
HAL Id: hal-02316115
https://hal.science/hal-02316115v2

Preprint submitted on 10 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On foundational aspects of RDF and SPARQL
Dominique Duval, Rachid Echahed, Frederic Prost

To cite this version:
Dominique Duval, Rachid Echahed, Frederic Prost. On foundational aspects of RDF and SPARQL.
2020. �hal-02316115v2�

https://hal.science/hal-02316115v2
https://hal.archives-ouvertes.fr

On foundational aspects of RDF and SPARQL

(Revised Version)

Dominique Duval, Rachid Echahed and Frédéric Prost

CNRS and Univ. Grenoble Alpes, Grenoble, France

Abstract. We consider the recommendations of the World Wide Web
Consortium (W3C) about RDF framework and its associated query lan-
guage SPARQL. We propose a new formal framework based on category
theory which provides clear and concise formal definitions of the main
basic features of RDF and SPARQL. We define RDF graphs as well as
SPARQL basic graph patterns as objects of some nested categories. This
allows one to clarify, in particular, the role of blank nodes. Furthermore,
we consider basic SPARQL CONSTRUCT and SELECT queries and
formalize their operational semantics following a novel algebraic graph
transformation approach called POIM.

1 Introduction

Graph databases are becoming a very influential technology in our society. Mas-
tering the languages involved in the encoding of data or the formulation of queries
is a necessity to elaborate robust data management systems.

In this paper, we consider the most recent recommendations of the World
Wide Web Consortium (W3C) about the Resource Description Framework (RDF)
[17] and the associated query language SPARQL [16] and propose a mathemat-
ical semantics of a kernel of these formalisms.

The key data structure in RDF is the structure of RDF graph. In [17, Sec-
tion 3], an RDF graph is defined as a set of RDF triples, where an RDF triple has
the form (subject, predicate, object). The subject is either an IRI (International-
ized Resource Identifier) or a blank node, the predicate is an IRI and the object is
either an IRI, a literal (denoting a value such as a string, a number or a date) or
a blank node. Blank nodes are arbitrary elements as long as they differ from IRIs
and literals and they do not have any internal structure: they are used for indicat-
ing the existence of a thing and the blank node identifiers are locally scoped. For
instance, the triples (Paul, knows, blank1) and (blank2, knows,Henry) mean,
respectively, that Paul knows someone and someone knows Henry. Surprisingly,
a triple such as (Paul, blank3, Henry) standing for “there is some relationship
between Paul and Henry” is not allowed in RDF, but only in generalized RDF
[17, Section 7]. Following the theoretical point of view we propose in this pa-
per, there is no harm to consider blank predicates within RDF triples. We thus
consider data graphs in a more general setting including RDF graphs.

The query language SPARQL for RDF databases is based on basic graph
patterns, which are kinds of RDF graphs with variables [16, Section 2]. In this

paper, we consider query graphs which generalize basic graph patterns by allow-
ing blanks to be predicates. The SPARQL query processor searches for triples
within a given RDF database which match the triple patterns in the given basic
graph pattern, and returns a multiset of solutions or an RDF graph. Considering
basic graph patterns, one may wonder what is the difference between variables
and blank nodes. SPARQL specifications in [16, Section 4.1.4] suggest similar-
ities between them, whereas the opposite is made in [16, Section 16.2]. In the
formalization of SPARQL we propose, blank nodes and variables are clearly
distinguished by their respective roles in the definition of morphisms.

In the SPARQL recommendation [16], the SELECT query form is described
lengthily. This query form can be compared to the SELECT query form of SQL,
which returns a multiset of solutions. In contrast, the CONSTRUCT query form
returns an RDF graph. The latter is described very shortly in [16, Section 16.2].
Following our formalization, the CONSTRUCT query form is more fundamen-
tal than the SELECT query form. Actually, we start by proposing an opera-
tional semantics for CONSTRUCT queries based on a new approach of alge-
braic graph transformations which we call POIM and we show afterward how
SELECT queries can be easily encoded as CONSTRUCT queries.

The paper is organized as follows. Section 2 defines the objects and the mor-
phisms of the categories of data graphs and query graphs. Section 3 introduces
the POIM algebraic transformation: a rewrite rule is a cospan L→ K ← R where
L,K and R are basic graph patterns, and a rewrite step is made of a pushout fol-
lowed by an image factorization. Afterward, in Section 4 we define two different
operational semantics for CONSTRUCT queries and prove their equivalence. We
first define a high-level calculus as a mere application of the POIM transforma-
tion. Then we propose a low-level calculus which is defined by means of several
applications of the POIM transformation followed by a “merging” process. Both
calculi implement faithfully the SPARQL semantics for CONSTRUCT queries
(Theorem 19). In Section 5, we show how the POIM transformation can be used
to define a novel operational semantics of the SELECT queries. This semantics,
which is faithful to SPARQL definitions (Theorem 37), is obtained by an origi-
nal translation of each SELECT query into a CONSTRUCT query. Concluding
remarks and related work are discussed in Section 6. The missing proofs are in
the Appendix.

2 Graphs of triples

The set of IRIs, denoted Iri , and the set of literals, denoted Lit , with its usual
operations, are defined in [17]. The sets Iri and Lit are disjoint. In addition,
let B be a countably infinite set, disjoint from Iri and Lit . The elements of B
are called the blanks. According to [17, Section 3.1], an RDF graph is a set of
RDF triples and an RDF triple consists of three components: the subject, which
is an IRI or a blank node; the predicate, which is an IRI; and the object, which
is an IRI, a literal or a blank node. The set of nodes of an RDF graph is the
set of subjects and objects of triples in the graph. Using set-theoretic notations,

this can be expressed as follows: let Tr = (Iri ∪B)× Iri × (Iri ∪ Lit ∪B), then
an RDF triple is an element of Tr and an RDF graph is a subset of Tr . Let us
also consider the following extension of RDF [17, Section 7]: A generalized RDF
triple is a triple having a subject, a predicate, and object, where each can be an
IRI, a blank node or a literal. A generalized RDF graph is a set of generalized
RDF triples. Let I = Iri ∪ Lit , so that a generalized RDF triple is an element
of (I ∪B)3 and a generalized RDF graph is a subset of (I ∪B)3.

Let V be a countably infinite set disjoint from Iri , Lit and B. The elements
of V are called the variables. According to [16, Section 2] a set of triple patterns
is called a basic graph pattern. Triple patterns are like RDF triples except that
each of the subject, predicate and object may be a variable. Let TrV = (Iri ∪B ∪
V)×(Iri ∪V)×(Iri ∪Lit∪B∪V), then a triple pattern is an element of TrV and
a basic graph pattern is a subset of TrV . Since TrV is a subset of (I ∪B ∪ V)3,
each basic graph pattern is a subset of (I ∪B ∪ V)3.

