ⊆ Y is an open subset,

m ∈M and Tg is the isomorphism defined in (33).

One has an isomorphism

(

�g
)

∗ (M )
≃
←←←←←←←→

(

(

�g
)

∗ D†
Y,k(�)

)

⊗Dan(G(k)◦)� M.

Indeed, (�g)∗ is exact and so choosing a finite presentation of M as Dan(G(k)◦)�-module reduces to the case M =
Dan(G(k)◦)� which is trivially true. This implies that the preceding isomorphism extends to an isomorphism

'g ∶ M →
(

�g
)

∗ M .

Let g, ℎ ∈ G0, U ⊆ Y an open subset, P ,Q ∈ D†
Y,k(�)(U ) and m ∈M . Then

'ℎ, U .g−1
(

'g, U
)

(P ⊗ m) = Tℎ, U .g−1 (Tg, U (P ))⊗ ℎg m = Tℎg, U (P )⊗ (ℎg) m = 'ℎg, U (P ⊗ m),

which verifies the first condition. Now, by definition Tg, U (PQ) = Tg, U (P )Tg, U (Q) and therefore 'g, U (PQ ⊗ m) =
Tg, U (P )'g, U (Q⊗m), which gives (ii). Finally, given that the delta distributions �g for g in the normal subgroup Gk+1 of
G0 are contained in Dan(G(k)◦) we have g.P ∶= Tg(P ) = �g P �g−1 , and therefore

'g, U (P ⊗ m) = g.P ⊗ g.m = �gP�g−1�g ⊗ m = �gP ⊗ m.

and condition (iii) follows.

Remark 5.1.5. If � ∈ Hom(T ,Gm) denotes the trivial character, thenD†
X,k(�) = D†

X,k is the sheaf of arithmetic differential
operators introduced in [25]. Moreover, by construction, if pr ∶ Y → X denotes an H-equivariant admissible blow-up,
then D†

Y,k(�) = D†
Y,k and for every g ∈ H the isomorphism Tg equals the isomorphism Ad(g) defined in [25, (5.2.6)].

Now, let us take � ∶ Y′ → Y a morphism of G0-equivariant admissible blow-ups of X (whose lifted actions we denote
by �Y′ and �Y), and let us suppose that k ≥ kY and k′ ≥ max{k′Y, k}. By (25) and theorem 4.2.1 we have an injective
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morphism of sheaves

Ψ ∶ �∗D
†
Y′,k′ (�) = D†

Y,k′ (�) → D†
Y,k(�). (38)

Moreover, if g ∈ G0 we have

TY
g ◦ Ψ =

(

�Yg
)

∗
(Ψ) ◦ �∗

(

TY′
g

)

and therefore Ψ is G0-equivariant. Now, let us consider MY′ ∈ Coh
(

D†
Y′,k′ (�), G0

)

and MY ∈ Coh
(

D†
Y,k(�), G0

)

together with a morphism  ∶ �∗MY′ → MY linear relative to Ψ ∶ �∗D
†
Y′,k′ (�) → D†

Y,k(�) and which is G0-equivariant,
i.e. satisfying

'
MY
g ◦  =

(

�Yg
)

∗
 ◦ �∗

(

'
MY′
g

)

for all g ∈ G0. By using Ψ we obtain a morphism of D†
Y,k(�)-modules

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗MY′ → MY.

Let us denote by K the submodule of D†
Y,k(�) ⊗�∗D

†
Y′ ,k′

(�) �∗MY′ locally generated by all the elements of the form

P�ℎ ⊗ m − P ⊗ (ℎ ∙ m), where ℎ ∈ Gk+1, m is a local section of �∗MY′ and P is a local section of D†
Y,k(�). As in [25,

Page 35] we will denote the quotient D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗MY′
/

K by

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗MY′ . (39)

Let us see that this module lies in Coh
(

D†
Y,k(�), G0

)

. To do that let us first show that

(

�g
)

∗ D†
Y,k(�)⊗(�g)∗�∗D

†
Y′ ,k′

(�)
(

�g
)

∗ �∗MY′ =
(

�g
)

∗

(

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗MY′

)

. (40)

As MY′ is a coherent D
†
Y′,k′ (�), by proposition 3.7.7 and theorem 4.2.1 we can find a finite presentation of MY′

(

D†
Y′,k′ (�)

)⊕a
→ (D†

Y′,k′ (�))
⊕b → MY′ → 0

which induces, by exactness of (�g)∗ and �∗ (theorem 4.2.1.), the exact sequence

(

(

�g
)

∗ D†
Y,k′ (�)

)⊕a
→

(

(

�g
)

∗ D†
Y,k′ (�)

)⊕b
→

(

�g
)

∗ �∗MY′ → 0.

By base change over the preceding exact sequence we obtain the following commutative diagram

(

(

�g
)

∗ D†
Y,k(�)

)⊕a (

(

�g
)

∗ D†
Y,k(�)

)⊕b
(

�g
)

∗

(

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗MY′

)

0

(

(

�g
)

∗ D†
Y,k(�)

)⊕a (

(

�g
)

∗ D†
Y,k(�)

)⊕b
(

�g
)

∗ D†
Y,k(�)⊗(�g)∗�∗D

†
Y′ ,k′

(�)
(

�g
)

∗ �∗MY′ 0

id id
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(of course, here we have used theorem 4.2.1 to identify �∗D
†
Y′,k′ (�) = D†

Y,k′ (�)). This shows (40) and therefore we dispose
of a diagonal action

'g ∶ D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗MY′ →
(

�g
)

∗

(

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗MY′

)

defined on simple tensor products by

g ∙ (P ⊗ m) ∶= g ∙ P ⊗ g ∙ m, (41)

for g ∈ G0, and P andm local sections of D†
Y,k(�) and �∗MY′ , respectively (in order to soft the notation we use the accord

introduced in the commentary 1 after the definition 5.1.3). Now to see that (39) is a strongly G0-equivariant D†
Y,k(�)-

module, we only need to check that 'g(K ) ⊂ K . This is, the diagonal action fix the submodule K . We have

g ∙ (P�ℎ ⊗m − P ⊗ ℎ ∙ m) = g ∙ (P�ℎ)⊗ g ∙ m − g ∙ P ⊗ g ∙ (ℎ ∙ m)

= (g ∙ P )(g ∙ �ℎ)⊗ g ∙ m − g ∙ P ⊗ (gℎg−1) ∙ (g ∙ m)

= (g ∙ P )�gℎg−1 ⊗ g ∙ m − g ∙ P ⊗ (gℎg−1) ∙ (g ∙ m),

as Gk+1 is a normal subgroup we can conclude that gℎg−1 ∈ Gk+1 and G0 fix K . Moreover, since the target of the pre-
ceding morphism is strongly G0-equivariant, this factors through the quotient and we thus obtain a morphism of D†

Y,k(�)-
modules

 ∶ D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗MY′ → MY. (42)

By construction  ∈ Coh
(

D†
Y,k(�), G0

)

.

6 Admissible blow-ups and formal models
The following discussion is given in [25, 3.1.1 and 5.2.13]. Let us start by considering the generic fiberXL ∶= X ×Spec(o)
Spec(L) of the flag schemeX (the flag variety). For the rest of this workXrig will denote the rigid-analytic space associated
via the GAGA functor to XL [6, Part I, chapter 5, section 5.4, Definition and proposition 3]. Any admissible formal o-
scheme Y (in the sense of [6, Part II, chapter 7, section 7.4, Definitions 1 and 4]) whose associated rigid-analytic space
is isomorphic to Xrig will be called a formal model of Xrig. For any two formal models Y1 and Y2 there exists a formal
model Y′ and admissible formal blow-up morphisms Y′ → Y1 and Y′ → Y2 [6, Part II, chapter 8, section 8.2, remark
10].

Now, let us denote by FX the set of admissible formal blow-ups Y → X. This set is ordered by Y′ ⪰ Y if the blow-up
morphism Y′ → X factors as the composition of a morphism Y′ → Y and the blow-up morphism Y → X. In this case,
the morphism Y′ → Y is unique [6, Part II, chapter 8, section 8.2, proposition 9], and it is itself a blow-up morphism [27,
Chapter 8, section 8.1.3, proposition 1.12 (d) and theorem 1.24]. By [6, Part II, chapter 8, section 8.2, remark 10] the set
FX is directed and it is cofinal in the set of all formal models. Furthermore, any formal model Y of Xrig is dominated by
one which is aG0-equivariant admissible blow-up ofX [25, Proposition 5.2.14]. In particular, ifX∞ denotes the projective
limit of all formal models of Xrig, then

X∞ = lim
←←←←←←←←←←←
FX

Y.

We will be interested in the following directed subset of FX.
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Definition 6.0.1. We denote by FX the set of pairs (Y, k), where Y ∈ FX and k ∈ ℕ satisfies k ≥ kY. This set is ordered
by (Y′, k′) ⪰ (Y, k) if and only if Y ⪰ Y and k′ ≥ k.

