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RECONCILIATION OF PROBABILITY MEASURES

JEAN BÉRARD AND NICOLAS JUILLET

Abstract. We discuss the reconciliation problem between probability
measures: given n > 2 probability spaces (Ω,F1, P1), . . . , (Ω,Fn,Pn)
with a common sample space, does there exist an overall probability
measure P on F = σ(F1, . . . ,Fn) such that, for all i, the restriction of
P to Fi coincides with Pi ? General criteria for the existence of a rec-
onciliation are stated, along with some counterexamples that highlight
some delicate issues. Connections to earlier (recent and far less recent)
work are discussed, and elementary self-contained proofs for the various
results are given.

1. Introduction

Consider a finite number n > 2 of probability spaces all built upon the
same sample space Ω, and denoted by (Ω,F1,P1), . . . , (Ω,Fn,Pn). We ask
whether it is possible to reconcile these n probability spaces, meaning that
there exists a probability measure P on F = σ(F1, . . . ,Fn) such that, for all
1 6 i 6 n, the restriction of P to Fi coincides with Pi. In such a case, we
say that P provides a reconciliation of the probability measures P1, . . . ,Pn.

This is a natural problem from a modeling perspective, where several prob-
abilistic models may be available, each describing a specific aspect of the
situation under study. The question is then the existence of a probabilistic
model which simultaneously incorporates the previous specific models into
a global one. Scenario aggregation (see e.g. [4]) and coherent belief mod-
eling (see e.g. [1]) are two examples where related (though not equivalent)
problems appear.

Note that, in general, the σ−fields F1, . . . ,Fn correspond to distinct but
not completely unrelated families of events, which leads to additional con-
straints on a potential reconciliation P beyond the mere requirement that
P|Fi

= Pi for all i. For instance, one may have two events Ai ∈ Fi and
Aj ∈ Fj for which Ai ∩ Aj = ∅ with i 6= j, so that any potential recon-
ciliation P should satisfy P(Ai ∩ Aj) = 0. As a consequence, even in the
simple case where all σ−fields are assumed to be finite, the existence of a
reconciliation P is neither automatic nor a trivial question.

In this paper, we first state a characterization of the existence of a recon-
ciliation in the case of finite σ−fields. For n = 2, a very simple criterion is
obtained, while the corresponding criterion in the general case n > 2 looks
more complicated. Through a counterexample, we show that as simple a cri-
terion as in the case n = 2 cannot be expected to hold in general. We then
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discuss the extension of these results to the case of more general (infinite)
σ−fields. Through a counterexample, we show that additional conditions
are required for such an extension to hold, then give one example of such
conditions.

Note that the positive results stated in Theorem 1.1 and Theorem 1.2
can in fact be derived as corollaries of results obtained some decades ago by
various authors, as we gradually became aware while completing the present
study. The reconciliation problem as formulated above is neither the main
motivation nor a notable example in these works, and we believe that the
short self-contained proofs provided in the present paper are still of interest.
Moreover, the counterexamples we provide highlight some interesting issues
that are specific to the reconciliation problem.

The rest of the paper is organized as follows. Part 1.1 is devoted to the
statement of the results (positive and negative). Connections with earlier
work are discussed in Part 1.2. Finally, proofs of the various results are
collected in Section 2.

1.1. Statement of results.

1.1.1. The finite case. Throughout this section, the σ−fields F1, . . . ,Fn on
Ω are assumed to comprise a finite number of events. Extensions to the
infinite case are discussed in the next section.

The first result deals with the case of two probability spaces (n = 2),
where we have the following characterization of when a reconciliation exists.