RDF graphs and basic graph patterns are generalized in Definition 2 as data
graphs and query graphs respectively, both relying on Definition 1.

Definition 1. For each set A, the triples on A are the elements of A3. For each
triple t = (s, p, o) on A the elements s, p and o of A are called respectively the
subject, the predicate and the object of t. A graph on A is a set of triples on A,
i.e. a subset of A3. For each graph T on A, the subset of A made of the subjects,
predicates and objects of T is called the set of attributes of T and is denoted
|T |; it follows that T is a subset of |T |3. Let T and T ′ be two graphs on A. A
morphism a : T → T ′ is a map such that there is a map M : |T | → |T ′| such
that a is the restriction of M3 to T . Then M is uniquely determined by a, it is
denoted |a|. This yields the category of graphs on A, denoted G(A). We say that
a morphism a : T → T ′ of graphs on A fixes a subset C of A if |a|(x) = x for
each x in |T | ∩C. For each subset C of A, the subcategory of G(A) made of the
graphs on A with the morphisms fixing C is denoted GC(A).

Thus, by mapping a to |a| we get a one-to-one correspondence between the
morphisms a : T → T ′ of graphs on A and the maps M : |T | → |T ′| such
that M3(T) ⊆ T ′. An isomorphism (i.e., an invertible morphism) in G(A) is a
morphism a : T → T ′ of graphs on A such that |a| : |T | → |T ′| is a bijection
and a(T) = T ′. A morphism a fixing C is determined by the restriction of the
map |a| to |T | ∩C, where C = A\C. An isomorphism a in GC(A) is a morphism
a : T → T ′ of graphs on A such that |a| is the identity on |T |∩C and a bijection
between |T | ∩C and |T ′| ∩C and a(T) = T ′. The notions of inclusion, subgraph,
image and union for graphs on A are defined as inclusion, subset, image and
union for subsets of A3.

Definition 2. Let I, B and V be three pairwise distinct countably infinite sets,
called respectively the sets of resource identifiers, blanks and variables. Let IB =
I ∪ B, IV = I ∪ V and IBV = I ∪ B ∪ V . The category of data graphs is
D = G(IB) and for each subset C of IB the category of data graphs fixing
C is the subcategory DC = GC(IB) of D. The category of query graphs is

Q = G(IBV) and for each subset C of IBV the category of query graphs fixing
C is the subcategory QC = GC(IBV) of Q.

Thus, when I = Iri ∪ Lit , the RDF graphs are the data graphs where only
nodes can be blanks and only nodes that are not subjects can be literals, and the
RDF terms of an RDF graph are its attributes when it is seen as a data graph.
Then the isomorphisms of RDF graphs, as defined in [17, Section 3.6.], are the
isomorphisms in the category DI of data graphs fixing I: indeed, two data graphs
G1 and G2 are isomorphic in DI if and only if they differ only by the names of
their blanks. For each data graph T , let |T |I = |T |∩I and |T |B = |T |∩B, so that
|T | is the disjoint union of |T |I and |T |B. Similarly, the basic graph patterns of
SPARQL are the query graphs where only nodes can be blanks and only nodes
that are not subjects can be literals. For each query graph T , let |T |I = |T | ∩ I,
|T |B = |T | ∩B and |T |V = |T | ∩V , so that |T | is the disjoint union of |T |I , |T |B
and |T |V .

Morphisms of graphs can be used, for instance, for substituting the variables
of a query graph (Definition 3) or for interpreting a data graph in a universe of
discourse (Definition 4).

Definition 3. A match from a query graph L to a data graph G is a morphism
of query graphs from L to G which fixes I. The set of matches from L to G is
denoted Match(L,G) and the set of all matches from L to any data graph is
denotedMatch(L).

Thus, a match fixes each resource identifier and it maps a variable or a blank
to a resource identifier or a blank.

The interpretations of an RDF graph are also kinds of morphisms, see Def-
inition 4. Note that this will not be used later in this paper. We define an
interpretation of a data graph G in a universe of discourse U by generalizing
the definition of a morphism, according to [17, Section 1.2.]: Any IRI or literal
denotes something in the world (the “universe of discourse”). These things are
called resources. The predicate itself is an IRI and denotes a property, that is,
a resource that can be thought of as a binary relation. Recall that the binary
relations on a set R are the subsets of R2. It can happen that a binary relation
on R is itself an element of R.

Definition 4. Given a set R and a subset P of R2 made of binary relations
on R, let U be the set of triples (s, p, o) in R3 such that p ∈ P and (s, o) ∈ p.
The universe of discourse with R as set of resources and P as set of properties
is the graph U on R. Given a universe of discourse U on a set R and a map
MI : I → R, an interpretation of a data graph G is a map i : G→ U such that
i = M3 for a map M : |G| → |U | which extends MI.

In this paper, we consider categories DC and QC for various subsets C of
IB and IBV respectively. It will always be the case that C contains I, so that
we can say that resource identifiers have a “global scope”. In contrast, blanks
have a “local scope”: in the basic part of RDF and SPARQL considered in this

paper, the scope of a blank node is restricted to one data graph or one query
graph. The note about blank node identifiers in [17, Section 3.4] distinguishes
two kinds of syntaxes for RDF: an abstract syntax where blank nodes do not
have identifiers and concrete syntaxes where blank nodes have identifiers. In our
approach a blank is an attribute, which corresponds to a concrete syntax, and
the abstract syntax is obtained by considering data graphs as objects of the
category DI up to isomorphism, so that any blank node can be changed for a
new blank node if needed.

Example 5. In all examples we use the following prefixes (@prefix for data and
PREFIX for queries):

Prefixes

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

Consider two RDF graphs G1, G2 as follows. They are isomorphic in DI but not
in DIB because blanks are swapped.

G1

<http://example.org/Al> foaf:knows _:b.
_:c foaf:knows <http://example.org/Bob>.

G2

<http://example.org/Al> foaf:knows _:c.
_:b foaf:knows <http://example.org/Bob>.

Now consider basic graph patterns G3 to G8. They are pairwise non-isomorphic
in QIBV because they are pairwise distinct. In QIV only G7 and G8 are isomor-
phic. In QI these query graphs belong to two different isomorphism classes: on
one side G3 and G4 are isomorphic and on the other side G5, G6, G7 and G8

are isomorphic.
G3

<http://example.org/Al> foaf:knows _:b.

_:b foaf:knows <http://example.org/Bob>.

G4

<http://example.org/Al> foaf:knows ?x.

?x foaf:knows <http://example.org/Bob>.

G5

<http://example.org/Al> foaf:knows _:b.

_:c foaf:knows <http://example.org/Bob>.

G6

<http://example.org/Al> foaf:knows ?x.