We will need the following auxiliary result.

Lemma 6.0.2. Let Y′, Y ∈ FX be G0-equivariant admissible blow-ups (definition 4.3.1). Suppose (Y′, k′) ⪰ (Y, k)
with canonical morphism � ∶ Y′ → Y over X and letM be a coherent D(G(k′)◦, G0)�-module with localization M =
L oc†Y′,k′ (�)(M) ∈ Coh

(

D†
Y′,k′ (�), G0

)

. Then there exists a canonical isomorphism in Coh
(

D†
Y,k(�), G0

)

given by

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗M

≃
←←←←←←←→ L oc†Y,k(�)

(

D(G(k)◦, G0)⊗D(G(k′)◦,G0)M
)

.

Proof. The proof follows word for word the reasoning given in [25, Lemma 5.2.12] when � ∈ Hom(T ,Gm) is equal to the
trivial character. We will only indicate to the reader how the isomorphism is obtained. Let Σ be a system of representatives
in Gk+1 for the cosets in Gk+1∕Gk′+1. By (35) we have a canonical map

Dan(G(k)◦)� → D(G(k)◦, G0)� (43)

which is compatible with variation in k. Now, let us take M a D(G(k′)◦, G0)�-module and let us consider the free
Dan(G(k)◦)�-module

Dan(G(k)◦)M×Σ
� ∶=

⨁

(m,ℎ)∈M×Σ
Dan(G(k)◦)� em,ℎ,

whose formation is functorial inM and it comes with a linear map

fM ∶ Dan(G(k)◦)M×Σ
� → Dan(G(k)◦)� ⊗Dan(G(k′)◦)� M

�m,ℎem,ℎ → (�m,ℎ�ℎ)⊗m − �m,ℎ ⊗ (�ℎ.m).

which fits into an exact sequence

Dan(G(k)◦)M×Σ
�

fM
←←←←←←←←←←←←←←→ Dan(G(k)◦)� ⊗Dan(G(k′)◦)� M

canM
←←←←←←←←←←←←←←←←←←←←←→ D(G(k)◦, G0)� ⊗D(G(k′)◦,G0)� M → 0,

ifM is a finitely presented D(G(k′)◦, G0)�-module [25, Claim 1 in the proof of lemma 5.2.12].

Now, letM be a finitely presented Dan(G(k′)◦)�-module and M ∶= Loc†Y′,k′ (�)(M). Then the natural morphism

Loc†Y,k(�)
(

Dan(G(k)◦)� ⊗Dan(G(k′)◦)� M
)

→ D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗M (44)

is bijective. In fact, by theorem 4.2.1 we know that the functor �∗ is exact on coherent D
†
Y′,k′ (�)-modules, so taking a finite

presentation ofM we reduce to the caseM = Dan(G(k′)◦)� which is clear.

Finally, let us takeM a finitely presented D(G(k′)◦, G0)�-module. Let m1, ..., ma be generators forM as a Dan(G(k′)◦)�-
module. We have a sequence of Dan(G(k)◦)�-modules

⨁

(i,ℎ)
Dan(G(k)◦)� emi,ℎ

fa
←←←←←←←←←←→ Dan(G(k)◦)� ⊗Dan(G(k′)◦)� M

canM
←←←←←←←←←←←←←←←←←←←←←→ D(G(k)◦, G0)� ⊗D(G(k′)◦,G0)� M → 0

where fa denotes the restriction of the map fM to the free submodule of Dan(G(k)◦)M×Σ
� generated by the finitely many

vectors emi,ℎ, with 1 ≤ i ≤ a and ℎ ∈ Σ. Since im(fa) = im(fM ) the sequence is exact. Since it consists of finitely
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presented Dan(G(k)◦)�-modules, we can apply the localisation functor Loc†Y,k(�) to it. As

Loc†Y,k(�)
(

⨁

(i,ℎ)
Dan(G(k)◦)� emi,ℎ

)

= D†
Y,k(�)⊗Dan(G(k)◦)�

⨁

(i,ℎ)
Dan(G(k)◦)� emi,ℎ = D†

Y,k(�)
⊕a|Σ|

then (44) gives us the exact sequence

D†
Y,k(�)

⊕a|Σ| → D†
Y,k(�)⊗�∗DY′ ,k′ (�) �∗M → L oc†Y,k(�)

(

D(G(k)◦, G0)� ⊗D(G(k′)◦,G0)� M
)

→ 0

emi,ℎ ⊗ P → (P�ℎ ⊗mi − P ⊗ �ℎm)

where M ∶= Loc†Y′,k′ (�)(M). The cokernel of the first map in this sequence equals by definition

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗M ,

and we get the desired isomorphism.

Now, let I be an open ideal sheaf onX, and let g ∈ G0. Then J ∶= (�♮g)−1((�g)∗(I )) is again an open ideal sheaf onX.
Let Y be the blow-up of I and Y.g the blow-up of J , with canonical morphism prg ∶ Y.g → X. We have the following
result from [25, lemma 5.2.16].

Lemma 6.0.3. There exists a morphism �g ∶ Y → Y.g such that the following diagram is commutative

Y Y.g

X X.

�g

pr prg
�g

Moreover, we have kY.g = kY and for any two elements g, ℎ ∈ G0, we have a canonical isomorphism (Y.g).ℎ ≃ Y.(gℎ),
and the morphism Y → Y.g → (Y.g).ℎ ≃ Y.(gℎ) is equal to �gℎ. This gives a right action of the group G0 on the family
FX.

Let pr ∶ Y → X be an admissible blow-up and let us denote by L (�) the invertible sheaf onY induced by pulling back the
invertible sheaf on X induced by the character �. This is L (�) ∶= pr∗L (�). Furthermore, for g ∈ G0 if �g ∶ Y → Y.g
is the morphism given by the previous lemma and prg ∶ Y.g → X is the blow-up morphism, then we will denote

Lg(�) ∶= pr∗gL (�).

The notation being fixed, we prevent the reader that in order to simplify the notation, in the rest of this work we will avoid
to underline these sheaves if the context is clear and there is not risk to any confusion.

Let us recall that in subsection 4.3 we have built for any g ∈ G0 an OX-linear isomorphism Φg ∶ L (�) → (�g)∗L (�),
being �g ∶= � ◦ (idX × g) the translation morphism (� the right G-action on X). By pulling back this morphism and
using the commutative diagram in the previous lemma (�∗g ◦ pr

∗
g = pr∗ ◦ �∗g) we have an OY-linear isomorphism

(�g)∗pr∗gL (�) → pr∗L (�). By adjointness and following the accord established in the previous paragraph, we get an
OY.g-liner morphism

Rg ∶ Lg(�)→ (�g)∗L (�).
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By construction Rg satisfies the cocycle condition (32). This means that for every g, ℎ ∈ G0 we have

Rℎg = Lℎg(�)
Rg
←←←←←←←←←←←←→ (�g)∗Lℎ(�)

(�g)∗Rℎ
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (�ℎg)∗L (�). (45)

In particular Rg is an isomorphism for every g ∈ G0.

Exactly as we have done in (33), and given that by construction D†
Y,k(�) acts on L (�) (resp. D†

Y.g,k(�) acts on Lg(�)), we
can build an isomorphism

Tg ∶ D†
Y.g,k(�) → (�g)∗D

†
Y,k(�)

P → Rg ◦ P ◦ R−1g .

Satisfying the following cocycle condition

Tℎg = (�g)∗Tℎ ◦ Tg (g, ℎ ∈ G0). (46)

From the previous lemma we get [25, Corollary 5.2.18]

Corollary 6.0.4. Let us suppose that (Y′, k′) ⪰ (Y, k) for Y, Y′ ∈ FX and let � ∶ Y′ → Y be the unique morphism over
X. Let g ∈ G0. Then (Y′.g, k′) ⪰ (Y.g, k) and if we denote by �.g ∶ Y′.g → Y.g the unique morphism over X, we have a
commutative diagram

Y′ Y′.g

Y Y.g.

�g

� �.g
�g

Based on [25, Definition 5.2.19] we have the following definition.

Definition 6.0.5. A coadmissibleG0-equivariantD(�)-module onFX consists of a familyM ∶=
(

MY,k
)

(Y,k) of coherent

D†
Y,k(�)-modules MY,k for all (Y, k) ∈ FX, with the following properties:

(a) For any g ∈ G0 with morphism �g ∶ Y → Y.g, there exists an isomorphism

'g ∶ MY.g,k →
(

�g
)

∗ MY,k

of sheaves of L-vector spaces, satisfying the following properties:

(i) For all g, ℎ ∈ G0 we have (�g)∗('ℎ) ◦ 'g = 'ℎg .