Theorem 1.1. Assume that F1 and F2 comprise a finite number of events.
Then it is possible to reconcile (Ω,F1,P1) and (Ω,F2,P2) if and only if

P1(E1) 6 P2(E2) for every E1 ⊂ E2 with E1 ∈ F1 and E2 ∈ F2.(1)

Note that condition (1) is clearly necessary since, given a reconciliation P,
one must have P1(E1) = P(E1) 6 P(E2) 6 P2(E2) as soon as E1 ⊂ E2. The
non-trivial part of the theorem lies in the fact that condition (1) is indeed
sufficient to ensure the existence of a reconciliation. Also note that, taking
complementary sets, condition (1) is equivalent to the symmetric condition
E2 ⊂ E1 ⇒ P2(E2) 6 P1(E1).

The next result deals with the general case n > 2. The existence of a
reconciliation is characterized in terms of elementary integer-valued measur-
able functions. Consider integer numbers m1 > 1, . . . ,mn > 1, and, for all

1 6 i 6 n, a family of mi pairwise disjoint events E
(i)
1 ∈ Fi, . . . , E

(i)
mi ∈ Fi,

and a family of mi integer numbers d
(i)
1 ∈ Z, . . . , d

(i)
mi ∈ Z. Then set

(2) fi =

mi
∑

ℓ=1

d
(i)
ℓ · 1

E
(i)
ℓ

and f =
n
∑

i=1

fi.
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Note that each fi is Fi−measurable, and that one has

(3)

∫

fidPi =

mi
∑

ℓ=1

d
(i)
ℓ · Pi(E

(i)
ℓ ).

Theorem 1.2. Assume that F1, . . . ,Fn comprise a finite number of events.
Then it is possible to reconcile (Ω,F1,P1), . . . , (Ω,Fn,Pn) if and only if, for
all functions f and f1, . . . , fn of the form given by (2), one has that

(4)

n
∑

i=1

fi = f > 0 ⇒
n
∑

i=1

∫

fidPi > 0.

The necessity of condition (4) above is easy to see, for, given a reconcili-
ation P, and a non-negative function f , one must have

0 6

∫

fdP =

n
∑

i=1

∫

fidP =

n
∑

i=1

∫

fidPi.

As a consequence, the non-trivial part of Theorem 1.2 is the fact that con-
dition (4) is indeed sufficient for the existence of a reconciliation P.

Note that we insisted on giving a formulation in terms of integer-valued
functions (instead of general real-valued functions) since we are interested in
having a combinatorial interpretation of the criterion in terms of comparisons
between probabilities of sets. Indeed, condition (4) in Theorem 1.1 has a very
clear such combinatorial interpretation, and one may hope for an equally
clear criterion in the general case n > 2. Since, in the case n = 2, the
existence of a reconciliation can be checked by looking at a very specific
subset of the conditions appearing in Theorem 1.2 (namely, those involving

m1 = 1, m2 = 1, d
(1)
1 = −1, d

(2)
1 = 1), a natural question is whether,

in the general case n > 2, it is still possible to characterize the existence
of a reconciliation through a subset of conditions that involve only "small"
integer values. Unfortunately, the following result shows that the answer is
negative.

Theorem 1.3. For all K > 0, there exists a triple of probability spaces
(Ω,F1,P1), (Ω,F2,P2), (Ω,F3,P3), where Fi comprises a finite number of
events for i = 1, 2, 3, such that:

• no reconciliation exists;

• condition (4) is satisfied whenever |d
(i)
ℓ | 6 K for all i, ℓ.

Theorem 1.3 shows that, even when n = 3, there is no upper bound on

how large the integer coefficients d
(i)
ℓ in (2) have to be in order to check the

existence of a reconciliation. Note that, with K = 1 (and Theorem 1.1),
the theorem also provides an example of a triple of probability spaces among
which every pair admits a reconciliation, while no overall reconciliation exists
for the triple.
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1.1.2. Extension to the infinite case. We now consider the case where the
σ−fields Fi on Ω may comprise an infinite number of events. We start with
a negative result showing that one cannot extend the previous results to such
a general case without additional assumptions.

Theorem 1.4. There exists a pair (Ω,F1,P1), (Ω,F2,P2) such that condi-
tion (1) is satisfied, but for which no reconciliation exists.