?y foaf:knows <http://example.org/Bob>.

G7

<http://example.org/Al> foaf:knows ?x.

_:b foaf:knows <http://example.org/Bob>.

G8

<http://example.org/Al> foaf:knows ?x.

_:c foaf:knows <http://example.org/Bob>.

Assumption 6 From now on A is a set, C is a subset of A, C = A \ C is
the complement of C in A, and it is assumed that both C and C are countably
infinite.

Remark 7. Since C is countably infinite, when dealing with a finite number of
finite graphs on A it is always possible to find a new attribute outside C, i.e.,
an element of C that is not an attribute of any of the given graphs. We will use
repeatedly the following consequence of this fact:

Given a graph T on A, if any attribute of T in C is replaced by any new element

of C the result is a graph T ′ on A that is isomorphic to T in GC(A). Such a T ′

exists when T is finite.

Now let us focus on some kinds of colimits of graphs on A: coproducts in
Proposition 8 and pushouts in Proposition 9. Recall that colimits in any category
are defined up to isomorphism in this category.

Proposition 8. Given graphs T1, ..., Tk on A such that |Ti| ∩ |Tj | ⊆ C for each
i 6= j, the union T1 ∪ ... ∪ Tk is a coproduct of T1, ..., Tk in GC(A).

By Remark 7 it follows that if T1, ..., Tk are any finite graphs on A there are
graphs T ′

1, ..., T
′
k on A such that T ′

i is isomorphic to Ti in GC(A) for each i and
|T ′

i | ∩ |T
′
j | ⊆ C for each i 6= j, so that the union T ′

1 ∪ ... ∪ T ′
k is a coproduct of

T1, ..., Tk in GC(A).

Proposition 9. Let l : L → K and m : L → G be morphisms of graphs on
A such that K is finite, l is an inclusion and m fixes C. Let us assume that
|K|∩|G| ⊆ C (this is always possible up to isomorphism in GC(A), by Remark 7).
Let N : |K| → |G|∪|K \L| be such that N(x) = |m|(x) for x ∈ |L| and N(x) = x

otherwise. Let D = G ∪ N3(K), let n : K → D be the restriction of N3 and
g : G→ D the inclusion. Then |D| = |G| ∪ |K \ L| and the square (l,m, n, g) is
a pushout square in GC(A).

Thus, D is a kind of “union of G and K over L”, however in general it is not
the case that D is the union of G and K \ L. It is the case that D = G ∪ D2

where D2 = N3(K \ L) but N3 is not the identity on K \ L, and moreover G
and D2 are not disjoint in general.

3 The POIM transformation

A SPARQL query like “CONSTRUCT {R} WHERE {L}” is called basic when
both R and L are basic graph patterns. In such a query, variables with the same
name in L and R denote the same RDF term, whereas it is not the case for
blank nodes. The statement “blank nodes in graph patterns act as variables” in
[16, Section 4.1.4] holds for L, whereas blank nodes in R give rise to new blank
nodes in the result of the query as in Examples 17 and 21. Thus, the meaning of
blank nodes in L is unrelated to the meaning of blank nodes in R, and in both
L and R each blank can be replaced by a new blank.

We generalize this situation in Definition 10 by allowing any data graphs for
L and R up to isomorphism in QIV : the resource identifiers and the variables in
L and R are fixed but each blank can be replaced by a new blank. Thus, without
loss of generality, we can assume that |L|B ∩ |R|B = ∅. Under this assumption,
the set of triples K = L∪R with the inclusions of L and R in K is a coproduct
of L and R in the category QIV . We also assume that each variable in R occurs
in L, so that every substitution for the variables in L provides a substitution for
the variables in R. This assumption |R|V ⊆ |L|V is equivalent to |K|V = |L|V .

Definition 10. A basic construct query is a pair of finite query graphs (L,R)
such that |L|B ∩ |R|B = ∅ and |R|V ⊆ |L|V , up to isomorphism in the category
QIV . The transformation rule of a basic construct query (L,R) is the cospan

PL,R = (L
l
→ K

r
← R) where K = L ∪ R and l and r are the inclusions. Its

left-hand side is L and its right-hand side is R.

PL,R = L
l

⊆
// K = L ∪R R

r

⊇
oo

Example 11. Consider the following SPARQL CONSTRUCT query:
Query

CONSTRUCT { ?x vcard:FN ?name } WHERE { ?x foaf:name ?name }

In the corresponding transformation rule L
l
→ K

r
← R there are no blanks in

L nor in R, thus the transformation rule is L
l
→ K

r
← R where l and r are the

inclusions of L and R in K = L ∪R.
L

?x foaf:name ?name .
l
→

K

?x foaf:name ?name ;
vcard:FN ?name .

r
←

R

?x vcard:FN ?name .

Example 12. Now the SPARQL CONSTRUCT query from Example 11 is mod-
ified by replacing both occurrences of the variable ?x by the blank node : x:

Query

CONSTRUCT { _:x vcard:FN ?name } WHERE { _:x foaf:name ?name }

In the corresponding transformation rule one blank has been modified so as to
ensure that |L|B ∩ |R|B is empty:

L

_:x foaf:name ?name .
l
→

K

_:x foaf:name ?name .

_:y vcard:FN ?name .

r
←

R

_:y vcard:FN ?name .

When a basic SPARQL query “CONSTRUCT {R} WHERE {L}” is run
against an RDF graph G, and when there is precisely one match of L into G, the
result of the query is an RDF graph H obtained by substituting the variables
in R. This substitution can be seen as a match of R into H . We claim that
the process of building H with this match of R into H from the match of L
into G can be seen as a two-step process involving an intermediate match of
K in an RDF graph D. The definition of this process relies on an algebraic
construction that we call the POIM transformation: PO for pushout and IM for
image (Definition 13). The POIM transformation is related to a large family
of algebraic graph transformations based on pushouts, like the SPO (Simple
Pushout) [9], DPO (Double Pushout) [8] or SqPO (Sesqui-Pushout) [7].

Given a basic construct query (L,R) and its transformation rule L
l
→ K

r
←

R, the POIM transformation is defined as a map from the matches of L to the
matches of R, in two steps: first from the matches of L to the matches of K,
then from the matches of K to the matches of R. Given an inclusion l : L→ K

in QI , the cobase change along l is the map l∗ : Match(L) → Match(K) that
maps each m : L → G to l∗(m) : K → D defined from the pushout of l and m

in QI , as described in Proposition 9. Note that D is a data graph because of
the assumption |K|V = |L|V . Given an inclusion r : R → K in QI , the image
factorization along r is the map r+ : Match(K) → Match(R) that maps each

n : K → D to r+(n) : R→ H where H is the image of R in D and r+(n) is the
restriction of n and h : H → D is the inclusion. This leads to Definition 13 and
Proposition 14.