(ii) For all open subset U ⊆ Y.g, all P ∈ D†
Y.g,k(�)(U ), and all m ∈ MY.g,k(U ) one has 'g(P ∙ m) = Tg, U (P ) ∙

'g, U (m).

(iii) 20 For all g ∈ Gk+1 the map 'g ∶ MY.g,k = MY,k → (�g)∗MY,k = MY,k is equal to multiplication by
�g ∈ H0(Y,D†

Y,k(�)
)

.

(b) Suppose Y,Y′ ∈ FX are both G0-equivariant, and assume further that (Y′, k′) ⪰ (Y, k), and that � ∶ Y′ → Y
is the unique morphism over X. We require the existence of a transition morphism  Y′,Y ∶ �∗MY′,k′ → MY,k,
linear relative to the canonical morphism Ψ ∶ �∗D

†
Y′,k′ (�) → D†

Y,k(�). By using the commutative diagram in the
preceding corollary, we required

'g ◦  Y′.g,Y.g = (�g)∗( Y′,Y) ◦ (�.g)∗('g).
20As is remarked in [25, Definition 5.2.19 (iii)], if g ∈ Gk+1, then Y.g = Y and g acts trivially on the underlying topological space |Y|.
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The morphism induced by  Y′,Y

 Y′,Y ∶ D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗MY′ → MY (47)

is required to be an isomorphism of D†
Y,k(�)-modules. Additionally, the morphisms  Y′,Y are required to satisfy

the transitivity condition  Y′,Y ◦ �∗( Y′′,Y′ ) =  Y′′,Y for (Y′′, k′′) ⪰ (Y′, k′) ⪰ (Y, k) in FX. Moreover,  Y,Y =
idMY,k

.

A morphism M → N between such modules consists of morphisms MY,k → NY,k of D†
Y,k(�)-modules, which is

compatible with the extra structures imposed in (a) and (b). We denote the resulting category by CG0X,�.

Let us build now the bridge to the category CG0,� of coadmissible D(G0, L)�-modules. Given such a moduleM we have
its associated admissible locally analytic G0-representation V ∶=M ′

b together with its subspace of G(k)
◦-analytic vectors

VG(k)◦−an ⊆ V . As we have remarked, this is stable under the G0-action and its dual Mk ∶=
(

VG(k)◦−an
)′
b is a finitely

presented D(G(k)◦, G0)�-module. In this situation we produce a coherent D†
Y,k(�)-module

L oc†Y,k(�)(Mk) = D†
Y,k(�)⊗Dan(G(k)◦)� Mk

for any element (Y, k) ∈ FX. We will denote the resulting family by

L ocG0� (M) ∶=
(

L oc†Y,k(�)(Mk)
)

(Y,k)∈FX

.

On the other hand, let M be an arbitrary coadmissible G0-equivariant arithmetic D(�)-module on FX. The transition
morphisms  Y′,Y ∶ �∗MY′,k′ → MY,k induce mapsH0 (Y′,MY′,k′

)

→ H0 (Y,MY,k
)

on global sections. We let

Γ(M ) ∶= lim
←←←←←←←←←←←

(Y,k)∈FX

H0 (Y,MY,k
)

.

The projective limit is taken in the sense of abelian groups. We have the following theorem. Except for some technical
details the proof follows word for word the reasoning given in [25, Theorem 5.2.23].

Theorem 6.0.6. Let us suppose that � ∈ Hom(T ,Gm) is an algebraic character such that � + � ∈ t∗L is a dominant and
regular character of tL. The functors L ocG0� and Γ(∙) induce quasi-inverse equivalences between the categories CG0,� (of
coadmissible D(G0, L)�-modules) and C

G0
X,�.

Proof. Let us takeM ∈ CG0,� and M ∈ CG0X,�. As in [25, Proof of theorem 5.2.23] we will organise the proof in four steps.

Step 1. We have L ocG0� (M) ∈ CG0X,� and L ocG0� (M) is functorial inM .

Proof. Let us start by defining

'g ∶ L oc†Y.g,k(�)(Mk)→
(

�g
)

∗ L oc†Y,k(�)(Mk) (g ∈ G0)

satisfying (i), (ii) and (iii) in the preceding definition. Let '̃g ∶ Mk → Mk denote the map dual to the map VG(k)◦−an →

VG(k)◦−an given by w → g−1w. By definition '̃ℎ ◦ '̃g = '̃ℎg . Let U ⊆ Y.g be an open subset and P ∈ D†
Y.g,k(�)(U ),

m ∈Mk. We define

'g, U (P ⊗ m) ∶= Tg, U (P )⊗ '̃g(m).
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Given that (�g)∗ is exact we can choose a finite presentation ofMk as a Dan(G(k)◦)�-module to conclude that we have a
canonical isomorphism

(

�g
)

∗

(

L oc†Y,k(�)(Mk)
) ≃
←←←←←←←→

(

(

�g
)

∗ D†
Y,k(�)

)

⊗Dan(G(k)◦)� Mk.

This means that the above definition extends to a map

'g ∶ D†
Y.g,k(�)⊗Dan(G(k)◦)� Mk →

(

�g
)

∗

(

L oc†Y,k(�)(Mk)
)

.

The family {'g}g∈G0 satisfies (i), (ii) and (iii) in (a). Let us verify condition (b). We suppose thatY′,Y areG0-equivariant
and that (Y′, k) ⪰ (Y, k) with canonical morphism � ∶ Y′ → Y over X. As �∗ is exact we have an isomorphism

�∗
(

L oc†Y′,k′ (�)(Mk′ )
) ≃
←←←←←←←→ �∗

(

D†
Y′,k′ (�)

)

⊗Dan(G(k)◦)� Mk′ .

(This is an argument already given in the text for the functor (�g)∗). On the other hand, we have that G(k′)◦ ⊆ G(k)◦ and
we have a map  ̃Y′,Y ∶Mk′ →Mk obtained as the dual map of the natural inclusion VG(k)◦−an → VG(k′)◦−an. Let U ⊆ Y
be an open subset and P ∈ �∗D

†
Y′,k′ (�)(U ), m ∈Mk′ . We define

 Y′,Y(P ⊗ m) ∶= ΨY′,Y(P )⊗  ̃Y′,Y(m),

where Ψ is the canonical injection �∗D
†
Y′,k′ (�) → D†

Y,k(�). By using the preceding isomorphism we can conclude that
this morphisms extends naturally to a map

 Y′,Y ∶ �∗
(

L oc†Y′,k′ (�)(Mk′ )
)

→ L oc†Y,k(�)(Mk).

The cocycle condition translates into the diagram

(

�Yg
)

∗
�∗

(

L oc†Y′,k′ (�)(Mk′ )
)

= (�.g)∗
(

�Yg
)

∗

(

L oc†Y′,k′ (�)(Mk′ )
) (

�Yg
)

∗

(

L oc†Y,k(�)(Mk)
)

(�.g)∗
(

L oc†Y′.g,k′ (�)(Mk′ )
)

L oc†Y.g,k(�)(Mk)

(

�Yg
)

∗
 Y′ ,Y

 Y′ ,Y

(�.g)∗'g 'g (48)

By construction, the diagrams

(�.g)∗
(

�Y
′

g

)

∗
D†

Y′,k′ (�) =
(

�Yg
)

∗
�∗D

†
Y′,k′ (�)

(

�Yg
)

∗
D†

Y,k(�)

(�g)∗D
†
Y′.g,k′ (�) D†

Y.g,k(�)

(�Yg )∗ΨY′ ,Y

(�.g)∗Tg
ΨY′ .g,Y.g

Tg

Mk′ Mk

Mk′ Mk

 ̃Y′ ,Y

'̃g '̃g
 ̃Y′ ,Y

(49)

are commutative and therefore (48) is also a commutative diagram. The transitivity properties are clear. Let us see that the
induced morphism  Y′,Y is in fact an isomorphism. The morphism  Y′,Y corresponds under the isomorphism of lemma
6.0.2 to the linear extension

D(G(k)◦, G0)⊗D(G(k′)◦,G0)Mk′ →Mk

of  ̃Y′,Y via functoriality of L oc†Y,k(�). By lemma 5.1.1 this linear extension is an isomorphism and hence, so is  Y′,Y.

We conclude that L ocG0� (M) ∈ CG0X,�. Given a morphismM → N in CG0,�, we get, by definition, morphismsMk → Nk
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for any k ∈ ℤ>0 compatible with '̃g and  ̃Y′,Y. By functoriality of L oc†Y,k(�), they give rise to linear maps

L oc†Y,k(�)(Mk)→ L oc†Y,k(�)(Nk)

which are compatible with the maps 'g and  Y′,Y.

Step 2. Γ(M ) is an object in CG0,�.