Remark 1.5. The proof of Theorem 1.1 shows that conditions (1) and (4)
are in fact equivalent when n = 2. As a consequence, in the counterexample
used to prove Theorem 1.4, condition (4) is also satisfied, showing that, in
the infinite case, neither (1) nor (4) is sufficient to imply the existence of a
reconciliation.

The next theorem states that, under a (reasonably mild and general) ad-
ditional assumption on the σ−fields F1, . . . ,Fn, can indeed be extended.

Theorem 1.6. Assume that the σ−fields F1, . . . ,Fn (with n = 2 in the case
of Theorem 1.1) are of the form Fi = σ(Xi), where Xi is a map from Ω to
R
di (equipped with the Borel σ−field), with di > 1. Moreover, assume that

the set (X1, . . . ,Xn)(Ω) is a closed set in R
d1+···+dn . Then the conclusions

of Theorems 1.1 and 1.2 hold. Namely, in the case n = 2, there exists a
reconciliation between P1 and P2 if and only if condition (1) holds, and, in
the general case n > 2, there exists a reconciliation between P1, . . . ,Pn if and
only if condition (4) holds.

The two following corollaries are immediate by-products of the theorem.

Corollary 1.7. The conclusions of Theorems 1.1 and 1.2 hold when the
σ−fields F1, . . . ,Fn are generated by a countable number of atoms.

Corollary 1.8. Let V be a closed set of Rd × R
d and µ, ν two probability

measures on R
d. Then, using transport terminology, there exists a transport

plan π from µ to ν concentrated on V , i.e, a measure π ∈ P(Rd × R
d) with

marginals µ and ν and π(V ) = 1, if and only if for every Borel sets A ⊂ R
d

and B ⊂ R
d

µ(A) 6 ν(B) as soon as (A× R
d) ∩ V ⊂ (Rd ×B) ∩ V.(5)

Note that Corollary 1.8 is obtained from Theorem 1.6 by setting Ω = V ,
with the random variables Xi being given by coordinate functions. Also,
note that Theorem 1.4 is based on a construction where V is not closed and
the conclusion of Corollary 1.8 fails. Take Ω = V = {(x1, x2) ∈ R

2; 0 <
x1 < x2 < 1}, and let X1 and X2 denote the coordinate functions. Then
no reconciliation exists if one asks that both X1 and X2 follow the uniform
distribution on ]0, 1[, see the proof of Theorem 1.4.

1.2. Connections with earlier work. Early references bearing directly
on Theorem 1.1 are Fréchet [7] and Dall’Aglio [5] (where an unpublished
result of Berge is also quoted). There, a general result is proved on the
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existence of two-dimensional discrete distributions with prescribed marginals
and upper bounds, from which Theorem 1.1 can be derived. Subsequent
work by Kellerer (Satz 3.2 in [9]) in a general framework (finite dimensional
distributions on abstract spaces) can be used to derive Theorem 1.2. Finally,
key ingredients needed to prove Theorem 1.6 can be taken from Theorem
11 in Strassen [14]. We refer to the book [6] for additional references and a
more detailed historical perspective on this body of work.

Here, a step-by-step self-contained approach to the proofs is given. Indeed,
in our specific framework, Theorem 1.2 stems from a rather straightforward
application of Farkas’ Lemma. Theorem 1.1 is then derived from Theorem
1.2 through a simple reduction argument. Finally, Theorem 1.6 is what one
more or less readily obtains by passing to the limit within a sequence of
discrete approximations provided by Theorems 1.1 and 1.2.

To conclude this section, we would like to emphasize the connections of
Corollary 1.8 (which is in fact a variant of Theorem 11 in [14], and also
related with ) with recent developments in optimal transport theory.