Definition 13. Let (L,R) be a basic construct query and L
l
→ K

r
← R its

transformation rule. The POIM transformation map of (L,R) is the map

PoImL,R = r+ ◦ l∗ :Match(L)→Match(R)

composed of the cobase change map l∗ and the image factorization map r+. The
result of applying PoImL,R to a match m : L → G is the match PoImL,R(m) :
R→ H or simply the query graph H.

L

(PO)

l //

m

��

K

l∗(m)=n

��

(IM)

R
roo

r+(n)=p

=PoImL,R(m)
��

G
g

// D H
hoo

(1)

Note that the result H is defined only up to isomorphism in QI , which
means that the blanks in H can be modified (as long as this modification does
not identify any of them).

Proposition 14. Let (L,R) be a basic construct query and m : L→ G a match.
Let P : |R| → A be defined by P (x) = |m|(x) for x ∈ |R|V and P (x) = x

otherwise. Then, up to isomorphism in QI , the result of applying PoImL,R to m

is p : R→ H where H = P 3(R) and p is the restriction of P 3.

Remark 15. Each setMatch(X) can be seen as a coslice category, then the maps
r+ and l∗ can be seen as functors: this could be useful when extending this paper
to additional features of SPARQL.

Example 16. Consider the SPARQL CONSTRUCT query from Example 11:

Query

CONSTRUCT { ?x vcard:FN ?name } WHERE { ?x foaf:name ?name }

and let us run this query against the RDF graph G:

G

ex:a foaf:name "Alice" ; foaf:nick "Lissie" .

There is a single match m, it is such that m(?x) = ex:a and m(?name) =
"Alice". The POIM transformation produces successively the following data
graphs D and H , where H is the query result:

G

ex:a foaf:name "Alice" ;
foaf:nick "Lissie" .

g
→

D

ex:a foaf:name "Alice" ;
foaf:nick "Lissie" ;

vcard:FN "Alice" .

h
←

H

ex:a vcard:FN "Alice" .

Example 17. Now consider the SPARQL CONSTRUCT query from Example 12:

Query

CONSTRUCT { _:x vcard:FN ?name } WHERE { _:x foaf:name ?name }

Let us run this query against the RDF graph G from Example 16. There is a
single match m, it is such that m(: x) = ex:a and m(?name) = "Alice". The
POIM transformation produces successively the following data graphs D and H ,
where H is the query result:

G

ex:a foaf:name "Alice" ;
foaf:nick "Lissie" .

g
→

D

ex:a foaf:name "Alice" ;
foaf:nick "Lissie" .

_:b vcard:FN "Alice" .

h
←

H

_:b vcard:FN "Alice" .

4 Running basic construct queries

In Section 3, we defined the POIM transformation and we applied it to run a
basic construct query (L,R) against a data graph G, under the assumption that
there is exactly one match from L to G. Now we define two different calculi for
running a basic construct query against a data graph G without any assumption
on the number of matches. The high-level calculus (Definition 22) is one “large”
application of the POIM transformation. The low-level calculus (Definition 24)
consists of several “small” applications of the POIM transformation followed by
a “merging” process. In Propositions 23 and 27 we prove that both calculi return
the same result. This result coincides (up to the renaming of the blanks) with
the result returned by SPARQL when L and R are basic graph patterns and G

is an RDF graph (Theorem 19).

Definition 18. Let (L,R) be a basic construct query and G a data graph. As-
sume (without loss of generality) that |G|B ∩ |L|B = ∅ and |G|B ∩ |R|B = ∅. Let
m1, ...,mk be the matches from L to G. For each i = 1, ..., k let Hi be the data
graph obtained from R by replacing each variable x in R by mi(x) and each blank
in R by a new blank (which means: a new blank for each blank in R and each
i in {1, ..., k}). The query result of applying the basic construct query (L,R) to
the data graph G is the data graph H = H1 ∪ ... ∪Hk.

A triple (s, p, o) in (I∪B)3, where I = Iri∪Lit , is well-formed if it is an RDF
triple, in the sense that s ∈ Iri ∪ B and p ∈ Iri . Thus, a data graph is an RDF
graph if and only if all its triples are well-formed. The answer of a SPARQL
CONSTRUCT query over an RDF graph is defined in [13].

Theorem 19. Let L and R be basic graph patterns with |L|B = ∅ and |R|V ⊆
|L|V . Then (L,R) is a basic construct query and the set of well-formed triples
in the query result of applying (L,R) to an RDF graph G is isomorphic in DI to
the answer of the SPARQL query “CONSTRUCT {R} WHERE {L}” over G.

Example 20. Consider the SPARQL query from Examples 11 and 16:

Query

CONSTRUCT { ?x vcard:FN ?name } WHERE { ?x foaf:name ?name }

and let us run this query against the RDF graph G:
G

ex:a foaf:name "Alice" ; foaf:nick "Lissie" .
ex:b foaf:name "Bob" ; foaf:nick "Bobby" .

There are two matches and we get the RDF graphs H1, H2 and the result H :

H1

ex:a vcard:FN "Alice" .

H2

ex:b vcard:FN "Bob" .

H

ex:a vcard:FN "Alice" .
ex:b vcard:FN "Bob" .

Example 21. Consider the SPARQL CONSTRUCT query:
Query

CONSTRUCT { _:c vcard:FN ?name } WHERE { ?x foaf:name ?name }

Note that this query always returns the same result as the query from Exam-
ples 12 and 17. Let us run this query against the RDF graph G from Example 20.
There are two matches and we get the RDF graphs H1, H2 and the result H :

H1

_:c vcard:FN "Alice" .

H2

_:c vcard:FN "Bob" .

H

_:c1 vcard:FN "Alice" .
_:c2 vcard:FN "Bob" .

Let k be a natural number. According to Proposition 8, for each query graph
T the query graph k T , coproduct of k copies of T in QI , can be built (up to
isomorphism) as follows: for each i ∈ {1, ..., k} let Ti be a copy of T where
each blank and variable has been renamed in such a way that there is no blank
or variable common to two of the Ti’s, then the query graph k T is the union
T1 ∪ ... ∪ Tk. Now let (L,R) be a basic construct query. The transformation

rule PL,R = (L
l
→ K

r
← R) is a cospan in QI , that gives rise to the cospan

k PL,R = (k L
k l
→ kK

k r
← kR). Since l and r are inclusions, this renaming can

be done simultaneously in the copies of L, K and R, so that kK = k L ∪ kR

and k l and k r are the inclusions. Thus, (k L, k R) is a basic construct query and
Pk L,k R = k PL,R is its corresponding transformation rule.