Proof. For k ∈ ℕ we choose (Y, k) ∈ FX and we put Nk ∶= H0(Y,M(Y,k)). By (42), lemma 6.0.2 and the fact that
M ∈ CG0X,� we get linear isomorphisms

D(G(k)◦, G0)⊗D(G(k′)◦,G0) Nk′ → Nk

for k′ ≥ k. This implies that themodulesNk form a
(

D(G(k)◦, G0)
)

k∈ℕ-sequence and the projective limit is a coadmissible
module.

Step 3. Γ ◦ L ocG0� (M) ≃M .

Proof. If V ∶=M ′
b, then we have by definition compatible isomorphisms

H0
(

Y,L ocG0� (M)(Y,k)
)

= H0
(

Y,L oc†Y,k(�)(Mk)
)

=
(

VG(k)◦−an
)′
b ,

which imply that the coadmissible modules Γ ◦ L ocG0� (M) andM have isomorphic
(

D(G(k)◦, G0)
)

k∈ℕ-sequences.

Step 4. L ocG0� ◦ Γ(M ) ≃ M .

Proof. Let N ∶= Γ(M ) and V ∶= N ′
b the corresponding admissible representation. Let N ∶= L ocG0� (N). According

to the lemma 5.1.1

Nk ∶= D(G(k)◦, G0)⊗D(G0,L) Nk′ → N

produces a
(

D(G(k)◦, G0)
)

k∈ℕ-sequence for the coadmissible moduleN which is isomorphic to its constituting sequence
(

H0(Y,MY,k)
)

(Y,k)∈FX
from step 2. Now let (Y, k) ∈ FX. We have the following isomorphisms

NY,k = L oc†Y,k(�)(Nk) ≃ L oc†Y,k(�)
(

H0(Y,MY,k)
)

≃ MY,k.

By Tg-linearity the action maps 'MY,k
g and 'NY,k

g , constructed in step 1, are the same. Similarly if (Y′, k′) ⪰ (Y, k) are
G0-equivariant then the transition maps  MY′ ,Y and  NY′ ,Y coincide, by ΨY′,Y-linearity. Hence N ≃ M in CG0X,�.

6.1 Coadmissible G0-equivariant D(�)-modules on the Zariski-Riemann space

Let us recall that X∞ denotes the projective limit of all formal models of Xrig (the rigid-analytic space associated by the
GAGA functor to the flag variety XL). The set FX of admissible formal blow-ups Y → X is ordered by setting Y′ ⪰ Y
if the blow-up morphism Y′ → X factors as Y′

�
←←←←←←←→ Y → X, with � a blow-up morphism. The set FX is directed in the

sense that any two elements have a common upper bound, and it is cofinal in the set of all formal models. In particular,
X∞ = lim

←←←←←←←←←←←FX
Y. The space X∞ is also known as the Zariski-Riemann space [6, Part II, chapter 9, section 9.3]21. In

this subsection we indicate how to realize coadmissible G0-equivariant D(�)-modules on FX as sheaves on the Zariski-
Riemann space X∞. We start with the following proposition whose proof can be found in [25, Proposition 5.2.14].

21In this reference this space is denoted by
⟨

X
⟩

, cf. [24, subsection 3.2].
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Proposition 6.1.1. Any formal model Y of Xrig s dominated by one which is a G0-equivariant admissible blow-up of X.

Remark 6.1.2. As FX is cofinal in the set of all formal models, the preceding proposition tells us that the set of all G0-
equivariant admissible blow-ups of X is also cofinal in the set of all formal models of X. From now on, we will assume
that ifY ∈ FX, thenY also G0-equivariant, and we will denoted by �

Y
g ∶ Y → Y the morphism induced by every g ∈ G0.

For every Y ∈ FX we denote by sp Y ∶ X∞ → Y the canonical projection map. Let Y′ ⪰ Y with blow-up morphism
�′ ∶ Y′ → Y and g ∈ G0. Let us consider the following commutative diagram coming from the G0-equivariance of the
family FX

X∞ Y Y

Y′ Y′.

sp Y

sp Y′

�Yg

�Y
′

g

� �′

This diagram allows to define a continuous function

�g ∶ X∞ → X∞
(aY)Y∈FX

→ (�Yg (aY))Y∈FX
.

(50)

which defines a G0-action on the space X∞.

Let U ⊂ Y be an open subset and let us take V ∶= sp−1Y (U ) ⊂ X∞. Using the relation sp Y = sp Y′ ◦ � we see that

sp Y′ (V ) = sp Y′ (sp−1Y (U )) = sp Y′ (sp−1Y′ (�
′−1(U ))) = �′−1(U ),

which implies that sp Y′ (V ) is an open subset of Y′. Now, let us suppose that Y′′
�′′
←←←←←←←←←←←←→ Y′

�′
←←←←←←←←←→ Y are morphisms over Y.

The commutative diagram

X∞ ⊇ V ∶= sp−1Y (U )

Y′

Y′′ Y ⊇ U

sp Y′′ sp Y

spY′

�′
�′′

implies that

�′′−1(sp Y′ (V )) = �′′−1(�′′(sp Y′′ (V ))) = sp Y′′ (V ). (51)

In this situation, the morphism ΨY′′,Y′ ∶ �′′∗ D†
Y′′,k′′ (�)→ D†

Y′,k′ (�) (defined in (38) ) induces the ring homomorphism

D†
Y′′,k′′ (�)(sp Y′′ (V )) = �′′∗ D†

Y′′,k′′ (�)(sp Y′ (V ))
ΨY′′ ,Y′
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ D†

Y′,k′ (�)(sp Y′ (V ))

and we can form the projective limit as in [25, (5.2.25)]

D(�)(V ) ∶= lim
←←←←←←←←←←←

Y′→Y
D†

Y′,k′ (�)(sp Y′ (V )).
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By definition, the open subsets of the form V ∶= sp−1Y (U ) form a basis for the topology of X∞ and D(�) is a presheaf on
this basis. The associated sheaf on X∞ to this presheaf will also be denoted by D(�).

Since
(

�Y
′

g

)

∗
◦ �′′∗ = �′′∗ ◦

(

�Y
′′

g

)

∗
, then relation (51), and commutativity of the first diagram in (49) tells us that

D†
Y′′,k′′ (�)

(

sp Y′′ (V )
)

= �′′∗ D†
Y′′,k′′ (�)

(

sp Y′ (V )
)

D†
Y′,k′ (�)

(

sp Y′ (V )
)

D†
Y′′,k′′ (�)

(

(

�Y
′′

g

)−1
(

sp Y′′ (V )
)

)

=
(

�Y
′

g

)

∗
�′′∗ D†

Y′′,k′′ (�)
(

sp Y′ (V )
)

(

�Y
′

g

)

∗
D†

Y′,k′ (�)
(

sp Y′ (V )
)

Ψsp Y′ (V )

TY′′
g, sp Y′′ (V )

TY′
g, spY′ (V )

ΨspY′ (�
−1
g (V ))

is also a commutative diagram. Let us identify

D(�)(V ) =

⎧

⎪

⎨

⎪

⎩

P ∶=
(

PY′,k′
)

(Y′,k′)∈FX
∈

∏

(Y′,k′)FX

D†
Y′,k′ (�)

(

sp Y′ (V )
)

| ΨY′′,Y′ (PY′′,k′′ ) = PY′,k′

⎫

⎪

⎬

⎪

⎭

and let us consider the sequence

g.P ∶=
(

TY′′
g, sp Y′′ (V )

(PY′′,k′′ )
)

(Y′′,k′′)∈FX

∈
∏

(Y′′,k′′)∈FX

D†
Y′′,k′′ (�)

(

(

�Y
′′

g

)−1
sp Y′′ (V )

)

.

Using the commutativity of the preceding diagram we see that

ΨspY′ (�−1g (V ))

(

TY′′
g, sp Y′′ (V )

(PY′′,k′′ )
)

= TY′
g, spY′ (V )

(

Ψsp Y′ (V )(PY′′,k′′ )
)

= TY′
g, spY′ (V )

(PY′,k′ )

and therefore, for g ∈ G0, the actions T
Y
g assemble to an action

Tg ∶ D(�)
≃
←←←←←←←→ (�g)∗D(�).