Although it appears a little less obvious, condition (5) is necessary in
Corollary 1.8 for the same reason why (1) is in Theorem 1.1. Its natural
interpretation is not probabilistic, but in terms of transport, as follows. We
recall that π(A × B) represents the mass transported from A to B. The
constraint on the capacity of the transport plan is given by V : no mass can
travel from x to y if (x, y) /∈ V . Gravel located in A with mass µ(A) can be
displaced according to the capacity transport constraint encoded by V only
to the set B0 = proj2((A × R) ∩ V ). The storage size of this (universally
measurable) set is ν(B0). In order for the transport to be manageable, it
has to be larger than µ(A), which is condition (5). Corollary 1.8 states that
under this condition there exists a transport plan that satisfies the capacity
constraint. As for the usual Monge–Kantorovich optimal transport problem,
the goal in constrained versions of the problem is to obtain information on
the minimizers of π 7→

∫∫

cdπ, where c : Rd × R
d is a lower semicontinuous

cost function. In particular, is there a Monge solution, that is in the form
π = (Id⊗ T )#µ ?

We are aware of two works in the transport literature that correspond to
this problem. In [8] the special case of a constraint displacement vector has

been encoded by V = {(x, y) ∈ R
2d : y − x ∈

−→
V } where

−→
V ⊂ R

d is a closed
convex set with some additional properties. The authors look at the shape
of optimizers for a quadratic (constraint) cost

c(x, y) =

{

|y − x|2 if y − x ∈
−→
V ,

+∞ if y − x /∈
−→
V .

They prove that, provided µ is absolutely continuous, any solution π∗ of
the Monge–Kantorovich transport problem is a Monge transport plan π∗ =

(Id⊗T )#µ where T (x) ∈ x+
−→
V , µ−almost surely, and hence, π∗ is uniquely

determined. This occurs under the assumption made that a transport plan



6 JEAN BÉRARD AND NICOLAS JUILLET

π with finite cost does exist, i.e,
∫∫

cdπ < ∞ for some admissible π. In this
respect, condition (5) is namely required in order for the problem to have

finite minimal total cost. Note that (5) reads in this case ν(A+
−→
V ) > µ(A).

The other work is [2] where
−→
V is the unit Euclidean ball B1(0) and c is the

so-called relativistic cost

c(x, y) =

{

1−
√

1− |y − x|2 if |y − x| 6 1,

+∞ if |y − x| > 1.

As c is bounded on its domain, (5) is a necessary and sufficient condition
to have finite total cost. The authors also introduce ct := c(x/t, y/t) and the
critical speed T = Tµ,ν = inf{t ∈ R+ : the total cost is finite for ct}. There-
fore T is also the minimal t such that ν(A+Bt(0)) > µ(A) for every Borel set
A. Let us finally mention [12, 11] where another Monge-Kantorovich problem
under capacity constraint is investigated: a transport plan π is admissible if
it possesses a density h on X × Y ⊂ R

d1+d2 that satisfies 0 < h 6 h̄ for a
given h̄. In this case the authors of [12] cite (p. 575) two functional criteria
for the existence of an admissible transport plan. These are due to Kellerer
[9] and Levin [13]. An equivalent set-based criterion due to Kellerer [10, Satz
4.2] directly transposes in the continuous settings the (already mentioned)
ones obtained by Fréchet [7] and Dall’Aglio [5] in the discrete setting.

2. Proofs

We start with the proof of Theorem 1.2, which consists merely in an
application of Farkas’ Lemma.

Proof of Theorem 1.2. As already noted after the statement of the theorem,
condition (4) is clearly necessary for the existence of a reconciliation. We
now assume that (4) holds, and prove the existence of a reconciliation.

Denote by H the (finite-dimensional) vector space formed by real-valued
functions f on Ω of the form f = f1 + · · · + fn, where each fi is an
Fi−measurable real-valued function on Ω. Note that condition (4) is as-
sumed to hold for such functions f when each fi is integer-valued. Since we
consider functions on a finite state space, condition (4) in fact holds for any
f in H, as can be seen by approximating each fi by functions with rational
values, which in turn can be written as integer values divided by the g.c.d.
of these values.