Definition 22. Let (L,R) be a basic construct query and G a data graph. Let
m1, ...,mk be the matches from L to G. Consider the basic construct query
(k L, k R). Let m be the match from k L to G that coincides with mi on the
i-th component of k L. The high-level query result of (L,R) against G is the re-
sult Hhigh of applying the POIM transformation map PoImk L,k R to the match
m : k L→ G, as in Diagram (2).

k L

(PO)

k l //

m

��

kK

(IM)n

��

k R
k roo

p

��

G
g

// D Hhigh
h

oo

(2)

Proposition 23. Let (L,R) be a basic construct query and G a data graph. The
high-level query result of (L,R) against G is isomorphic, in the category DI , to
the query result of (L,R) against G.

The low-level calculus is a two-step process: first one local result is obtained
for each match, using a POIM transformation, then the local results are glued
together in order to form the low-level query result.

Definition 24. Let (L,R) be a basic construct query and G a data graph. Let
m1, ...,mk be the matches from L to G. For each i = 1, ..., k let Gi be the image
of mi and let us still denote mi the restriction mi : L→ Gi. The local result Hi

of (L,R) against G along mi is the result of applying the POIM transformation
map PoImL,R to the match mi : L → Gi. Let IB(G) = I ∪ |G|B. The low-
level query result Hlow of (L,R) against G is the coproduct of the Hi’s in the
category DIB(G) of data graphs with morphisms fixing all resource identifiers and
the blanks that are in G.

L

(PO)

l //

mi

��

K

(IM)ni

��

R
roo

pi

��

Gi gi
// Di Hi

hi

oo

(3)

Example 25. Let us apply the low-level calculus to Example 21. The match m1

produces G1 → D1 ← H1:

G1

ex:a foaf:name "Alice" .
g1
→

D1

ex:a foaf:name "Alice" .

_:c vcard:FN "Alice" .

h1←
H1

_:c vcard:FN "Alice" .

and similarly the match m2 produces G2 → D2 ← H2:

G2

ex:b foaf:name "Bob" .
g2
→

D2

ex:b foaf:name "Bob" .
_:c vcard:FN "Bob" .

h2←
H2

_:c vcard:FN "Bob" .

Finally the query result Hlow , which is the coproduct of H1 and H2 in category
DIB(G), is isomorphic to H from Example 21.

Hlow

_:c1 vcard:FN "Alice" . _:c2 vcard:FN "Bob" .

Example 26. This example illustrates how local results are “merged” to compute
the result in the low-level calculus. The SPARQL query is the following:

Query

CONSTRUCT { ?x rel:acquaintanceof ?z . } WHERE { ?x foaf:knows ?y . ?y foaf:knows ?z . }

Its corresponding transformation rule is:

L

?x foaf:knows ?y .
?y foaf:knows ?z .

l
→

K

?x foaf:knows ?y ;
rel:acquaintanceOf ?z .

?y foaf:knows ?z .

r
←

R

?x rel:acquaintanceOf ?z .

This query is applied to the following graph G:

G

<http://example.org/Alice> foaf:knows <http://example.org/Bob> .

<http://example.org/Bob> foaf:knows _:c .
_:c foaf:knows <http://example.org/Alice> .

There are three matches m1, m2, m3, thus three local results H1, H2, H3:
H1

<http://example.org/Alice> rel:acquaintanceOf _:c .

H2

_:c rel:acquaintanceOf <http://example.org/Bob> .

H3

<http://example.org/Bob> rel:acquaintanceOf <http://example.org/Alice> .

The blank :c in H1 and H2 is not duplicated in the coproduct Hlow because it
comes from G. Thus the result is:

Hlow

<http://example.org/Alice> rel:acquaintanceOf _:c .
_:c rel:acquaintanceOf <http://example.org/Bob> .

<http://example.org/Bob> rel:acquaintanceOf <http://example.org/Alice> .

Proposition 27. Let (L,R) be a basic construct query and G a data graph. The
low-level query result of (L,R) against G is isomorphic, in the category DI , to
the query result of (L,R) against G.

5 Running basic select queries

The CONSTRUCT query form of SPARQL returns a data graph whereas the
SELECT query form returns a table, like the SELECT query form of SQL.
Both in SQL and in SPARQL, it is well-known that such tables are not exactly
relations in the mathematical sense: in mathematics a relation on X1, ..., Xn is
a subset of the cartesian product X1× ...×Xn, while the result of a SELECT
query in SQL or SPARQL is a multiset of elements of X1×...×Xn. In order to
avoid ambiguities, such a multiset is called a multirelation on X1, ..., Xn. When
all Xi’s are the same set X it is called a multirelation of arity n on X .

A SPARQL query such as “SELECT ?s1, ..., ?sn WHERE {L}” is called
basic when L is a basic graph pattern and ?s1, ..., ?sn are distinct variables. We
generalize this situation by defining a basic select query as a pair (L, S) where
L is a finite query graph and S is a finite set of variables. Then we associate
to each basic select query (L, S) a basic construct query (L,Gr(S)). Finally we
define the result of running the basic select query (L, S) against a data graph G

from the data graph H result of running the basic construct query (L,Gr(S))
against G. This process is first described on an example.

Example 28. Consider the following SPARQL SELECT query:
SELECT Query

SELECT ?nameX ?nameY
WHERE{ ?x foaf:knows ?y ; foaf:name ?nameX . ?y foaf:name ?nameY . }

We associate to this SELECT query the following CONSTRUCT query:
CONSTRUCT Query

CONSTRUCT { _:r <http://example.org/nameX> ?nameX ; <http://example.org/nameY> ?nameY . }
WHERE { ?x foaf:knows ?y ; foaf:name ?nameX . ?y foaf:name ?nameY . }

Let us run this CONSTRUCT query against the RDF graph G:
G

_:a foaf:name "Alice" ; foaf:knows _:b ; foaf:knows _:c .

_:b foaf:name "Bob" .
_:c foaf:name "Cathy" .

The result is the RDF graph H :
H

_:l1 <http://example.org/nameX> "Alice" ; <http://example.org/nameY> "Bob" .

_:l2 <http://example.org/nameX> "Alice" ; <http://example.org/nameY> "Bob" .
_:l3 <http://example.org/nameX> "Alice" ; <http://example.org/nameY> "Cathy" .

From the RDF graph H we get the following table, by considering each blank
: li in H as the identifier of a line in the table. Note that the set of triples in H

becomes a multiset of lines in the table. This table is indeed the answer of the
SPARQL SELECT query over G.

nameX nameY

"Alice" "Bob"

"Alice" "Bob"

"Alice" "Cathy"

In order to generalize Example 28 we have to define a transformation from
each SELECT query to a CONSTRUCT query and a transformation from the
result of this CONSTRUCT query to the result of the given SELECT query. For
this purpose, we first define relational data graphs (Definition 29) and relational
query graphs (Definition 32).