This action is on the left, in the sense that if g, ℎ ∈ G0 then (�g)∗Tℎ ◦ Tg = Tℎg . Let us suppose now that M = (MY,k) ∈
C
G0
X,�. We have the transition maps  Y′′,Y′ ∶ �′′∗ MY′′,k′′ → MY′,k′ which are linear relative to the morphism (38). As

before, we have the map

MY′′,k′′
(

sp Y′′ (V )
)

= �′′∗ MY′′,k′′
(

sp Y′ (V )
)

 sp Y′ (V )

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ MY′,k′
(

sp Y′ (V )
)

which allows us to define M∞ as the sheaf on X∞ associated to the presheaf

M∞(V ) ∶= lim
←←←←←←←←←←←

Y′→Y
MY′,k′

(

sp Y′ (V )
)

.
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By definition, we have the following commutative diagram

MY′′,k′′
(

sp Y′′ (V )
)

= �′′∗ MY′′,k′′
(

sp Y′ (V )
)

MY′,k′
(

sp Y′ (V )
)

M †
Y′′,k′′

(

(

�Y
′′

g

)−1
(

sp Y′′ (V )
)

)

=
(

�Y
′

g

)

∗
�′′∗ MY′′,k′′

(

sp Y′ (V )
)

(

�Y
′

g

)

∗
MY′,k′

(

sp Y′ (V )
)

.

 sp Y′ (V )

'Y′′
g, sp Y′′ (V )

'Y′
g, spY′ (V )

 spY′ (�
−1
g (V ))

Identifying

M∞(V ) =

⎧

⎪

⎨

⎪

⎩

m ∶=
(

mY′,k′
)

(Y′,k′)∈FX
∈

∏

(Y′,k′)FX

MY′,k′
(

sp Y′ (V )
)

|  Y′′,Y′ (mY′′,k′′ ) = mY′,k′

⎫

⎪

⎬

⎪

⎭

we see as before that if

g.m ∶=
(

'Y′′
g, sp Y′′ (V )

(mY′′,k′′ )
)

(Y′′,k′′)∈FX

∈
∏

(Y′′,k′′)∈FX

MY′′,k′′

(

(

�Y
′′

g

)−1
sp Y′′ (V )

)

,

then the preceding commutative diagram implies that

 spY′ (�−1g (V ))

(

'Y′′
g, sp Y′′ (V )

(mY′′,k′′ )
)

= 'Y′
g, spY′ (V )

(

 sp Y′ (V )(mY′′,k′′ )
)

= 'Y′
g, spY′ (V )

(mY′,k′ ),

and therefore we get a family ('g)g∈G0 of isomorphisms

'g ∶ M∞ → (�g)∗M∞ (52)

of sheaves of L-vector spaces. By definition 6.0.5 we have that if g, ℎ ∈ G0 then 'ℎg = (�g)∗'ℎ ◦ 'g . Further-
more, under the preceding identifications, if P = (P Y′,k′ ) ∈ D(�)(V ) and m = (m Y′,k′ ) ∈ M∞(V ), then P .m =
(P Y′,k′ .m Y′,k′ )(Y′,k′)∈FX

and therefore

'g, V (P .m) =
(

'Y′
g, spY′ (V )

(P Y′,k′ .m Y′,k′ )
)

(Y′,k′)∈FX

=
(

TY′
g, spY′ (V )

(PY′,k′ ).'
Y′
g, spY′ (V )

(mY′,k′ )
)

(Y′,k′)∈FX

= Tg, V (P ).'g, V (m).

In particular, M∞ is a G0-equivariant D(�)-module on the topologial G0-space X∞. Let us see that the formation of M∞
is functorial. Let 
 ∶ M → N be a morphism in C

G0
X,�. Then, in particular we have the following commutative diagram

�′′∗ MY′′,k′′ MY′,k′

�∗NY,k NY,k.

 M
Y′′ ,Y′

�′′∗ (
Y′′ ,k′′ ) 
Y′ ,k′

 N
Y′′ ,Y′

Let m = (mY,k)(Y,k)∈FX
∈ M∞(V ) and

s ∶=
(


Y′′,k′′ (mY′′,k′′ )
)

(Y′′,k′′)∈FX
∈

∏

(Y′′,k′′)∈FX

NY′′,k′′
(

sp Y′′ (V )
)

.
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Commutativity in the preceding diagram implies that

 N
spY′′ (V )

(

sY′′,k′′
)

=  N
sp Y′′ (V )

(


spY′′ (V )
(

mY′′,k′′
)

)

= 
spY′ (V )
(

 M
sp Y′ (V )

(mY′′,k′′ )
)

= 
spY′ (V )
(

mY′,k′
)

= sY′,k′ ,

therefore s ∈ N∞(V ) and 
 induces a morphism 
∞ ∶ M∞ → N∞.This shows that the preceding construction is
functorial. The next proposition is the twisted analogue of [25, Proposition 5.2.29].

Proposition 6.1.3. Let � ∈ Hom(T ,Gm) be an algebraic character which induces, via derivation, a dominant and regular
character of t∗L. The functor M ⇝ M∞ from the category C

G0
X,� to G0-equivariant D(�)-modules is a faithful functor.

Proof. We start the proof by remarking that sp Y(X∞) = Y for every Y ∈ FX. By remark 6.1.2, the global sections of
M∞ equal to

H0(X∞,M∞) = lim
←←←←←←←←←←←

(Y,k)∈FX

H0(Y,MY,k) = Γ(M ).

Now, let f, ℎ ∶ M → N be two morphisms in C
G0
X,� such that f∞ = ℎ∞. By theorem 6.0.6, it is enough to verify

Γ(f ) = Γ(ℎ) which is clear sinceH0(X∞, f∞) = H0(X∞, ℎ∞).

If (∙)∞ denotes the previous functor, then we will denote by LocG0∞ (�) the composition of the functor LocG0� with (∙)∞,
i.e.,

{Coadmissible D(G0, L)� −modules}
LocG0∞ (�)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ {G0 − equivariant D(�) −modules}.

Since LocG0� is an equivalence of categories, the preceding proposition implies that LocG0∞ (�) is a faithful functor.

7 G-equivariant modules
Thorough this section we will denote by G = G(L) and by B the semi-simple Bruhat-Tits building of the p-adic group G
([9] et [10]). This is a simplicial complex endowed with a natural right G-action.

The purpose of this section is to extend the above results from G0-equivariant objects to objects equivariants for the whole
group G.

We start by fixing some notation.22 To each special vertex v ∈ B the Bruhat-Tits theory associates a connected reductive
group o-scheme Gv, whose generic fiber (Gv)L ∶= Gv ×Spec(o) Spec(L) is canonically isomorphic to GL. We denote
by Xv the smooth flag scheme of Gv whose generic fiber (Xv)L is canonically isomorphic to the flag variety XL. We
will distinguish the next constructions by adding the corresponding vertex to them. For instance, we will write Yv for an
(algebraic) admissible blow-up of the smooth modelXv,Gv,0 for the group of pointsGv(o) andGv,k for the group of points
Gv(k)(o). We will use the same conventions if we deal with formal completions. For instance, Yv will always denote an
admissible formal blow-up of Xv. We point out to the reader that the blow-up morphism Yv → Xv will make part of the
datum of Yv, and that even if for another special vertex v′ ≠ v the formal o-scheme Yv is also a blow-up of the smooth
formal model Xv′ , we will only consider it as a blow-up of Xv. We will denote by Fv ∶= FXv , the set of all admissible
formal blow-ups Yv → Xv of Xv and by F v ∶= FXv

the respective directed system of definition 6.0.1. By the preceding
accord, the sets Fv and Fv′ are disjoint if v ≠ v′. Let

F ∶=
⨆

v
Fv

22This is exactly as in [25, 5.3.1].
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where v runs over all special vertices of B. We recall for the reader that X∞ is equal to the projective limit of all formal
models of Xrig.

Remark 7.0.1. The set F is partially ordered in the following way. We say thatYv′ ⪰ Yv if the projection sp Yv′ ∶ X∞ →

Yv′ factors through the projection sp Yv ∶ X∞ → Yv

X∞

Yv′ Yv.

sp Yv
sp Yv′

Definition 7.0.2. We will denote by F ∶=
⨆

v F v, where v runs over all the special vertices of B. This set is par-
tially ordered as follows. We say that (Yv′ , k′) ⪰ (Yv, k) if Yv′ ⪰ Yv and Lie(Gv′ (k′)) ⊂ Lie(Gv(k)) (or equivalent
$k′Lie(Gv′ ) ⊂ $kLie(Gv)) as lattices in gL.

For any special vertex v ∈ B, any element g ∈ G induces an isomorphism

�vg ∶ Xv → Xv.g .

