Oxidative and interfacial behavior of native oil bodies from walnut

Jeanne Kergomard, V. Vié, G. Paboeuf, Nathalie Barouh, Bruno Barea, Pierre Villeneuve, Olivier Schafer, Tim Wooster, Claire Bourlieu-Lacanal

To cite this version:

HAL Id: hal-02315046
https://hal.archives-ouvertes.fr/hal-02315046v2
Submitted on 17 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Walnuts are among the most widely consumed commercially grown tree nuts in the world. Indeed, their consumption is associated with many health benefits, such as reducing the risk of cardiovascular disease, coronary heart disease and other neurological disorders. These benefits are attributed to their fatty acid profiles, which is rich in polyunsaturated fatty acids (PUFA) [1]. As a result, walnuts are used in several food products, such as walnut-based beverages, where fat is partly dispersed under the form of natural lipoprotein assemblies, which are called oil bodies (OB).

Two questions remain pressing: what is walnut OB’s oxidative behavior and what are the consequences of oxidation on its interfacial reactivity?

What is OB?

- **Matrix triglycerides** (Neutral lipids)
- **Proteins** (Mainly oleosins)
- **Phospholipids** (Polar lipids)
- Triglyceride core + liposoluble vitamins

The negative charges of oleosins at physiological (neutral) pH trigger object repulsion and avoid coalescence phenomena in walnut system.

Material and methods

Matrix preparation

- Incubation: 20 days, 110 rpm
- Tensiometry/Ellipsometry
- Atomic Force Microscopy

Oxidative challenge test (PV, TBARS)

- Wilhelmy Balance
- Ellipsometry Δ (°)

- Δ (ellipsometric angle) is related to the amount of matter at the interface

Results - Oxidative behavior

- PV value
- TBARS value

Results - Interfacial behavior

- How does the structural changes of oxidized OB affect the behaviour at the interface?

Conclusions:

- When OBs are intact, they open at the interface and spread out in domains and assemblies thanks to good cohesiveness between the different molecules.
- Oxidation phenomenon modified the physical integrity of the OB, decreasing intermolecular forces, which resulted in a different interfacial organization with a majority of lipids at the interface and solubilization of proteins.

CONCLUSION: Altogether, this study unveiled the interesting stability of OB and their specific interfacial reactivity opening the way to interesting food applications of these natural lipoprotein assemblies.

References

[3] D. Hayes, M. J. Angove, J. Tucci, C. Dennis, "Walnuts (Juglans regia) Chemical Composition and Research in Human Health", IPR Institute of Physics, Rennes University 1, France; 3 IMS Nestlé Research, Lausanne, Switzerland