Definition 29. A relational data graph on a finite set {s1, ..., sn} of resource
identifiers is a data graph made of triples (: li, sj , yi,j) where the : li’s are
pairwise distinct blanks and the yi,j’s are in IB, for j ∈ {1, ..., n} and i in some
finite set {1, ..., k}.

Proposition 30.

Each relational data graph S = {(: li, sj , yi,j)}i∈{1,...,k},j∈{1,...,n} determines a
multirelation Rel(S) = {(yi,1, ..., yi,n)}i∈{1,...,k} of arity n on IB.

Example 31. Here is a relational data graph on {nameX, nameY} with its corre-
sponding multirelation:

_:l1 nameX "Alice" ; nameY "Bob" .

_:l2 nameX "Alice" ; nameY "Cathy" .
_:l3 nameX "Alice" ; nameY "Cathy" .

nameX nameY

"Alice" "Bob"

"Alice" "Cathy"

"Alice" "Cathy"

Assume that each variable in SPARQL is written as “?s” for some string s.

Definition 32. The relational query graph on a finite set of variables S =
{?s1, ..., ?sn} is the query graph Gr(S) made of the triples (: r, sj , ?sj) where
j ∈ {1, ..., n} and : r is a blank. Note that Gr (S) is uniquely determined by S

up to isomorphism in QIV .

Example 33. Here is the relational query graph on {?nameX, ?nameY}:

_:r nameX ?nameX ; nameY ?nameY .

In the following we show how a basic select query can be encoded as a basic
construct query (Definition 34) and we prove that the result of the given se-
lect query is easily recovered from the result of its associated construct query
(Theorem 37).

Definition 34. A basic select query is a pair (L, S) where L is a finite query
graph and S is a finite set of variables such that each variable in S occurs in L.
The basic construct query associated to a basic select query (L, S) is (L,Gr(S))
where Gr (S) is the relational query graph on S.

Proposition 35. Let (L, S) be a basic select query and G a data graph. The
query result of (L,Gr(S)) against G is a relational data graph H. More precisely,
let S = {?s1, ..., ?sn} and let m1, ...,mk be the matches from L to G, then H is
the set of triples (: li, sj ,mi(?sj)) where i ∈ {1, ..., k}, j ∈ {1, ..., n}, and the
blanks : l1, ..., : lk are pairwise distinct.

Because of Proposition 35 we can state the following definition.

Definition 36. Let (L, S) be a basic select query and G a data graph. Let H be
the query result of (L,Gr(S)) against G. The query result of (L, S) against G
is the multirelation Rel(H) on IB.

Theorem 37. Let L be a basic graph pattern of SPARQL and S = {?s1, ..., ?sn}
a finite set of variables included in |L|V and let G be an RDF graph. Then the
query result of (L,R) against G is the answer of the SPARQL query “SELECT
?s1, ..., ?sn WHERE {L}” over G.

Remark 38. This Section can be generalized to multirelations with “null” values
(as in SQL) by allowing some missing triples in the definition of relational data
graphs.

6 Conclusion

Relational algebra [6] is the main mathematical foundation underlying SQL-like
formalism for databases. However new frameworks such as RDF and SPARQL,
where data structures are represented as graphs, are better adapted to the needs
of big data and web applications. So, new mathematical foundations are needed
to cope with this change in data encodings, see e.g., [4, 14, 11].

In this paper, we make the bet to base our work entirely on algebraic theories
behind graphs and their transformations. Suitable categories of data graphs and
query graphs are defined and the definition of morphisms of query graphs clar-
ifies the difference between blank nodes and variables. Besides, we propose to
encode CONSTRUCT and SELECT queries as graph rewrite rules, of the form
L → L ∪ R ← R, and define their operational semantics following a novel alge-
braic approach called POIM. From the proposed semantics, blanks in L play the

same role as variables and thus can be replaced by variables, whereas blanks in
R are used for creating new blanks in the result of a CONSTRUCT query. As in
[13], we focus on the CONSTRUCT query form as the fundamental query form.
In addition we propose a translation of the SELECT queries as CONSTRUCT
queries compatible with their operational semantics. One of the benefits of us-
ing category theory is that coding of data graphs as sets of triples is not that
important. The results we propose hold for all data models which define a cat-
egory with enough colimits. For intance, one may expect to define data graph
categories for the well-known Edge-labelled graphs or Property graphs [15]. The
proposed operational semantics can clearly benefit from all results regarding
efficient graph matching implementation, see e.g. [10].

Among related works, a category of RDF-graphs as well as their transfor-
mations have been proposed in [5]. The authors defined objects of RDF-Graph
categories of the form (GBlank, GTriple) where GBlank and GTriple denote respec-
tively the set of blank nodes and the set of triples of graph G. This definition
is clearly different from ours (Definition 2). In addition, the morphisms of such
RDF-graphs associate blank nodes to blank nodes which is not always the case
in our approach. Associating a blank node to any element of a triple is called in-
stantiation in [5]. The authors did not tackle the problem of answering SPARQL
queries but rather proposed an algebraic approach to transform RDF-graphs.
Their approach, called MPOC-PO, is inspired from DPO where the first square
is replaced by a “minimal” pushout complement (MPOC). MPOC-PO drasti-
cally departs from the POIM transformations we propose. This difference is quite
natural since the two approaches have different objectives : the POIM approach
is dedicated to implement SPARQL queries while the MPOC-PO is intended to
transform RDF-graphs in general. However, MPOC-PO and DPO approaches
are clearly not tailored to implement CONSTRUCT or SELECT queries since
the (minimal) pushout complements always include parts of large data graphs
which are not matched by the queries while such parts are not involved in the
query answers.

In [1], even if the authors use a categorical setting, their objectives and results
depart from ours as they mainly encode every ontology as a category. However,
Graph Transformations have already been used in modeling relational databases,
see e.g. [3] where a visual and textual hybrid query language has been proposed.
In [12], the main features of a data management system based on graphs have
been proposed where the underlying typed attributed data graphs are different
from those of RDF and SPARQL. In [2], triple graph grammars (TGG) have also
been used for data modelling and model transformation rules to be compiled into
Graph Data Bases code for execution.

In this paper we consider basic graphs and queries, which form a signifi-
cant kernel of RDF and SPARQL. Future work includes the generalization of
the present work to other features of RDF and SPARQL in order to encom-
pass general SPARQL queries. We also consider studying RDF Schema [18] and
ontologies from this point of view.

References

1. Aliyu, S., Junaidu, S., Kana, A.F.D.: A category theoretic model of RDF ontology.
International Journal of Web & Semantic Technology (IJWesT) (2015)

2. Alqahtani, A., Heckel, R.: Model based development of data integration in graph
databases using triple graph grammars. In Software Technologies: Applications
and Foundations. Lecture Notes in Computer Science, vol. 11176, pp. 399–414.
Springer (2018), https://doi.org/10.1007/978-3-030-04771-9_29

3. Andries, M., Engels, G.: A hybrid query language for an extended entity-
relationship model. J. Vis. Lang. Comput. 7(3), 321–352 (1996), https://doi.
org/10.1006/jvlc.1996.0017

4. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Founda-
tions of modern query languages for graph databases. ACM Comput. Surv. 50(5),
68:1–68:40 (2017), https://doi.org/10.1145/3104031

5. Braatz, B., Brandt, C.: Graph transformations for the resource description frame-
work. ECEASST 10 (2008), https://doi.org/10.14279/tuj.eceasst.10.158

6. Codd, E.F.: The relational Model for Database Management (Version 2 ed.).
Addison-Wesley (1990)

7. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer (2006)

8. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - part I: basic concepts and double pushout
approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars. pp. 163–246.
World Scientific (1997)

9. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation - part II: single pushout approach
and comparison with double pushout approach. In: Rozenberg, G. (ed.) Hand-
book of Graph Grammars and Computing by Graph Transformations, Volume 1:
Foundations, pp. 247–312. World Scientific (1997)

10. Fan, W., Li, J., Ma, S., Wang, H., Wu, Y.: Graph homomorphism revisited for
graph matching. PVLDB 3(1), 1161–1172 (2010), http://www.vldb.org/pvldb/
vldb2010/pvldb_vol3/R103.pdf

11. Kaminski, M., Kostylev, E.V., Grau, B.C.: Semantics and expressive power of sub-
queries and aggregates in SPARQL 1.1. In: Proceedings of the 25th International
Conference on World Wide Web, WWW 2016. pp. 227–238. ACM (2016)

12. Kiesel, N., Schürr, A., Westfechtel, B.: Gras, a graph-oriented (software) engineer-
ing database system. Inf. Syst. 20(1), 21–51 (1995), https://doi.org/10.1016/
0306-4379(95)00002-L

13. Kostylev, E.V., Reutter, J.L., Ugarte, M.: CONSTRUCT queries in SPARQL. In:
18th International Conference on Database Theory, ICDT 2015, March 23-27, 2015,
Brussels, Belgium. pp. 212–229 (2015)

14. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL.
ACM Trans. Database Syst. 34(3), 16:1–16:45 (2009), https://doi.org/10.1145/
1567274.1567278

15. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, Inc. (2013)
16. SPARQL 1.1 Query Language. W3C Recommendation (march 2013), https://

www.w3.org/TR/sparql11-query/

17. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation (February 2014),
https://www.w3.org/TR/rdf11-concepts/

18. RDF Schema 1.1. W3C Recommendation (February 2014), www.w3.org/TR/2014/
REC-rdf-schema-20140225/, www.w3.org/TR/2014/REC-rdf-schema-20140225/

A Proofs

First let us prove the results about colimits and POIM transformations in the
category GC(A). It can be helpful to remember that a morphism a : T → T ′ in
G(A) and a map M : |T | → |T ′| are such that M(x) = |a|(x) for each attribute
x ∈ |T | if and only if M3(t) = a(t) for each triple t ∈ T .

Proposition 8. Given graphs T1, ..., Tk on A such that |Ti| ∩ |Tj | ⊆ C for each
i 6= j, the union T1 ∪ ... ∪ Tk is a coproduct of T1, ..., Tk in GC(A).

Proof. Consider morphisms ai : Ti → T in GC(A) for i = 1, ..., k and the maps
|ai| : |Ti| → |T |. Note that |T1∪ ...∪Tk| = |T1| ∪ ...∪|Tk | and that |T1| ∪ ...∪|Tk |
is the disjoint union of the sets |Ti|\C for i = 1, ..., k and (|T1| ∪ ... ∪ |Tk|) ∩ C,
because of the assumption |Ti| ∩ |Tj | ⊆ C for each i 6= j. Thus we can define a
map M : |T1 ∪ ... ∪ Tk| → |T | by: M(x) = |ai|(x) for each i and each x ∈ |Ti|\C
and M(x) = x for each x ∈ (|T1| ∪ ...∪ |Tk|)∩C. Then M coincides with |ai| on
|Ti| for each i. Thus for each t ∈ Ti we have M3(t) = ai(t), which proves that
the image of T1 ∪ ... ∪ Tk by M3 is in T and that the restriction of M3 defines
a morphism a : T1 ∪ ... ∪ Tk → T in GC(A) which coincides with ai on Ti for
each i. Unicity is clear.

Proposition 9. Let l : L → K and m : L → G be morphisms of graphs on
A such that K is finite, l is an inclusion and m fixes C. Let us assume that
|G|∩|K| ⊆ C (this is always possible up to isomorphism in GC(A), by Remark 7).
Let N : |K| → A be such that N(x) = |m|(x) for x ∈ |L| and N(x) = x otherwise.
Let D = G ∪N3(K), let n : K → D be the restriction of N3 and g : G→ D the
inclusion. Then |D| = |G| ∪ |K\L| and the square (l,m, n, g) is a pushout square
in GC(A).

Proof. From D = G∪N3(K) we get |D| = |G| ∪ |N3(K)|, and since |N3(K)| =
N(|K|) = N(|L| ∪ |K \L|) = N(|L|) ∪ N(|K \L|) = |m|(|L|) ∪ |K \L| with
|m|(|L|) ⊆ |G| we get |D| = |G| ∪ |K \L|. The definition of n implies that
g ◦m = n ◦ l. Now let a : G → T and b : K → T be any morphisms in GC(A)
such that a◦m = b◦ l. First, let us focus on attributes. We have |g|◦ |m| = |n|◦ |l|
and |a| ◦ |m| = |b| ◦ |l|. Since |G|∩ |K\L| ⊆ C we have |a|(x) = |b|(x) = x for each
x ∈ |G| ∩ |K\L|. Since |D| = |G| ∪ |K\L| there is a unique map F : |D| → |T |
such that F (x) = |a|(x) for x ∈ |G| and F (x) = |b|(x) for x ∈ |K \L|. Thus on
the one hand F (|g|(x)) = F (x) = |a|(x) for each x ∈ |G|, so that F ◦ |g| = |a|.
And on the other hand for each x ∈ |K|, if x ∈ |L| then F (|n|(x)) = F (|m|(x)) =
|a|(|m|(x)) = |b|(|l|(x)) = |b|(x), otherwise F (|n|(x)) = F (x) = |b|(x), so that
F ◦ |n| = |b|. Second, let us consider triples. Since D = G∪N3(K) and F 3(G) =
a(G) and F 3(N3(K)) = F 3(n(K)) = b(K) we get F 3(D) ⊆ T , which means
that there is a morphism f : D → T of graphs on A such that |f | = F , f ◦ g = a

and f ◦ n = b. Unicity is clear.

Proposition 14. Let (L,R) be a basic construct query and m : L→ G a match.
Let P : |R| → A be defined by P (x) = |m|(x) for x ∈ |R|V and P (x) = x

otherwise. Then, up to isomorphism in QI , the result of applying PoImL,R to m

is p : R→ H where H = P 3(R) and p is the restriction of P 3.

Proof. We use the notations of Diagram (1). Up to isomorphism in QI we can
assume that all blanks in L or in R are distinct from the blanks in G. Then
|G| ∩ |K| ⊆ C, so that by Proposition 9 the data graph D is D = G ∪ n(K)
where n is such that |n|(x) = |m|(x) for x ∈ |L| and |n|(x) = x otherwise. It
follows that the restriction of n to R is such that |n|(x) = |m|(x) for x ∈ |L|∩|R|
and |n|(x) = x otherwise. Note that |L| ∩ |R| is the disjoint union of |L|I ∩ |R|I ,
that is fixed by all morphisms in QI , and |L|V ∩ |R|V , with |L|V ∩ |R|V = |R|V
since |R|V ⊆ |L|V . Thus the restriction of n to R is such that |n|(x) = |m|(x)
for x ∈ |R|V and |n|(x) = x otherwise. The result follows.

Now let us consider the basic construct queries. The semantics of SPARQL
CONSTRUCT queries is defined in [13, Section 5], based on the seminal paper
[14]. In order to express this definition we have to introduce some terminology
and notations. Note that in [13] literals are allowed as subjects or predicates in
RDF graphs. However for our purpose this does not matter, so that we stick to
the “official” definition of an RDF graph from [17]. Note that for each subset T
of (IBV)3 and each subset X of |T |, each map f : X → IBV gives rise to a map
f ′ : |T | → IBV such that f ′(x) = f(x) when x ∈ X and f ′(x) = x otherwise,
then f ′ : |T | → IBV gives rise to f ′′ : T → (IBV)3 which is the restriction of
(f ′)3 to T . There will not be any ambiguity in denoting f not only the given f but
also its extensions f ′ and f ′′, so that we can state the following definitions from
[13]. For simplicity we consider only the SPARQL queries “CONSTRUCT {R}
WHERE {L}” such that each variable in R occurs in L. Indeed, variables outside
|L|V cannot be instanciated in the result, and according to [16, Section 16.2],
if a triple contains an unbound variable, then that triple is not included in the
output RDF graph. Thus, triples involving a variable in |R|V \|L|V , if any, can
be dropped. It is assumed in [13] that there is no blank in L. Indeed, since blank
nodes in graph patterns act as variables, each blank in L can be replaced by
a new variable. A solution mapping (or simply a mapping) from a basic graph
pattern L to an RDF graph G is a map µ : |L|V → IB such that µ(L) ⊆ G.
When L and R are basic graph patterns such that |R|V ⊆ |L|V , the answer of
the SPARQL query “CONSTRUCT {R} WHERE {L}” over an RDF graph G

is the set of all well-formed triples µ(fµ(t)) for all triples t ∈ R and all mappings
µ from L to G, where for each µ a map fµ : |R|B → B is chosen in such a way
that the subsets fµ(|R|B) of B are pairwise distinct and all of them are distinct
from |G|B .

Theorem 19. Let L and R be basic graph patterns with |L|B = ∅ and |R|V ⊆
|L|V . Then (L,R) is a basic construct query and the set of well-formed triples
in the query result of applying (L,R) to an RDF graph G is isomorphic in DI to
the answer of the SPARQL query “CONSTRUCT {R} WHERE {L}” over G.

Proof. Clearly (L,R) is a basic construct query and |G|B ∩ |L|B = ∅. We can
assume without loss of generality that |G|B ∩ |R|B = ∅. The query result H

of applying (L,R) to G is given by Definition 18, as reminded now. Let mi

(i = 1, ..., k) be the matches from L to G and for each i let Hi be the data graph
obtained from R by replacing each variable x in R by mi(x) and each blank

in R by a new blank, then H = H1 ∪ ... ∪Hk. The Theorem now follows from
the remark that the maps µ′′ on triples which are associated (as above) to the
mappings µ are precisely the matches from L to G.

Proposition 23. Let (L,R) be a basic construct query and G a data graph. The
high-level query result of (L,R) against G is isomorphic, in the category DI , to
the query result of (L,R) against G.

Proof. This is a consequence of the description of the result of a POIM trans-
formation from Proposition 14.

Proposition 27. Let (L,R) be a basic construct query and G a data graph. The
low-level query result of (L,R) against G is isomorphic, in the category DI , to
the query result of (L,R) against G.

Proof. This is a consequence of the description of the result of a POIM trans-
formation from Proposition 14 and the description of coproducts in DI from
Proposition 8.

Finally let us look at the basic select queries. For the semantics of SPARQL
SELECT queries we rely on [11, Section 2].

Proposition 30. Each relational data graph S = {(: li, sj , yi,j)}i∈{1,...,k},j∈{1,...,n}

determines a multirelation Rel(S) = {(yi,1, ..., yi,n)}i∈{1,...,k} of arity n on IB.

Proof. This result is clear from the definitions of relational data graphs and
multirelations.

Proposition 35. Let (L, S) be a basic select query and G a data graph. The
query result of (L,Gr(S)) against G is a relational data graph H. More precisely,
let S = {?s1, ..., ?sn} and let m1, ...,mk be the matches from L to G, then H is
the set of triples (: li, sj ,mi(?sj)) where i ∈ {1, ..., k}, j ∈ {1, ..., n}, and the
blanks : l1, ..., : lk are pairwise distinct.

Proof. We have Gr(S) = {(: r, sj , ?sj)}j∈{1,...,n}, so that according to Def-
inition 18 the query result of (L,Gr(S)) against G is H1 ∪ ... ∪ Hk where
Hi = {(: li, sj ,mi(?sj))}j∈{1,...,n} and the blanks : l1, ..., : lk are pairwise
distinct.

Theorem 37. Let L be a basic graph pattern of SPARQL with |L|B = ∅ and
S = {?s1, ..., ?sn} a finite set of variables included in |L|V and let G be an RDF
graph. Then the query result of (L,R) against G is the answer of the SPARQL
query “SELECT ?s1, ..., ?sn WHERE {L}” over G.

Proof. According to [11, Section 2], the answer of the SPARQL SELECT query
is the multiset with elements the restrictions µ|S of the mappings µ from L to G

to the subset S of |L|V , each µ|S with multiplicity the number of corresponding
µ’s. Since the mappings from L to G correspond bijectively to the matches from
L to G, the result follows from Proposition 35.