The isomorphism induced by �vg on the generic fibers (Xv)L ≃ XL ≃ (Xv.g)L coincides with right translation by g on XL

�g ∶ XL = XL ×Spec(L) Spec(L)
idXL×g
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ XL ×Spec(L) Spec(GL)

�L
←←←←←←←←←←←→ XL,

where we have used G(L) = GL(L). Moreover, �vg induces a morphism Xv → Xv.g , which we denote again by �vg , and
which coincides with the right translation on Xv if g ∈ Gv,0 (of course in this case vg = v). Let (�vg)

♮ ∶ OXvg →

(�vg)∗OXv be the comorphism of �vg . If � ∶ Yv → Xv is an admissible blow-up of an ideal I ⊂ OXv , then blowing-up
((�vg)

♮)−1((�vg)∗I) produced a formal scheme Yvg (cf. lemma 6.0.3), together with an isomorphism �vg ∶ Yv → Yvg .
As in lemma 6.0.3 we have kYv = kYvg . For any g, ℎ ∈ G and any admissible formal blow-up Yv → Xv, we have
�vgℎ ◦ �vg = �vgℎ ∶ Yv → Yvgℎ. This gives a right G-action on the family F and on the projective limit X∞. Finally, if
Yv′ ⪰ Yv with morphism � ∶ Yv′ → Yv and g ∈ G, then Yv′g ⪰ Yvg , and we have the relation �vg ◦ � = �g ◦ �

v′
g (here

�g ∶ Yv′g → Yvg). Now, over every special vertex v ∈ B the algebraic character � induces an invertible sheaf Lv(�) on
Xv, such that for every g ∈ G there exists an isomorphism

Rvg ∶ Lvg(�)→ (�vg)∗Lv(�),

satisfying the cocycle condition

Rvℎgℎg =
(

�vℎg
)

∗
Rvℎ ◦ R

vℎ
g (ℎ, g ∈ G). (53)

As usual, for every special vertex v ∈ B, we will denote by Lv(�) the p-adic completion of the sheaf Lv(�), which is
considered as an invertible sheaf on Xv. Let (Yv, k) ∈ F with blow-up morphism pr ∶ Yv → Xv. At the level of
differential operators, we will denote by D†

Yv,k
(�) the sheaf of arithmetic differential operators on Yv acting on the line

bundle Lv(�)23. We have the following important properties. Let g ∈ G. As in (33) the isomorphism (53) induces a left
action

T vg ∶ D†
Yvg ,k

(�)
≃
←←←←←←←→

(

�vg
)

∗
D†

Yv,k
(�)

P → Rvg P (R
v
g)
−1.

23Here we abuse of the notation and we denote again by Lv(�) the invertible sheaf pr∗Lv(�) on Yv.
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Now, we identify the global sectionsH0(Yv,D
†
Yv,k

(�)) with Dan(Gv(k)◦)� and obtain the group homomorphism

Gv,k+1 → H0
(

Yv,D
†
Yv,k

(�)
)×

g → �g ,

where Gv,k+1 = Gv(k)◦(L) denotes the group of L-rational points (or o-points of Gv(k + 1)). We will follow the same
lines of reasoning given in [25, Proposition 5.3.2] to prove the following proposition.

Proposition 7.0.3. Suppose (Yv′ , k′) ⪰ (Yv, k) for pairs (Yv′ , k′), (Yv, k) ∈ F with morphism � ∶ Yv′ → Yv. There
exists a canonical morphism of sheaves of rings

Ψ ∶ �∗D
†
Yv′ ,k′

(�)→ D†
Yv,k

(�)

which is G-equivariant in the sense that for every g ∈ G we have Tg ◦ Ψ =
(

�vg
)

∗
Ψ ◦ (�g)∗Tg .

Proof. Let us denote by pr′ ∶ Yv′ → Xv′ and pr ∶ Yv → Xv the blow-ups morphisms, and let us put p̃r ∶= pr ◦ �. We
have the following commutative diagram

Yv′ Yv

Xv′ Xv.

pr′
p̃r

pr

�

Let us fixm ∈ ℕ. As in [25, Proposition 5.3.6] we show first the existence of a canonical morphism of sheaves of o-algebras

D(m,k)
Yv′

(�)→ p̃r∗D(m,k)
Xv

(�). (54)

Here Yv′ , Yv, Xv′ and Xv denote the o-scheme of finite type whose completions are Yv′ , Yv, Xv′ and Xv, respectively.
The morphisms between these schemes will be denoted by the same letters, for instance pr ∶ Yv → Xv. We recall for the
reader that the sheaf D(m,k′)

Yv′
(�) is filtered by locally free sheaves of finite rank

D(m,k′)
Yv′ ,d

(�) = pr′∗Lv′ (�)⊗OYv′
pr′∗D(m,k′)

Xv′ ,d
⊗OYv′

pr′∗Lv′ (�)∨ = pr′∗
(

D(m,k′)
Xv′ ,d

(�)
)

,

and therefore by the projection formula [17, Part II, Section 5, exercise 5.1 (d) ] and given that pr′∗OYv′ = OXv′ (cf. [25,
Lemma 3.2.3 (iii)]) we have for every d ∈ ℕ

pr′∗
(

D(m,k′)
Yv′ ,d

(�)
)

= pr′∗
(

OYv′ ⊗OYv′
pr′∗D(m,k′)

Xv′ ,d
(�)

)

= pr′∗(OYv′ )⊗OXv′
D(m,k′)
Xv′ ,d

(�) = D(m,k′)
Xv′ ,d

(�),

which implies that

pr′∗
(

D(m,k′)
Yv′

(�)
)

= D(m,k′)
Xv′

(�)

because the direct image commutes with inductive limits on a noetherian space. By proposition 3.3.8 and the preceding
relation we have a canonical map of filtered o-algebras

D(m)(Gv′ (k′))→ H0
(

Xv′ ,D
(m,k′)
Xv′

(�)
)

= H0
(

Xv′ , pr′∗
(

D(m,k′)
Yv′

(�)
))

= H0
(

Yv′ ,D
(m,k′)
Yv′

(�)
)

,

in particular we get a morphism of sheaves of filtered o-algebras (this is exactly as we have done in (17))

Φ(m,k
′)

Yv′
∶ A(m,k′)

Yv′
∶= OYv′ ⊗o D

(m)(Gv′ (k′)) → D(m,k′)
Yv′

(�). (55)
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Applying Sym(m)(∙) ◦ $k′pr′∗(∙) to the surjection (18) we obtain a surjection

OYv′ ⊗o Sym(m) (Lie(Gv′ (k′))
)

→ Sym(m)
(

$k′pr′∗ TXv′
)

which equals the associated graded morphism of (55) by proposition 4.1.5. HenceΦ(m,k
′)

Yv′
is surjective. On the other hand,

if we apply p̃r∗ to the surjection

Φ(m,k)Xv
∶ A(m,k)

Xv
= OXv ⊗o D

(m)(Gv(k))→ D(m,k)
Xv

(�)

we obtain the surjectionOYv′ ⊗oD(m)(Gv(k)) → p̃r∗D(m,k)
Xv

(�). Let us recall that (Yv′ , k′) ⪰ (Yv, k) implies, in particular,
that Lie(Gv′ (k′)) ⊆ Lie(Gv(k)) and therefore$k′Lie(Gv′ ) ⊂ $kLie(Gv). By (14), the preceding inclusion gives rise to an
injective ring homomorphism D(m)(Gv′ (k′)) → D(m)(Gv(k)). Let us see that the composition

OYv′ ⊗o D
(m)(Gv′ (k′)) → OYv′ ⊗o D

(m)(Gv(k))↠ p̃r∗D(m,k)
Xv

(�)

factors through D(m,k′)
Xv′

(�).

OYv′ ⊗o D(m)(Gv′ (k′)) p̃r∗D(m,k)
Xv

(�)

D(m,k′)
Yv′

(�).

Since by lemma 3.3.6 all those sheaves are$-torsion free, this can be checked after tensoring withL in which case we have
that D(m,k′)

Yv′
⊗o L ≃ p̃r∗D(m,k)

Xv
⊗o L is the (push-forward of the) sheaf of algebraic differential operators on the generic

fiber of Yv′ (cf. discussion given at the beginning of subsection 4.1). We thus get the canonical morphism of sheaves
(54). Passing to completions we get a canonical morphism D̂ (m,k′)

Yv′
(�) → p̃r∗D̂ (m,k)

Xv
(�). Taking inductive limit over all

m and inverting $ gives a canonical morphism D†
Yv′ ,k′

(�) → p̃r∗D†
Xv,k

(�). Now, let us consider the formal scheme Yv′

as a blow-up of Xv via p̃r. Then � becomes a morphism of formal schemes over Xv and we consider p̃r∗D†
Xv,k

(�) as the
sheaf of arithmetic differential operators with congruence level k defined on Yv′ via p̃r

∗. Using the invariance theorem
(theorem 4.2.1) we get �∗

(

p̃r∗D†
Xv,k

(�)
)

= D†
Yv,k

. Then applying �∗ to the morphism D†
Yv′ ,x′

(�) → p̃r∗D†
Xv,k

(�) gives
the morphism

Ψ ∶ �∗D
†
Yv′ ,k′

(�)→ D†
Yv,k

of the statement. As in [25, Proposition 5.3.8], making use of the maps Φ(m,k)Yv
, as above, the assertion about the G-

equivariance is reduced to the functorial properties of the rings D(m)(Gv(k)).

Definition 7.0.4. A coadmissibleG-equivariant arithmeticD(�)-module onF consists of a familyM ∶= (MYv,k)(Yv,k)∈F
of coherent D†

Yv,k
(�)-modules with the following properties:

(a) For any special vertex v ∈ B and g ∈ G with isomorphism �vg ∶ Yv → Yvg , there exists an isomorphism

�vg ∶ MYvg ,k →
(

�vg
)

∗
MY,k

of sheaves of L-vector spaces, satisfying the following conditions:
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(i) For all ℎ, g ∈ G we have 24

(�vℎg )∗�
v
ℎ ◦ �

vℎ
g = �vℎg .

(ii) For all open subsets U ⊆ Yvg , all P ∈ D†
Yvg ,k

(�)(U ), and all m ∈ MYvg ,k(U ) one has �vg,U (P .m) =
T vg,U (P ).�

v
g,U (m).

(iii) For all g ∈ Gk+1,v the map �vg ∶ MY,k → (�vg)∗MY,k = MY,k is equal to the multiplication by �g ∈
H0(Yv,D

†
Yv,k

(�)).

(b) For any two pairs (Yv′ , k′) ⪰ (Yv, k) in F with morphism � ∶ Yv′ → Yv there exists a transition morphism
 Yv′ ,Yv ∶ �∗MYv′ → MYv , linear relative to the canonical morphism Ψ ∶ �∗D

†
Yv′ ,k′

(�) → D†
Yv,k

(�) (in the
preceding proposition) such that

�vg ◦  Yv′g ,Yvg = (�
v
g)∗ Yv′ ,Yv ◦ (�.g)∗�

v′
g (56)

for any g ∈ G (where we have use the relation (�vg)∗ ◦ �∗ = (�.g)∗ ◦ (�v
′
g )∗). If v

′ = v, and (Y′v, k
′) ⪰ (Yv, k)

in F v, and if Y′v, Yv are Gv,0-equivariant, then we require additionally that the morphism induced by  Y′v,Yv
(cf.

(42))

 Y′v,Yv
∶ D†

Yv,k
(�)⊗�∗D

†
Y′v,k′

(�),Gv,k+1
�∗MY′v,k′

→ MYv,k (57)

is an isomorphism of D†
Yv,k

(�)-modules. As in theorem 6.0.6, the morphisms  Yv′ ,Yv ∶ �∗MYv′ ,k′ → MYv,k are
required to satisfy the transitive condition

 Yv′ ,Yv ◦ �∗( Yv′′ ,Yv′ ) =  Yv′′ ,Yv ,

whenever (Yv′′ , k′′) ⪰ (Yv′ , k′) ⪰ (Yv, k) in F . Moreover,  Yv,Yv = idMYv,k
.

A morphism M → N between two coadmissible G-equivariant arithmetic D(�)-modules consists in a family of mor-
phisms MY,k → NY,k of D†

Y,k(�)-modules, which respect the extra conditions imposed in (a) and (b). We denote the
resulting category by C F

G,�.

We recall for the reader thatD(G0, L) is a Fréchet-Stein algebra [34, Theorem 24.1]. Moreover, aD(G,L)-module is called
coadmissible if it is coadmissible as a D(H,L)-module for every compact open subgroup H ⊆ G (cf. [33, Definition
subsection 6]). Given that for any two compact open subgroups H ⊆ H ′ ⊆ G the algebra D(H ′, L) is finitely generated
free and hence coadmissible as aD(H,L)-module, it follows from [33, Lemma 3.8] that the preceding condition needs to
be tested only for a single compact open subgroupH ⊆ G. This motivates the following definition where we will consider
the weak Freéchet-Stein structure of D(G0, L) defined in (36).

Definition 7.0.5. We say thatM is a coadmissble D(G,L)-module ifM is coadmissisble as a D(G0, L)-module.

Let us construct now the bridge to the category of coadmisible D(G,L)�-modules. Let M be such a coadmissible
D(G,L)�-module and let V ∶= M ′

b. We fix v ∈ B a special vertex. Let VGv(k)◦−an
25 be the subspace of Gv(k)◦-analytic

vectors and letMv,k be its continuous dual. For any (Yv, k) ∈ F we have a coherent D†
Yv,k

(�)-module

Loc†Yv,k(�)(Mv,k) = D†
Yv,k

(�)⊗Dan(Gv(k)◦)� Mv,k

24Here we use the fact the action of G on B is on the right and therefore (�vℎg )∗ ◦ (�
v
ℎ)∗ = (�

v
ℎg)∗.

25Here we use the fact that (Gv)L = GL.
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and we can consider the family

LocG� (M) ∶=
(

Loc†Yv,k(�)(Mv,k)
)

(Yv,k)∈F
.

On the other hand, given an object M ∈ C F
G,�, we may consider the projective limit

Γ(M ) ∶= lim
←←←←←←←←←←←

(Y,k)∈F
H0(Y,MY,k)

with respect to the transition maps  Y′,Y. Here the projective limit is taken in the sens of abelian groups and over the
cofinal family of pairs (Yv, k) ∈ F with Gv,0-equivariant Yv , cf. remark 6.1.2.

Theorem 7.0.6. Let us suppose that � ∈ Hom(T ,Gm) is an algebraic character such that � + � ∈ t∗L is a dominant and
regular character of tL. (and therefore, a dominant and regular character on every special vertex of B). The functors
LocG� (∙) and Γ(∙) induce quasi-inverse equivalences between the category of coadmissible D(G,L)�-modules and C F

G,�.

The proof follows the same lines of reasoning given in [25, Theorem 5.3.12].

Proof. The proof is an extension of the the proof of theorem 6.0.6, taking into account the additional G-action. LetM be
a coadmissible D(G,L)�-module and let M ∈ C G

F ,�. The proof of the theorem follows the following steps.

Claim 1. One has LocG� (M) ∈ C F
G,� and Loc

G
� (∙) is functorial.

Proof. Let g ∈ G, v ∈ B a special vertex and �vg ∶ Yv → Yvg the respective isomorphism. For conditions (a) for
LocG� (M) we need the maps

�g ∶ LocG� (M)Yv,k ∶= Loc†Yv,k(�)(Mv,k)→ (�vg)∗Loc
G
� (M)Yv,k

satisfying the properties (i), (ii) and (iii). Let �̃vg ∶ Mvg,k → Mv,k denote the dual map to 26 VGv(k)◦−an → VGvg(k)◦−an;
w → g−1w. Let U ⊆ Yvg be an open subset and P ∈ D†

Yvg ,k
(�)(U ), m ∈Mvg,k. We define

�vg, U (P ⊗ m) ∶= T vg, U (P )⊗ �̃vg(m). (58)

Exactly as we have done in theorem 6.0.6, the family (�vg) satisfies the requirements (i), (ii) and (iii). Let us verify
now condition (b). Given (Yv′ , k′) ⪰ (Yv, k) in F , we have Gv′ (k′)◦ ⊆ Gv(k)◦ in Grig and we denote by  ̃Yv′ ,Yv ∶
Mv′,k′ → Mv,k the map dual to the natural inclusion VGv(k)◦−an ⊆ VGv′ (k′)◦−an. Let U ⊆ Yv′ be an open subset and
P ∈ �∗D

†
Yv′ ,k′

(�)(U ), m ∈Mv′,k′ . We then define 27

 Yv′ ,Yv (P ⊗ m) ∶= ΨYv′ ,Yv (P )⊗  ̃Yv′ ,Yv (m)

where ΨYv′ ,Yv ∶ �∗D
†
Yv′ ,k′

(�) → D†
Yv,k

(�) is the canonical morphism given by the preceding proposition. This definition
extends to a map

 Yv′ ,Yv ∶ �∗Loc
G
� (M)Yv′ ,k′ → LocG� (M)Yv,k

which satisfies all the required conditions. The functoriality of LocG� (∙) can be verified exactly as we have done for the
functor LocG0� (∙).

Claim 2. Γ(M ) is a coadmissible D(G,L)�-module.
26Here we use Gvg(k)◦ = g−1Gv(k)◦g in Grig.
27We avoid the subscript U in order to soft the notation.
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Proof. We already know that Γ(M ) is a coadmissible D(Gv,0, L)�-module for any v (theorem 6.0.6). So it suffices to
exhibit a compatible G-action on Γ(M ). Let g ∈ G. The isomorphisms �vg ∶ MYvg ,k → (�vg)∗MY,k, which are compati-
bles with transitions maps, induce isomorphisms at the level of global sections (which we denote again by �vg to soft the
notation)

�vg ∶ H
0(Yvg,k,MYvg ,k)→ H0(Yv,MY,k).

Let us identify

Γ(M ) = lim
←←←←←←←←←←←

(Yvg ,k)∈Fvg

H0(Yvg,k,MYvg ,k)

=

⎧

⎪

⎨

⎪

⎩

(

mYvg ,k

)

(Yvg ,k)∈Fvg

∈
∏

(Yvg ,k)∈Fvg

H0(Yvg,k,MYvg ,k) |  Y′vg ,Yvg
(mY′vg ,k

) = mYvg ,k

⎫

⎪

⎬

⎪

⎭

Where we have abused of the notation and we have denoted by  Y′vg ,Yvg
the morphism obtained by taking global sections

on the morphism  Y′vg ,Yvg
∶ (�.g)∗D

†
Y′vg ,k′

(�)→ D†
Yvg ,k

(�). For g ∈ G and m ∶= (mYvg ,k)(Yvg ,k)∈Fvg
∈ Γ(M ) we define

g.m ∶=
(

�vg(mYvg ,k)
)

(Yvg ,k)∈Fvg

∈
∏

(Yv,k)∈Fv

H0(Yv,MYv,k), g.m (Yv,k)∈Fv
∶= �vg(mYvg ,k) (59)

We want to see that g.m ∈ Γ(M ) = lim
←←←←←←←←←←←(Yv,k)∈Fv

H0(Yv,MYv,k) and that this assignment defines a leftG-action on Γ(M ).
Taking global sections on (56) we get the relation �vg ◦  Y′vg ,Yvg

=  Y′v,Yv
◦ �vg , which implies that

 Y′v,Yv
(g.m Y′v,k′

) =  Y′v,Yv
(�vg(mY′vg ,k′

)) = �vg( Y′vg ,Yvg
(mY′vg ,k′

)) = �vg(mYvg ,k) = g.m Yv,k.

We obtain an isomorphism

Γ(M ) = lim
←←←←←←←←←←←
Fvg

H0(Yvg ,MYvg ,k)
g
←←←←←←→ lim

←←←←←←←←←←←
Fv

H0(Yv,MYv,k) = Γ(M ).

According to (i) in (a) we have the sequence

�vℎg ∶ H
0(Yvℎg ,MYvℎg ,k)

�vℎg
←←←←←←←←←←←←←←←→ H0(Yvℎ,MYvℎ,k)

�vℎ
←←←←←←←←←←←→ H0(Yv,MYv,k)

which tells us that ℎ.(g.m) = (ℎg).m, for ℎ, g ∈ G andm ∈ Γ(M ). This gives aG-action on Γ(M )which, by construction,
is compatible with its various D(Gv,0, L)-module structures.

Claim 3. Γ ◦ LocG� (M) ≃M .

Proof. By theorem 6.0.6 we know that this holds as a coadmissibleD(G0, L)�-module, so we need to identify theG-action
on both sides. Let v be a special vertex. According to (58), the action

Γ ◦ LocG� (M) ≃ lim
←←←←←←←←←←←
k
Mvg,k → lim

←←←←←←←←←←←
v
Mv,k ≃ Γ ◦ LocG� (M)

of an element g ∈ G on Γ ◦ LocG� (M) is induced by �̃vg ∶Mvg,k →Mv,k. By dualizing

V =
⋃

k∈ℕ
VGvg(k)◦−an =

⋃

k∈ℕ
VGv(k)◦−an
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we obtain the identification

M ≃ lim
←←←←←←←←←←←
k
Mvg,k ≃ lim←←←←←←←←←←←

k
Mv,k,

and therefore we get back the original action of g onM .

Claim 4. LocG� ◦ Γ(M ) ≃ M .

Proof. We know that LocG� (Γ(M ))Yv,k = MYv,k as D†
Yv,k

(�)-modules for any (Yv, k) ∈ F , cf. theorem 6.0.6. It remains
to verify that these isomorphisms are compatible with the maps �vg and  Yv′ ,Yv on both sides. To do that, let us see that
the maps �vg on the left-hand side are induced by the maps of the right-hand side. Given

�vg ∶ MYv,k → (�vg)∗MYv,k,

the corresponding map

�vg ∶ Loc
G
� (Γ(M ))Yvg ,k → (�vg)∗(Loc

G
� (Γ(M ))Yv,k)

equals the map

D†
Yvg ,k

(�)⊗Dan(Gvg(k)◦)� H
0
(

Yvg ,MYvg ,k

)

→ (�vg)∗
(

D†
Yv,k

(�)⊗Dan(Gv(k)◦)� H
0
(

Yv,MYv,k

))

given locally by T vg,Ygv ⊗ H0(Yvg , �vg), cf. (58). Let U ⊆ Yv be an open subset and P ∈ D†
Yv,k

(�)(U ), m ∈ Mv,k =

H0(Yvg ,MYvg ,k). The isomorphism LocG� (Γ(M ))Yv,k ≃ MYv,k are induced (locally) by P ⊗ m → P .(m|U ). Condition
(ii) tells us that these morphisms interchange the maps �vg , as desired. The compatibility with transitions maps  Yv′ ,Yv for
two models (Yv′ , k′) ⪰ (Y, k) in F is deduced in a entirely similar manner as we have done in theorem 6.0.6 and the fact
that  Yv′ ,Yv is linear relative to the canonical morphism Ψ ∶ �∗D

†
Yv′ ,k′

(�)→ D†
Yv,k

.

This ends the proof of the theorem.

As in the case of the group G0, we now indicate how objects from C F
G,� can be realized as G-equivariant sheaves on the

G-space X∞. The following discussion is an adaptation of the discussion given in [31, 5.4.3 and proposition 5.4.5] to our
case.

Proposition 7.0.7. The G0-equivariant structure of the sheaf D(�) extends to a G-equivariant structure.

Proof. Let g ∈ G and let v, v′ ∈ B be special vertexes. Let us suppose that (Yv′ , k′) ⪰ (Yv, k) in F . The isomorphism
�v′g ∶ Yv′ → Yv′g induces a ring isomorphism

T v
′

g ∶ D†
Yv′g ,k′

(�)→
(

�v
′

g

)

∗
D†

Yv′ ,k′
(�).

On the other hand, and exactly as we have done in (50), the commutative diagram

X∞ Yv Yvg

Yv′ Yv′g .

sp Yv

sp Yv′

�vg

�v′g

� �.g
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defines a continuous function

�g ∶ X∞ → X∞
(av) → (�vg(av)),

which satisfies prYv′g ◦ �g = �
v′
g ◦ prYv′ . In particular, if V ⊆ X∞ is the open subset V ∶= pr−1Yv (U ) with U ⊆ Yv an open

subset. Then
(

�v
′

g

)−1 (
prYv′g (V )

)

= prYv′
(

�−1g (V )
)

and so the map T v′g induces the morphism

D†
Yv′g ,k′

(�)
(

prYv′g (V )
)

→ D†
Yv′ ,k′

(�)
(

prYv′
(

�−1g (V )
))

. (60)

Moreover, if (Yv′′ , k′′) ⪰ (Yv′ , k′) ⪰ (Yv, k) in F , and as before V ∶= pr−1Yv (U ) ⊆ X∞ with U ⊆ Yv an open subset, then
the commutative diagram

D†
Yv′′g ,k′′

(�)
(

prYv′′g (V )
)

D†
Yv′′ ,k′′

(�)
(

prYv′′
(

�−1g (V )
))

.

D†
Yv′g ,k′

(�)
(

prYv′g (V )
)

D†
Yv′ ,k′

(�)
(

prYv′
(

�−1g (V )
))

.

implies that if, by cofinality, we identify D(�)(V ) = lim
←←←←←←←←←←←(Yvg ,k)∈Fvg

D†
Yvg ,k

(�)
(

prYvg (V )
)

and we take projective limits in

(60), then we get a ring homomorphism

Tg,V ∶ D(�)(V )→ (�g)∗D(�)(V )

which implies that the sheaf D(�) is G-equivariant. Furthermore, from construction this G-quivariant structure extends
the G0-structure defined in the subsection 6.1.

Finally, let us recall the faithful functor

M ⇝ M∞

from coadmissible G0-equivariant arithmetic D(�)-modules on FX to G0-equivariant D(�)-modules onX∞. If M comes
from a coadmissible G-equivariant D(�)-module on F , then M∞ is in fact G-equivariant (as in (52), this can be proved
by using the family of L-linear isomorphisms (�vg)g∈G. As in proposition 6.1.3, the preceding theorem gives us

Theorem 7.0.8. Let us suppose that � ∈ Hom(T ,Gm) is an algebraic character such that � + � ∈ t∗L is a dominant and
regular character of tL. The functor M ⇝ M∞ from the category C F

G,� to G-equivariant D(�)-modules on X∞ is a
faithful functor.

7.0.9. Final remark. We end this work by remarking to the reader that the functors in proposition 6.1.3 and theorem
7.0.8 become fully faithful functors if we required that the objects in the target category carry a structure of locally convex
topological D(�)-modules (cf. [25, Propositions 5.2.31 and 5.3.16]). In fact, following [25, 5.2.30] we can see that D(�)
carries a natural structure of a sheaf of locally convex topological L-algebras and more generally, if M ∈ CG0X,� (resp.
M ∈ CGX,�) then M∞ becomes a G0-equivariant (resp. a G-equivariant) sheaf of locally convex topological L-vector
spaces, endowed with the structure of a topological D(�)-module.
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