Oxidative and interfacial behavior of native oil bodies from walnut

Jeanne Kergomard, V. Vié, G. Paboeuf, Nathalie Barouh, Bruno Barea, Pierre Villeneuve, Olivier Schafer, Tim Wooster, Claire Bourlieu-Lacanal

To cite this version:

HAL Id: hal-02315046
https://hal.archives-ouvertes.fr/hal-02315046v2
Submitted on 17 Oct 2019
Walnuts are among the most widely consumed commercially grown tree nuts in the world. Indeed, their consumption is associated with many health benefits, such as reducing the risk of cardiovascular disease, coronary heart disease and other neurological disorders. These benefits are attributed to their fatty acid profiles, which is rich in polyunsaturated fatty acids (PUFA) [1]. As a result, walnuts are used in several food products, such as walnut-based beverages, where fat is partly dispersed under the form of natural lipoproteic assemblies, which are called oil bodies (OB).

Two questions remain pressing: what is walnut OB's oxidative behavior and what are the consequences of oxidation on its interfacial reactivity?

OXIDATIVE AND INTERFACIAL BEHAVIOR OF NATIVE OIL BODIES FROM WALNUT

Jeanne Kergomard1,2, Véronique Vié2, Gilles Paboeuf2, Nathalie Barouh1, Bruno Barea1, Pierre Villeneuve1, Olivier Schafer3, Tim J. Wooster3, Claire Bourlieu4

1 INRA-CIRAD Montpellier 1253 IATE, France; 2 IPR Institute of Physics, Rennes University 1, France; 3 IMS Nestlé Research, Lausanne, Switzerland

What is OB?

Matrix triglycerides (Neutral lipids)

Proteins (Mainly oleosins)

Phospholipids (Polar lipids)

Triglyceride core + liposoluble vitamins

The negative charges of oleosins at physiological (neutral) pH trigger object repulsion and avoid coalescence phenomena in walnut system.

Material and methods

Oxidative challenge test (PV, TBARS)

Incubation

20 days @ 110°C

Confocal microscopy

+ 3 fluorescent probes

Tensiometry/Ellipsometry

Wilhelmy Balance (mN/m)

Ellipsometry Δ(°)

Atomic Force Microscopy

Langmuir-Blodgett transfer

Results - Oxidative behavior

Conclusion: Walnuts OB were stable to oxidation on the short term (few days).

This phenomenon is related to the "assembly effect" of OB and to their antioxidant content in vitamins E (41.0 ± 20.7 % wt.) [3].

The stability of lipid dispersion was higher under "milk" form due to a complex "matrix effect".

Results - Interfacial behavior

How does the structural changes of oxidized OB affect the behaviour at the interface?

Conclusion: When OBs are intact, they open at the interface and spread out in domains and assemblies thanks to good cohesiveness between the different molecules. Oxidation phenomenon modified the physical integrity of the OB, decreasing intermolecular forces, which resulted in a different interfacial organization with a majority of lipids at the interface and solubilization of proteins.

CONCLUSION: Altogether, this study unveiled the interesting stability of OB and their specific interfacial reactivity opening the way to interesting food applications of these natural lipoproteic assemblies.

References