Now, for any ω ∈ Ω, denote by ϕω the linear form on H defined by
ϕω(f) = f(ω). On the other hand, denote by θ the linear form on H defined
by θ(f) =

∑n
i=1

∫

fdPi. Condition (4) (extended to all functions in H)
says that, if f ∈ H is such that ϕω(f) > 0 for all ω ∈ Ω, then one has
θ(f) > 0. Farkas’ Lemma then guarantees the existence of a family (tω)ω∈Ω
of non-negative real numbers such that, for all f ∈ H, one has the identity

(6) θ(f) =
∑

ω∈Ω

tω · f(ω).
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Applying (6) with e.g. f1 ≡ 1 and f2 = · · · = fn ≡ 0, we see that the non-
negative numbers (tω)ω∈Ω sum up to 1, so that we can define P({ω}) = tω.
Given Ai ∈ Fi, we can apply (6) with fi = 1Ai

and fj ≡ 0 for j 6= i, and we
deduce that P(Ai) = Pi(Ai). �

We now prove Theorem 1.1 from Theorem 1.2, through a suitable reduc-
tion argument.

Proof of Theorem 1.1. As already noted after the statement of the theorem,
condition (1) is clearly necessary for the existence of a reconciliation. We now
assume that (1) holds, and prove the existence of a reconciliation through
Theorem 1.2.

Without loss of generality, we start with a function f of the form f =
f1 + f2, with f1 =

∑

i λi1Ai
and f2 = −

∑

j µj1Bj
, where the λi and µj are

in Z, and where the (Ai)i (resp. (Bj)j) is a finite family of events in F1

(resp. F2) that forms a finite partition of Ω. In the sequel, the λi and µj

are called the coefficients of f .
Our goal is to establish condition (4) so as to apply Theorem 1.2. So we

now have to prove that, if f > 0, then
∑

i λiP1(Ai)−
∑

j µjP2(Bj) > 0.

Step 1: We may assume that f has coefficients in N: Adding to f the function
0 = C − C = C(

∑

i 1Ai
) − C(

∑

j 1Bj
) where C = maxi,j(|λi|, |µj |), we see

that
∑

i

(λi + C)1Ai
−

∑

j

(µj + C)1Bj

has non-negative coefficients λ′
i = λi + C and µ′

j = µj + C, while keeping
∑

λ′
iP1(Ai)+

∑

µ′
jP2(Bj) =

∑

λiP1(Ai) +
∑

µjP2(Bj), since
∑

CP1(Ai)−
∑

CP2(Bj) = 0.

Step 2: We may assume that f has coefficients in {0, 1}: Consider f such that
f > 0, and, given Step 1, assume that the coefficients in f satisfy λi, µj ∈ N.
We set λ′

i = max(λi − 1, 0) and µ′
j = max(µj − 1, 0), and write f = g + h,

with g =
∑

λ′
i1Ai

−
∑

µ′
j1Bj

and h =
∑

(λi − λ′
i)1Ai

−
∑

(µj − µ′
j)1Bj

.

Since
∑

λi1Ai
6

∑

µj1Bj
, we must have, for every (i, j) with Ai ∩Bj 6= ∅,

the fact that λi 6 µj , and therefore that λ′
i 6 µ′

j and λi − λ′
i 6 µj − µ′

j. As
a consequence, we have g > 0 and h > 0, and g and h have non-negative
integer coefficients. Moreover, unless they are already equal to 0 or 1, the
coefficients of g and h are strictly smaller than the corresponding coefficients
of f . Indeed, if λi > 2, one has λ′

i < λi and λi − λ′
i < λi, and similarly for

µj. As a consequence, after a finite number of iterations, we can write f as
a sum of non-negative functions with integer coefficients in {0, 1}.

Conclusion: For a function f > 0 with coefficients in {0, 1}, the difference
∑

i λiP1(Ai) −
∑

j µjP2(Bj) is of the form P1(E1) − P2(E2) with E2 ⊂ E1,

so that condition (1) implies the fact that
∑

i λiP1(Ai)−
∑

j µjP2(Bj) > 0.
�


