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Abstract
There is significant interest in the developmert application of deep neural networks
(DNNSs) to neuroimaging data. A growing literatutgygests that DNNs outperform their
classical counterparts in a variety of neuroimagipglications, yet there are few direct
comparisons of relative utility. Here, we compatieel performance of three DNN
architectures and a classical machine learningighgo (kernel regression) in predicting
individual phenotypes from whole-brain resting-sthtnctional connectivity (RSFC) patterns.
One of the DNNs was a generic fully-connected feetdfrd neural network, while the other
two DNNs were recently published approaches spadl§i designed to exploit the structure
of connectome data. By using a combined sampléadst 10,000 participants from the
Human Connectome Project (HCP) and UK Biobank, heved that the three DNNs and
kernel regression achieved similar performancesacaowide range of behavioral and
demographic measures. Furthermore, the generitoieead neural network exhibited
similar performance to the two state-of-the-artr@rtome-specific DNNs. When predicting
fluid intelligence in the UK Biobank, performanckeall algorithms dramatically improved
when sample size increased from 100 to 1000 suhjenprovement was smaller, but still
significant, when sample size increased from 1008000 subjects. Importantly, kernel
regression was competitive across all sample szestall, our study suggests that kernel
regression is as effective as DNNs for RSFC-baséd\aoral prediction, while incurring
significantly lower computational costs. Therefdternel regression might serve as a useful

baseline algorithm for future studies.
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1. Introduction

Deep neural networks (DNNs) have enjoyed tremesdaacess in machine learning
(Lecun et al., 2015). As such, there has beenfsignt interest in the application of DNNs to
neuroscience research. DNNs have been appliedutosw@ence in at least two main ways.
First, deep learning models have been used to atmattual brain mechanisms, such as in
vision (Khaligh-Razavi and Kriegeskorte, 2014; Yamet al., 2014; Eickenberg et al., 2017)
and auditory perception (Kell et al., 2018). SecddNNs have been applied as tools to
analyze neuroscience data, including lesion anatwegmentation (Pinto et al., 2016;
Havaei et al., 2017; Kamnitsas et al., 2017b; Gazét al., 2018), anatomical segmentation
(Wachinger et al., 2018; X. Zhao et al., 2018),gmanodality/quality transfer (Bahrami et al.,
2016; Nie et al., 2017; Blumberg et al., 2018),gmaegistration (Yang et al., 2017; Dalca et
al., 2018), as well as behavioral and disease gtredi(Plis et al., 2014; van der Burgh et al.,
2017; Vieira et al., 2017; Nguyen et al., 2018).

Deep neural networks can perform well in certaenseios and tasks, where large
guantities of data are unavailable, e.g., winnindtiple MICCAI predictive modeling
challenges involving image segmentation (Choi 28116, Kamnitsas et al., 2017a,
Hongwei Li et al., 2018). Yet, the conventional dos is that DNNs perform especially well
when applied to well-powered samples, for instatiee, 14 million images in ImageNet
(Russakovsky et al., 2015) and Google 1 Billion W@Gorpus (Chelba et al., 2014). However,
in many neuroimaging applications, the availabladdten only involve hundreds or
thousands of participants, while the associatetlifealimensions can be significantly larger,
such as entries of connectivity matrices with uglgaof 100,000 edges. Consequently, we
hypothesize that in certain neuroimaging applicetjdNNs might not be the optimal choice
for a machine learning problem (Bzdok and Yeo, 20Hére, we investigated whether
DNNs can outperform classical machine learningofeinavioral prediction using resting-state
functional connectivity (RSFC).

RSFC measures the synchrony of resting-state fumadtimagnetic resonance image
(rs-fMRI) signals between brain regions (Biswahkt 1995; Fox and Raichle, 2007; Buckner
et al., 2013), while participants are lying at neghout any explicit task. RSFC has been
widely used for exploring human brain organizaton mental disorders (Smith et al., 2009;
Assaf et al., 2010; Power et al., 2011; Yeo et28111; Bertolero et al., 2017). For a given
brain parcellation scheme (e.g., Shen et al., 2Gb8¢lon et al., 2016; Glasser et al., 2017,
Eickhoff et al., 2018), the parcels can be useeg®ns of interest (ROIs), such that a whole

brain (or cortical) RSFC matrix can be computedefach participant. Each entry of the



RSFC matrix corresponds to the strength of funeti@onnectivity between two brain
regions. In recent years, one of the most infl@kevelopments in neuroimaging has been
the use of the RSFC matrices for predicting thebatties (e.g., age or fluid intelligence) of
individual participants (Dosenbach et al., 201@yFet al., 2015; Smith et al., 2015;
Rosenberg et al., 2016; Dubois et al., 2018; Re@teh., 2018; Weis et al., 2019).
Consequently, there have been many studies dewglogew techniques to improve RSFC-
based behavioral prediction (Amico and Goii, 20N@&stro et al., 2018; Parisot et al., 2018;
Kashyap et al., 2019; Yoo et al., 2019).

In this work, we compared kernel regression witie¢hDNN architectures in RSFC-
based behavioral prediction. Kernel regressionneraparametric classical machine learning
algorithm (Murphy, 2012) that has previously beghzed in various neuroimaging
prediction problems, including RSFC-based behal/mediction (Raz et al., 2017; Zhu et al.,
2017; Kong et al., 2019; Li et al., 2019). Our thi2NN implementations included a generic,
fully-connected feedforward neural network, and stete-of-the-art DNNs specifically
developed for RSFC-based prediction (Kawahara g2@17; Parisot et al., 2017, 2018). An
initial version of this study utilizing only theuid intelligence measure in the HCP dataset
has been previously presented at a workshop (lde, &018). By using RSFC data from
nearly 10,000 participants and a broad range a@vieral (and demographic) measures from
the HCP (Smith et al., 2013; Van Essen et al., 2@hd UK Biobank (Sudlow et al., 2015;
Miller et al., 2016), this current extended studgresents one of the largest empirical

evaluations of DNN'’s utility in RSFC-based fingamning.



2. Methods
2.1 Datasets

Two datasets were considered: the Human Conneddoaject (HCP) S1200 release
(Van Essen et al., 2013) and the UK Biobank (Sudtval., 2015; Miller et al., 2016). Both
datasets contained multiple types of neuroimagatg,dncluding structural MR, rs-fMRI,
and multiple behavioral and demographic measumesdoh subject.

HCP S1200 release comprised 1206 healthy youngsa@ge 22-35). There were
1,094 subjects with both structural MRI and rs-fMBbth structural MRI and rs-fMRI were
acquired on a customized Siemens 3T “ConnectomeaSkganner at Washington
University at St. Louis. The structural MRI was@m isotropic. The rs-fMRI was 2mm
isotropic with TR of 0.72s and 1200 frames per ([@#4 minutes). Each subject had two
sessions of rs-fMRI, and each session containedgvifldiRI runs. A number of behavioral
measures were also collected by HCP. More detaiisbe found elsewhere (Van Essen et al.,
2012; Barch et al., 2013; Smith et al., 2013).

The UK Biobank is a prospective epidemiologicabstthat has recruited 500,000
adults (age 40-69) between 2006-2010 (Sudlow g2@15). 100,000 of these 500,000
participants will be brought back for multimodalaging by 2022 (Miller et al., 2016). Here
we considered an initial release of 10065 subjedts both structural MRI and rs-fMRI data.
Both structural MRI and rs-fMRI were acquired omrhanized Siemens 3T Skyra scanners
at three UK Biobank imaging centres (Cheadle MastgteNewcastle, and Reading). The
structural MRI was 1.0mm isotropic. The rs-fMRI waAdmm isotropic with TR of 0.735s
and 490 frames per run (6 minutes). Each subjetbha rs-fMRI run. A number of
behavioral measures were also collected by the kdhk. More details can be found
elsewhere (Elliott and Peakman, 2008; Sudlow eR@ll5; Miller et al., 2016; Alfaro-
Almagro et al., 2018).

2.2 Preprocessing and RSFC
We utilized ICA-FIX MSM-AIl grayordinate rs-fMRI da provided by the HCP
S1200 release (HCP S1200 manual; Van Essen 20aR, 2013; Glasser et al., 2013; Smith
et al., 2013; Griffanti et al., 2014; Salimi-Khordihet al., 2014). To eliminate residual
motion and respiratory-related artifacts (Burgess.e2016), we performed further
censoring and nuisance regression (Kong et al9;20%t al., 2019) Runs with more than 50%

censored frames were discarded (Pruett et al.,;ZBd&slon et al., 2016; Smyser et al., 2016;



Kong et al., 2019; Li et al., 2019). Figure S1 shdhe distribution of the number of
uncensored frames across subjects.

Consistent with previous studies from our groupl{éts et al., 2019; Li et al., 2019),
we considered 400 cortical (Schaefer et al., 2@b8)19 sub-cortical (Fischl et al., 2002;
Glasser et al., 2013) ROIs to ensure whole-braweiage. The preprocessed rs-fMRI time
courses were averaged across all grayordinatedosatithin each ROl. RSFC was then
computed using Pearson’s correlation of the averigee courses for each run of each
subject (with the censored frames excluded foctmputation). The RSFC was averaged
across all runs, resulting in one 419 x 419 RSF@ixfor each subject.

In the case of the UK Biobank, we utilized the 5585x<RSFC (Pearson’s correlation)
matrices provided by the Biobank (Miller et al. 180 Alfaro-Almagro et al., 2018). The 55
ROIs were obtained from a 100-component whole-lspatial-ICA (Beckmann and Smith,
2004), of which 45 components were considered tartiiactual (Miller et al., 2016).

2.3 FC-based prediction setup

We considered 58 behavioral measures across mgremotion and personality
from the HCP (Table S1; Kong et al., 2019). Bynie8hg the dataset to participants with at
least one run (that survived censoring) and abé&&avioral measures, we were left with 953
subjects. 23, 67, 62 and 801 subjects had 1, &d 3 auns respectively.

In the case of the UK Biobank, we considered fahavioral and demographic
measures: age, sex, fluid intelligence and paitshirag: (number of incorrect matches). By
restricting the dataset to participants with 55XBFC matrices and all four measures, we
were left with 8868 subjects.

For both datasets, kernel regression and three Dix¥s applied to predict the
behavioral and demographic measures of individulajests based on individuals’ RSFC
matrices. More specifically, the RSFC data of gaafticipant was summarized as an N x N
matrix, where N is the number of brain ROIs. Eactnyein the RSFC matrix represented the
strength of functional connectivity between two BROlThe entries of the RSFC matrix were
then used as features to predict behavioral anebgexphic measures in individual

participants.

! The pairs matching task requires participants ¢éonuarize the positions of matching pairs of cards.



2.4 Kerndl ridge regression

Kernel regression (Murphy, 2012) is a non-pararoefassical machine learning
algorithm. Lety be the behavioral measure (e.g., fluid intelliggramdc be the RSFC matrix
of a test subject. Let; be the behavioral measure (e.g., fluid intelliggremdc; be the
RSFC matrix of thé-th training subject. Roughly speaking, kernel esgron will predict the
test subject’s behavioral measure to be the wailghwerage of the behavioral measures of all
training subjectsy = Yictraining set Similarity(c;, c)y;, whereSimilarity(c;, c) is the
similarity between the RSFC matrices of the tebjextt andi-th training subject. Here, we
simply setSimilarity(c;, c) to be the Pearson’s correlation between the |orargular
entries of matrices; andc, which is effectively a linear kernel. In practienl,
regularization term is needed to avoid overfitt{ng., kernel ridge regression). The level of
[, regularization is controlled by the hyperparamgtéviore details are found in Appendix
Al.

2.5 Fully-connected neural network (FNN)

Fully-connected neural networks (FNNs) belong teaeric class of feedforward
neural networks (Lecun et al., 2015) illustratedrigure 1. An FNN takes in vector data as
an input and outputs a vector. An FNN consistsewesal fully connected layers. Each fully
connected layer consists of multiple nodes. Datarsithe FNN via the input layer nodes.
Each node (except input layer nodes) is connectetl hodes in the previous layer. The
values at each node is the weighted sum of nodesdiom the previous layer. The weights
are the trainable parameters in FNN. The outputeehidden layer nodes typically go
through a nonlinear activation function, e.g., Rt Linear Units (ReLUf (x) =
max (0, x)), while the output layer tends to be linear. Thlue at each output layer node
typically represents a predicted quantity. ThusNENand neural networks in general) allow
the prediction of multiple quantities simultaneqush this work, the inputs to the FNN are
the vectorized RSFC (i.e., lower triangular entoéthe RSFC matrices) and the outputs are

the behavioral or demographic variables we segkddict.
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Figure 1. Schematic of a feedforward neural networKFNN). An FNN takes in vectorized
RSFC matrix entries as inputs and outputs behdwor@demographic predictions. An FNN
consists of an input layer, several hidden laydm®e¢ layers are shown here) and an output
layer. The number of nodes in the input layer isakdo the number of elements in the lower
triangular portion of the RSFC matrix. The numbenades in the output layer is typically
equal to the number of behavioral measures werarighing. The number of hidden layers
and number of nodes in the hidden layers are arttegany hyperparameters that have to
be tuned.

2.6 BrainNetCNN

One potential weakness of the FNN is that it dessxploit the (mathematical and
neurobiological) structure of the RSFC matrix, gRSFC matrix is symmetric, positive
definite and represents a network. On the othed HArainNetCNN (Kawahara et al., 2017)
is a specially designed DNN for connectivity datastrated in Figure 2. BrainNetCNN
allows the application of convolution to connedinilata, resulting in significantly less
trainable parameters than the FNN. This leadss® parameters, which should theoretically
improve the ease of training and reduce overfitigsgies. In this work, the input to the
BrainNetCNN is theV x N RSFC matrix and the outputs are the behaviordearographic

variables we seek to predict.
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Figure 2. Schematic of the BrainNetCNNKawahara et al., 2017)he BrainNetCNN takes
in the RSFC matrix as an input and outputs behavmrdemographic predictions.
BrainNetCNN consists of four types of layers, Edgd=dge (E2E) layer, Edge-to-Node
(E2N) layer, Node-to-Graph (N2G) layer, and a fifudlly connected (Linear) layer. The
number of the E2E layers can be any number gréedaror equal to zero. On the other hand,
there is one E2N layer and one N2G layer. The numbeonvolution filters and number of
nodes in these layers are among the many hyperpteesithat have to be tuned.

The BrainNetCNN takes in any connectivity matrisedtly as an input and outputs
behavioral or demographic predictions. Kawahaia.g2017) used this model for predicting
age and neurodevelopmental outcomes from struataradectivity data. BrainNetCNN
consists of four types of layers: Edge-to-Edge (Hafer, Edge-to-Node (E2N) layer, Node-
to-Graph (N2G) layer and a final fully connecteddhr) layer. The first three types of layers
are specially designed layers introduced in thenBlatCNN. The final fully connected layer
is the same as that used in FNNSs.

The Edge-to-Edge (E2E) layer is a convolution taygng cross-shaped filters
(Figure 2). The cross-shaped filter is appliedaoheelement of the input matrix. Thus, for
each filter, the E2E layer takes ilNax N matrix and outputs & X N matrix. The number
of E2E layer is arbitrary and is a tunable hypeapaater. The outputs of the final E2E layer
are inputs to the E2N layer. The E2N layer is samib the E2E layer, except that the cross-
shaped filter is applied to only the diagonal esf the input matrix. Thus, for each filter,
the E2N layer takes in x N matrix and outputs & x 1 vector. There is one E2N layer
for BrainNetCNN. The outputs of the E2N layer dre inputs to the Node-to-Graph (N2G)
layer. The N2G layer is simply a fully connectedden layer similar to the a FNN’s hidden
layer. Finally, the outputs of the N2G layer areelirly summed by the final fully connected

layer to provide a final set of prediction values.

2.7 Graph convolutional neural network (GCNN)

Standard convolution applies to data that lies &uelidean grid (e.g., images).
Graph convolution exploits the graph Laplacianriden to generalize the concept of standard
convolution to data lying on nodes connected togetito a graph. This allows the extension
of the standard CNN to graph convolutional neusaivorks (GCNNs; Defferrard et al., 2016;
Bronstein et al., 2017; Kipf and Welling, 2017).€Fé are many different ways that GCNN
can be applied to neuroimaging data (Kipf and Wig|l2017; Ktena et al., 2018; Zhang et al.,
2018). Here we considered the innovative GCNN dged by Kipf and Welling (2017) and



extended to neuroimaging data by Parisot and gplles (Parisot et al., 2017, 2018). Figure 3

illustrates this approach.
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Figure 3. Schematic of a graph convolution neural etwork (GCNN; Parisot et al., 2017,
2018) This particular GCNN takes in vectorized RSFC neasiof all subjects as input and
outputs behavioral (or demographic) predictionlbsabjects. (A) Vectorized FC of all
subjects (subject 1 to subject n). (B) The inpuB&NN is a graph, where each node
represents a subject and is associated with therzed FC from the corresponding subject
in (A). An edge in the graph represents the sintyldretween two subjects. Here, the
similarity is defined in terms of the similarity tife subjects’ RSFC matrices. (C) Output of
the first graph convolutional layer. Graph convoal layer extends standard convolution to
graph convolution. Each node is associated witbcior, whose length is determined by the
number of filters in the first graph convolutionayer. (D) Final output of GCNN after one
or more graph convolutional layers. Each node ¢osthe predicted behavioral measure(s).

The input to an FNN (Figure 1) or a BrainNetCNNgifie 2) is the RSFC data of a
single subject. By contrast, the GCNN takes in @aig., vectorized RSFC) afl subjects as
input and outputs behavioral (or demographic) mtestis ofall subjects (Parisot et al., 2017,
2018). In other words, data from the training, dation, and testing sets are all input into the
GCNN at the same time. To avoid leakage of inforoma&cross training, validation and test
sets, masking of data is applied during the calmraof the loss function and gradient
descent.

More importantly, the graph in GCNN does not représonnectivity matrices (like
in BrainNetCNN). Instead, each node representbpstand edges are determined by the
similarity between subjects. This similarity is plem dependent. For example, in the case of
autism spectrum disorder (ASD) classification, &anitly between two subjects is defined
based on sex, sites and RSFC, i.e., two subjeetsiare similar if they have the same sex,
from the same site and have similar RSFC pattétasqot et al., 2017, 2018). The use of sex
and sites in the graph definition were particulamportant for this specific application, since
ASD is characterized by strong sex-specific effactd the database included data from

multiple unharmonized sites (Di Martino et al., 2D1



Similar to the original studies (Parisot et al.1202018), we utilized vectorized
RSFC (lower triangular entries of the RSFC matoifall subjects as inputs to the GCNN.
Edges between subjects were defined based on Rsacsorelation between lower

triangular portions of RSFC matrices.

2.8 HCP training, validation and testing

For the HCP dataset, 20-fold cross-validation wersgpmed. The 953 subjects were
divided into 20 folds, such that family members evieot split across folds. Inner-loop cross-
validation was performed for hyperparameter tunMgre specifically, for a given test fold,
cross-validation was performed on the remainindol®s with different hyperparameters.
The best hyperparameters were then used to trdimeoi© folds. The trained model was then
applied to the test fold. This was repeated foR@ltest folds.

In the case of kernel regression, there was ongysomgle hyperparametgr(that
controls thd, regularization; see Appendix A.1). A separate hypemeter was tuned for
each fold and each behavioral measure separatedyllmm a grid search over the
hyperparameter.

In the case of the DNNSs, there was a large numbleyperparameters, e.g., number
of layers, number of nodes, number of training ésodropout rate, optimizer (e.g.,
stochastic gradient or ADAM), weight initializatipactivation functions, regularization, etc.
GCNN also has additional hyperparameters tuned,aegnition of the graph and graph
Laplacian estimation. Therefore, instead of tragranseparate DNN for each behavioral
measure, a single FNN (or BrainNetCNN or GCNN) wased for all 58 behavioral
measures. The reason is that tuning hyperparansspesately for each behavioral measure
would be too time consuming. We note that the jprediction of multiple behavioral
measures might not be a disadvantage for the DMNsraght even potentially improve
prediction performance because of shared struatmang target behavioral variables (Rahim
et al., 2017). Furthermore, we tried to tune eabNFNN, BrainNetCNN or GCNN) for
only fluid intelligence, but the performance fauitl intelligence prediction was not better
than predicting all 58 behavioral measures simebasly.

Furthermore, a proper inner-loop 20-fold crossédation would involve tuning the
hyperparameters for each DNN 20 times (once fadn sptit of the data into training-test
folds), which was computationally prohibitive. Thiisr each DNN (FNN, BrainNetCNN
and GCNN), we tuned the hyperparameters once, tisenfirst split of the data into training-
test folds, and simply re-used the optimal hypeapeaters for the remaining training-test



splits of the data. Such a procedure biases thtiqgbien performance in favor of the DNNs
(relative to kernel regression), so the resultsikhbe interpreted accordingly (see
Discussion). Such a bias is avoided in the UK Bniodataset (see below). Further details
about DNN hyperparameters are found in Appendix A2.

As is common in the FC-based prediction litera(iian et al., 2015), model
performance was evaluated based on the Pearsonéation between predicted and actual
behavioral measures across subjects within eatfotdsFurthermore, since certain
behavioral measures were correlated with motioag@iet al., 2017), age, sex, and motion
(FD) were regressed from the behavioral measuoes fne training and test folds (Kong et
al., 2019; Li et al., 2019). Regression coefficsawere estimated from the training folds and
applied to the test folds. Mean absolute error (WAERdJ coefficient of determination (COD)
will also be reported.

2.9 UK Biobank training, validation and testing

The large UK Biobank dataset allowed us the luxafrgplitting the 8868 subjects into
training (N = 6868), validation (N = 1000) and t@dt= 1000) sets, instead of employing an
inner-loop cross-validation procedure like in theéPHdataset. Care was taken so that the
distributions of various attributes (sex, age,dlintelligence and pairs matching) were
similar across training, validation and test sets.

Hyperparameters were tuned using the training atidation sets. The test set was
only utilized to evaluate the final prediction pmrhance. A separate DNN was trained for
each of the four behavioral and demographic meastifaus, the hyperparameters were
tuned independently for each behavioral/demograpi@asure. Further details about DNN
hyperparameters are found in Appendix A2. Initigderiments using a single neural network
to predict all four measures simultaneously (likehe HCP dataset) did not appear to
improve performance and so was not further pursimeithe case of kernel regression, the
hyperparametex was tuned using the validation set based on asgadch over the
hyperparameter.

Like before, prediction accuracies for age, fluitelligence and pairs matching were
evaluated based on the Pearson’s correlation betpreglicted and actual measures across
subjects within the test set. Since the age priedidterature often used mean absolute error
(MAE) as an evaluation metric (Liem et al., 2016l€Cet al., 2018; Varikuti et al., 2018), we
included MAE as an evaluation metric. For comples=y we also computed MAE for pairs

matching and fluid intelligence.



In the case of sex, accuracy was defined as th&draof participants whose sex was
correctly predicted. Like before, we regressed age,and motion from fluid intelligence and
pairs matching measures in the training set antyabe regression coefficients to the
validation and test sets. When predicting age ardrso regression was performed.
Coefficient of determination (COD) for age, pairatohing and fluid intelligence will also be

reported in the Supplemental Material.

2.10 Deep neural network implementation

The DNNs were implemented using Keras (Chollert,53®r PyTorch (Paszke et al.,
2017) and run on NVIDIA Titan Xp GPU using CUDA. Omplementation of
BrainNetCNN and GCNN were based on GitHub code ftloenoriginal papers (Kawahara et
al., 2017; Kipf and Welling, 2017). Our implememat achieved similar results as the
original implementations when using the toy datased hyperparameters provided by the
original GitHub implementations. More details abbyperparameter tuning can be found in
Appendix A2.

2.11 Satistical tests

For the HCP dataset, we performed 20-fold crosslatbn, yielding a prediction
accuracy for each test fold. To compare two algord, the corrected resampled t-test was
performed (Nadeau and Bengio, 2003; Bouckaert aadki-2004). The corrected resampled
t-test corrects for the fact that the accuraciessactest folds were not independent.
In the case of the UK Biobank, there was only glsitest fold, so the corrected resampled t-
test could not be applied. Instead, when comparangelations from two algorithms, the
Steiger’s Z-test was utilized (Steiger, 1980). Whemparing MAE, a two-tailed paired
sample t-test was performed. When comparing priedieiccuracies for sex, the McNemar’s
test was utilized (McNemar, 1947).

2.12 Scaling of prediction performance as a function of sample size

The large UK Biobank dataset allowed us to explbeseffect of sample size on
predicting fluid intelligence. The test set (N =00) was the same as before to allow for
meaningful comparisons. We considered 100, 5000,12@00, 3000, 4000, 5000 and 6000
and 7868 subjects for training and validation. Tase of 7868 subjects was identical to the

analysis from the previous sections.



In the case of 3000, 4000, 5000 and 6000 subjeénets;alidation set comprised the
same set of 1000 subjects as in the previous secfithe training set was obtained by
randomly sampling the appropriate number of subjioim the original training set of 6868
participants. For example, in the case of 300@ingiand validation subjects, we randomly
sampled 2000 training subjects from the originaihing set. However, the training subjects
were selected so that the distribution of fluicklhgence matched the distributions of the
validation and test sets.

In the case of 100, 500, 1000 and 2000 subjectsplitethe participants with a 3:1
ratio. For example, in the case of 100 subjectggetivere 75 training and 25 validation
subjects. Like before, the participants were rang@®elected but we ensured the
distributions of fluid intelligence in the trainira;d validation sets were similar to the
distribution of the test set.

The hyperparameter tuning for the three DNNs amdedeegression was the same as

in previous sections. See Appendices Al and A2niore details.

2.13 Control analysis

We repeated our analyses using hyperparametelssasas possible to the original
BrainNetCNN hyperparameters (provided by the Brat@NN code repository; Kawahara et
al., 2017) and original GCNN hyperparameters (ptediby the GCNN code repository;
Parisot et al., 2017; 2018). In the case of FNNpwleed hyperparameters as close as
possible to the FC90net baseline in the BrainNet@idper (Kawahara et al., 2017).

2.14 Data and code availability

This study utilized publicly available data fronetHCP
(https://www.humanconnectome.org/) and UK Biobamikps://www.ukbiobank.ac.uk/). The
400 cortical ROIs (Schaefer et al., 2018) can leadohere
(https://github.com/ThomasYeoLab/CBIG/tree/mastable projects/brain_parcellation/Sch

aefer2018 LocalGlobal). The kernel regression aNt®code utilized in this study can be

found here

(https://github.com/ThomasYeolLab/CBIG/tree/mastable projects/predict_phenotypes/He
2019 _KRDNN). The trained models for the UK Biobat@taset can also be found in the
above GitHub link. The code was reviewed by onthefco-authors (MN) before merging

into the GitHub repository to reduce the chanceaafing errors.



3. Results
3.1 HCP behavioral prediction

Figure 4 shows the prediction accuracy (Pearsari®lation coefficient) averaged
across 58 HCP behavioral measures and 20 test fatalsstical tests were performed
between kernel regression and the three DNNs (stkdds). False discovery rate (g < 0.05)
was applied to correct for multiple comparisongection.

FNN achieved the highest average prediction acgukdtt Pearson’s correlation r =
0.121 + 0.063 (mean = std). On the other hand,éteagression achieved an average
prediction accuracy of r = 0.115 = 0.036 (meand}.dtlowever, there was no statistical
difference between FNN and kernel regression (68)0Interestingly, BrainNetCNN (r =
0.114 + 0.048) and GCNN (r = 0.072 + 0.044) did oatperform FNN, even though the two
DNNs were designed for neuroimaging data. KRR vigrafecantly better than GCNN (p =
3e-4), but not BrainNetCNN (p = 0.93).

For completeness, Figures 5, S2, and S3 show thevtmgal prediction accuracies for
all 58 behavioral measures. Figures S4 to S7 shewdatterplots of predicted versus actual
values for 13 cognitive measures. Kernel regressias significantly better than FNN for
predicting grip strength (p = 2.65e-4) and sigmifitty better than GCNN for predicting
picture matching vocabulary (p = 6.91e-5). No ottifierence survived the FDR correction.

Similar conclusions were obtained when using mémolate error (Figure 6) and
coefficient of determination (Figure S8) as measufeprediction performance.
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Figure 4. Prediction accuracy (Pearson’s correlatio coefficient) averaged across 58
HCP behavioral measures and 20 test fold€orrelation was computed for each test fold
and each behavior, and then averaged across theha&iors. Bars show mean across test
folds. Error bars show standard error of modelgrertince across cross-validation folds.
Kernel regression and FNN performed the best. Tiaeno statistical difference between
kernel regression and FNN or BrainNetCNN. Kerngression was statistically better than
GCNN (p = 3e-4).
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Figure 5. Prediction accuracies (Pearson’s correlain coefficient) in a curated set of 13
HCP cognitive measures averaged across 20 test fel@orrelation was computed for each
test fold and each behavior. Bars show mean atess$olds. Error bars show standard
errors of model performance across cross-validdttas. Prediction accuracies of the
remaining 45 behavioral measures are found in Egy®2 and S3.
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Figure 6. Prediction MAE averaged across 58 HCP behavioral nasures and 20 test
folds. Lower is better. MAE was computed for each tekt émd each behavior and then
averaged across the 58 behaviors. Bars show the ateass test folds. Error bars show
standard error of model performance across crosgatian folds. There was no statistical
difference between kernel regression and all DNfies aorrecting for multiple comparisons.

3.2 UK Biobank behavioral and demographics prediction

Table 1 and Figure 7 show the prediction perforreasfcsex, age, pairs matching and
fluid intelligence. Figure S9 shows the scatterpluftpredicted versus actual values for age,
pairs matching and fluid intelligence. Kernel reggien, FNN, and GCNN achieved the
highest accuracy for sex prediction. Kernel regogsperformed the best for fluid
intelligence and age (measured using Pearson’slatan). BrainNetCNN performed the
best for age (measured using MAE) and pairs magchin

Statistical tests were performed between kernekssjpn and the three DNNs (see
Methods). False discovery rate (q < 0.05) was adgdb correct for multiple comparisons
correction. There was no statistical differenceveein kernel regression and the DNNs for all
behavioral and demographic measures.

Interestingly, the GCNN achieved poor performamcthe case of pairs matching
(Pearson’s correlation r = 0.008), although it wasstatistically worse than kernel
regression. Upon further investigation, we fourat 8CNN achieved an accuracy of r =

0.106 in the UK Biobank validation set. When uding initial set of hyperparameters (before



hyperparameter tuning using HORD), GCNN achievexigzies of r = 0.047 and r = 0.056
in the validation and test sets respectively. Qletas suggests that the hyperparameter
tuning overfitted the validation set, despite thther large sample size.

Similar conclusions were obtained when using mémolate error (MAE) as a
performance measure for fluid intelligence andgaiatching (Table 2 and Figure S10), or
when using coefficient of determination (COD) gseaformance measure for age, pairs

matching and fluid intelligence (Table S2).

Sex Age Pairs _ _Fluid_
Model matching intelligence
Accuracy Correlation MAE Correlation Correlation
Kernel Regression0.916 0.599 4.826 0.061 0.239
FNN 0.916 0.599 4.899 0.045 0.239
BrainNetCNN 0.914 0.598 4.824 0.067 0.235
GCNN 0.916 0.593 4.895 0.008 0.232

Table 1. Prediction performance of four behavioraland demographic measures in the

UK Biobank. Forage (MAE), lower values imply better performancer. &ll the other
measures, larger values imply better performaBodd indicates the best performance,
although it does not imply statistical significanG@ere was no statistical difference between
kernel regression and the DNNs for all behavional demographic measures after correcting
for multiple comparisons (g < 0.05). MAE refersmean absolute erro€orrelation refers to
Pearson’s correlation. We note that simply prexdgcthe median age in the training set
would have yielded an MAE of 6.194.
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Figure 7. Prediction performance of four behavioraland demographic measures in the
UK Biobank. For age (MAE), lower values imply better performani€or all the other
measures, larger values imply better performanbke.hbrizontal lines represent statistical
tests between kernel regression and the DNNs. $tasids for not significant after FDR (q <
0.05) correction.



Model Pairs matching Fluid intelligence

Kernel regression 0.551 1.608
FNN 0.567 1.613
BrainNetCNN 0.553 1.610
GCNN 0.497 1.612
Median 0.400 1.656

Table 2. Prediction MAE of pairs matching and fluidintelligence in the UK Biobank.
Lower values imply better performan@&nld indicates the best performance. We note that
simply predicting the median of the pairs matchiafye in the training set would have
yielded an MAE of 0.400, which was better than kéregression and all DNNs.

3.3 Effect of sample size on predicting fluid intelligence in the UK Biobank

Figure 8 shows the prediction performance (Peassoorrelation) of fluid
intelligence in the UK Biobank as the training aradidation sample sizes were varied, while
the same test set of 1000 subjects was used thoaughll algorithms performed poorly with
100 subjects but improved with more subjects. Thexe more than 300% improvement
when increasing the sample size from 100 to 100fests and more than 35% improvement
when increasing the sample size from 1000 to 500{ests. However, the improvement
tapered off from 5000 to 7868 subjects. GCNN wasllyivolatile as the sample size was
varied, suggesting its sensitivity to particulaoickes of training and validation subjects.
Kernel regression was competitive across all sasipks. Similar conclusions were obtained

when MAE was used as a performance metric (Figtidg.S
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Figure 8. Prediction performance (Pearson’s correlagon coefficient) of fluid intelligence

in the UK Biobank dataset with different number oftraining and validation subjects.

The performance of all algorithms generally incegawith more training and validation
subjects. In the case of 100, 500, 1000 and 200eats, 3/4 of the subjects were used for
training and 1/4 of the subjects were used fordeion. In the remaining cases, 1000
subjects were used for validation, while the renmgrsubjects were used for training. For all
cases, test set comprised the same set of 100€cssili{ernel regression was highly
competitive across all sample sizes. See Figurd@INIAE results.

3.4 Control analysis

Tables S3 and S4 show the performance of the DIdhg) Unyperparameters from the
original publications (Kawahara et al., 2017; Raret al., 2017; 2018) versus our tuned
hyperparameters. The performance of our hyperpaeasmeompared favorably to the
performance of the original hyperparameters. Thisot surprising, since our

hyperparameters were obtained by tuning using dlteesdts shown in this paper.

3.5 Computational costs
Kernel regression has a close-form solution (AppeAd) and only one

hyperparameter, so the computational cost is exdyelow. For example, kernel regression



training and grid search of 32 hyperparameter \&ine¢he UK Biobank validation set took
about 20 minutes (single CPU core) for one behavimeasure. This is one reason why we
considered kernel regression instead of other slalassical approaches (e.g., support vector
regression or elastic net) requiring iterative mation. On the other hand, FNN training

and tuning of hyperparameters in the UK Biobankdadion set took around 80 hours (single

GPU) for one behavioral measure, excluding the rarshnecessary for the manual tuning.



4. Discussion

In this study, we showed that kernel regression@Ndls achieved similar
performance in RSFC-based prediction of a wide eafdehavioral and demographic
measures across two large-scale datasets totéhmugial 0,000 participants. Furthermore,
FNN performed as well as the two DNNs that weresjgally designed for connectome data.
Given comparable performance between kernel regreasd the DNNs and the
significantly greater computational costs assodiatgh DNNs, our results suggest that
kernel regression might be more suitable than DMN®mMe neuroimaging applications.

4.1 Potential reasons why DNNs did not outperform kernel regression for RS-C-based
prediction

There are a few potential reasons why DNNs didongperform kernel regression in
our experiments on RSFC-based behavioral predidiimst, while the human brain is
nonlinear and hierarchically organized (Deco et2f)11; Breakspear, 2017; Wang et al.,
2019), such a structure might not be reflectethenRSFC matrix in a way that was
exploitable by the DNNs we considered. This cowddlbe to the measurements themselves
(Pearson’s correlations of rs-fMRI timeseries), plagticular representation (N x N
connectivity matrices) or particular choices of Dé§yMIthough we again note that
BrainNetCNN and GCNN were specifically developeddonnectome data.

Second, given the much larger datasets used inw@myision and natural language
processing (Chelba et al., 2014; Russakovsky 2@15), it is possible that there was not
enough neuroimaging data (even in the UK BiobaoKully exploit DNNs. However, our
experiments show that kernel regression was highiypetitive across all sample sizes from
100 to 7898 subjects. In fact, all approaches @xGENN) improved at almost lockstep
with greater sample size, suggesting that everitagmple sizes might equally benefit both
DNNs and kernel regression.

Third, it is well-known that hyper-parameter sgg8 and architectural details can
impact the performance of DNNs. Thus, it is possthat the benchmark DNNs we
implemented in this work can be further optimizedwever, we do not believe this would
alter our conclusions for two reasons. First, fine measures (e.g., sex classification in the
UK Biobank), we were achieving performance at arribe state-of-the-art. Second, an
earlier version of this paper relied completelyneanual tuning of hyperparameters. In the

current version of this paper, we utilized an awtimalgorithm to tune a subset of



hyperparameters for the UK Biobank experiments @quix A2), yielding essentially the
same conclusions.

It is also worth pointing out that while deep l@ag has won several predictive
modeling challenges, these have mostly involvedyemsegmentation (Choi et al., 2016,
Kamnitsas et al., 2017a, Hongwei Li et al., 20I8)e success of DNNs has been less clear in
other neuroimaging challenges. For example, ir201#9 ABCD challenge to predict fluid
intelligence from structural MR, kernel regressigas the winner, beating other deep
learning algorithms (Mihalik et al., 2019). Simllgrin the recent TADPOLE challenge to
predict Alzheimer’s Disease progression (Marinesical., 2018), the top entry did not utilize
deep learning_(https://tadpole.grand-challengeReglilts/).

4.2 Hyperparameters

There are significantly more hyperparameters ilfBNompared with classical
machine learning approaches. For example, forealfkernel (e.g., correlation metric in our
study), kernel regression has one single regukaoizparameter. Even with a nonlinear
kernel (e.g. radial basis function), there woultydye two hyperparameters. This is in
contrast to DNNs, where there are easily more teamyperparameters.

Because of the large number of hyperparameterg, appsications involving DNNs
currently require some level of manual hyperparamtining. Therefore, we suggest that
manual hyper-parameter tuning should be perform#dma training-validation-test
framework (like in our UK Biobank experiments),irat than a nested (inner-loop) cross-
validation framework (like in HCP experiments). Tieason is that within a nested (inner-
loop) cross-validation framework, information fraoming one fold might leak to another
fold (via the person tuning the hyperparameters).

To elaborate, recall that we divided the HCP datase 20 folds. We tuned the
hyperparameters of the DNNs using folds 2 to 20applied the trained DNNs to fold 1.
Since fold 1 was not used in tuning the hyperpataragthe performance of the DNNs in
fold 1 was unbiased. However, when fold 2 becareadhkt fold, we utilized the same
hyperparameters to train using folds 1, 3 to 20s Thproblematic because fold 2 was
originally utilized to tune the hyperparametersgensequently the performance of the DNNs
in test fold 2 was inflated.

One could try to independently tune the hyperpatarador each fold independently.

However, complete independence between folds ikelplbecause the person performing



the manual tuning cannot possibly forget his/hairtg experience with the other folds. As
such, this will yield overly optimistic results.

On the other hand, the test set in the UK Biobaak only utilized after the
hyperparameters have been determined from thertgeamd validation sets. Therefore, the
performance of the DNNs was unbiased. It is wodting that our motivation for advocating
the training-validation-test framework is to pretexerly optimistic results in the test set,
but does not necessarily eliminate overfitting. Example, in the case of pairs matching in
the UK Biobank, our tuning procedure overfittedtba validation set, yielding poor
performance in the test set (Table 1). Thus, otd was “caught” in the test set, which
highlights the benefits of adopting a training-dalion-test framework.

Finally, we note that there are generally too mBMN hyperparameters (and design
choices) to be listed in a paper. In fact, thereewsperparameters too complex to
completely specify in this paper. However, we hanggle our code publicly available, so
researchers can refer to the code for the exadrphgpameters. We encourage future

neuroimaging DNN studies to also make their cod#igly available.

4.3 Prediction performance in the literature

Comparing our prediction performance with the &tere is difficult because of
different datasets, sample sizes, cross-validgtionedures and de-confounding strategies.
For example, we regressed age, sex, and motionf(ém)the behavioral measures, but other
studies might not perform any regression or usif@rent set of regressors. Nevertheless, we
believe that our prediction performance is gengr@ansistent with the literature.

As mentioned earlier, our sex prediction accurdcy106% in the UK Biobank is
among the best in the literature. For example, &md colleagues (2018) reported a sex
prediction accuracy of around 80% when using 55 &uBictional connectivity matrices from
2500 UK Biobank subjects. On the other hand, Chekiend colleagues (2016) reported sex
prediction accuracy of 93% when using corticalkhiess and subcortical volumes of 1566
subjects from the Brain Genomics Superstruct Pr¢idalmes et al., 2015).

In the case of fluid intelligence, our predictiactaracies (Pearson’s correlation)
ranged from around 0.257 to 0.297 (excluding GCNNctv performed poorly) in the HCP
dataset. Although earlier RSFC-based behavioraigien studies have reported high fluid
intelligence prediction accuracy in the HCP dat@sein et al., 2015), newer studies using
more subjects reported lower accuracies compavatieour results. For example, Dubois

and colleagues (2018) reported a prediction acgyRearson’s correlation) of 0.27 for fluid



intelligence in the HCP dataset. On the other h@rdene and colleagues (2018) reported a
prediction accuracy (Pearson’s correlation) of Gdkr#luid intelligence in the HCP dataset
(but only using data from a single resting-fMRIsien). Thus, our prediction accuracies for
fluid intelligence is consistent with the literagur

In the case of age prediction, we achieved a ptiediaccuracy (Pearson’s correlation)
of 0.6 and an MAE of 4.8 in the UK Biobank datassamparing these results with the
literature is difficult because of sensitivity tgearange in the dataset. For example, many
studies utilized either lifespan (Cole et al., 201iém et al., 2017) or developmental
(Sturmfels et al., 2018; Nielsen et al., 2019) etdhawhile the UK Biobank comprised older
adults (more than 45 years old). Furthermore, nstingties preferred to use structural MR,
instead of RSFC, for predicting age (Cole et &172 Sturmfels et al., 2018; Varikuti et al.,
2018). Liem and colleagues (2017) achieved MAEgiranfrom 5.25 to 5.99 when using
RSFC for predicting age in a lifespan dataset caimy 2354 subjects, which was worse
than our MAE. On the other hand, their predictioowuacies (Pearson’s correlation) ranged
from 0.79 to 0.93, which was better than our prigalicaccuracy (Pearson’s correlation).
Overall, this suggests that our prediction perforoeais probably comparable with other
RSFC studies, although we emphasize that compagagrediction performance across
datasets is non-trivial.

It is important to mention that prediction performea was poor for a number of target
variables across all four prediction algorithmst &wample, in the case of pairs matching in
the UK Biobank dataset, predicting the median eftthining set yielded lower MAE than all
four models, suggesting that pairs matching isamo¢asily predictable trait using RSFC.
Therefore, it might not be meaningful to compare rtiodels for pairs matching. On the other
hand, we note that for both age and fluid intehice prediction, all four models performed
better than predicting the median of the trainiaegy Similarly, sex prediction was a lot better
than chance, given that there were roughly equalb@un of males and females in the dataset.
For these three target variables (age, sex ardlifitelligence), all four models exhibited
very similar performance.

It is also worth noting that the poor average C@lhe HCP dataset is consistent
with the literature. For example, of the 58 behealimmeasures, 48 of them were also utilized
in the HCP MegaTrawl (https://db.humanconnectongégeegatrawl!/). For the 300-

dimensional group-ICA results, HCP MegaTrawl achtan average COD of -0.177

(original data space), while kernel regressiorhsd¢urrent study achieved an average COD



of -0.0875. Overall, this suggests that certaiggawvariables are not easily predicted using
RSFC.

4.4 Limitations and caveats

Although the current study suggests that kerrgriession and DNNs achieved similar
performance for RSFC-based behavioral predicttas,possible that other DNNs (we have
not considered) might outperform kernel regresstamthermore, our study focused on the
use of N x N static RSFC matrices for behavioradpmtion. Other RSFC features, such as
dynamic RSFC features (Calhoun et al., 2014; Rtetl., 2017; Liégeois et al., 2019), in
combination with DNNs might potentially yield batigerformance (Hongming Li et al.,
2018; Khosla et al., 2019).

We also note that our evaluation procedure waepeed on the HCP and UK
Biobank datasets independently. Therefore, we éxpeaeported prediction performance to
be maintained if new participants were recruitethmmrespective studies under the same
experimental conditions (e.g., no scanner upgrsa®e population, same acquisition
protocol and preprocessing, etc). However, thertedgrediction performance would likely
drop if the trained models (from the UK BiobankH€P) were applied to other datasets
(Arbabshirani et al., 2017; Woo et al., 2017). Wstpoint, it is unclear which approach
(kernel regression, FNN, BrainNetCNN or GCNN) wogkheralize better to a completely
new dataset. This is obviously an active area sgaech given the increasing number of

large-scale publicly available brain imaging datase



5. Conclusion
By using a combined sample of nearly 10,000 pgaicis, we showed that kernel
regression and three types of DNN architecturegeaet similar performance for RSFC-
based prediction of a wide range of behavioral@gmographic measures. Overall, our study
suggests that kernel regression might be justfastefe as DNNs for certain neuroimaging

applications, while incurring significantly lessmaputational costs.
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Appendix
Al. Kernel Regression
In this section, we describe kernel regressiateitail (Liu et al., 2007; Murphy,
2012). The kernel matrik encodes the similarity between pairs of subjédtgtivated by
Finn and colleagues (2015), th&h row andj-th column of the kernel matrix is defined as
the Pearson’s correlation between itk subject’s vectorized RSFC ajyh subject’s
vectorized RSFC (considering only the lower tridagportions of the RSFC matrices). The

behavioral measung of subject can be written as:
yi =2, aiK(c;, ¢;) + e #(1)

wherec; is the vectorized RSFC of tih subjectX (c;, ;) is the element atth row andj-
th column of kernel matrixy/ is the total number of training subjeatsjs the noise term and
a; is the trainable weight. The goal of kernel regi@s is to find an optimal set af To

achieve this goal, we maximize the penalized Iiiaid function:

1
J ==L = 2 @K (e )} #(2)

with respect tax = [ay, a5, ..., ay]7. To avoid overfitting, d, regularization (i.e., kernel

ridge regression) can be added, so the resultinghation problem becomes:
1 A
a= argminz (y - Ka)"(y — Ka) + EaT]Ka#(B)
a

whereK is theM x M kernel matrixy = [y, y,, ..., yu]T andi is a hyperparameter that
controls thd, regularization. By solving equation (3) with resp® «a, we can predict a test

subject’s behavioral measuygas:
ys = Ksa = K (K + AI)_ly#(Ll‘)
whereK = [K(c, ¢1),K(cg, C3), ..., K(cg, cpp)]-

In the case of the HCR was selected via inner-loop cross-validationhia ¢ase of
the UK biobank) was tuned on the validation set. For sex predidtiche UK Biobank, for



each continuous prediction,,, the participant was classified as male or ferbaked on
whether it was larger or smaller than the threshéld tuned the threshold to obtain the best

accuracy in the UK Biobank validation dataset aselduthis threshold in the test set.

A2. More details of deep neural networks
In this section, we describe further details of DIWN implementation.
* For GCNN, we adopted Keras code from the GCNN GitkHepository
(https://github.com/tkipf/keras-gcn; Kipf and Waellj, 2017). We made some minor

modifications to the code, e.g., the modified cditectly loaded the graph adjacency
matrix, instead of loading the edges and generatiegdjacency matrix. As another
example, our graph convolution layer loaded th@lgmatrix as parameters rather
than as an input. However, we emphasized thatdreefanctionalities (e.g., graph
convolution) remained unchanged. As a sanity cheekapplied our modified code
to the original toy data using the original hypegmaeters provided by the original
GitHub repository. Our results were comparabléh&odriginal implementation
(Table S5).

* The original BrainNetCNN implementation used théf€&amework

(https://github.com/jeremykawahara/ann4brains; Keava et al., 2017). We re-

implemented BrainNetCNN in Keras and PyTorch follagvthe original Caffe code
as closely as possible. The Keras version waseppithe HCP data, while the
PyTorch version was applied to the UK Biobank datee reason for this
inconsistency was that after our experiments WithHICP dataset using Keras, we
realized that the Keras framework yielded slighlifferent results each time the code
was run. This was apparently a well-known issuthefframework. As such, we
decided to implement a second version in PyTordhchvwas then applied to the
UK Biobank. As a sanity check, we applied both iempéntations (Keras and
PyTorch) to the original toy data using the origimgoerparameters provided by the
original GitHub repository. Our implementations &sfed comparable results with
the original implementation (Table S6).

* In the case of the FNN, since this is just a gernfeedforward neural network, so we

implemented using default libraries in Keras andidtgh. The Keras version was



applied to the HCP data, while the PyTorch verswas applied to the UK Biobank
data. The reason for this inconsistency is the sasrtbe previous bullet point.
Representative learning curves for the HCP dataseshown in Figure S12.
Learning curves for the UK Biobank are shown inufgg S13 to S15. The training
curves showed good accuracy/error, suggestingwbare not underfitting to the
data. The validation curves were plateauing, suggethat we were not stopping too
early in our training. Since the validation and t@sves were progressing in almost
lockstep (except for certain instances of GCNNY,stapping criterion (based on the
peaks of the validation curves) was reasonablenfést behavioral measures, there
were relatively big gaps between the training aalitation/test curves, suggesting
overfitting. However, we have already deployed s&\v&andard strategies to reduce
overfitting, including dropout, 4-regularization/weight-decay and batch-

normalization.

In the case of the HCP dataset:

For all three DNNs, all behavioral measures weneznalized based on training data.
The loss function was mean squared error (MSE)in@pér was stochastic gradient
descent (SGD). With the MSE loss, the output ldnger 58 nodes (FNN and
BrainNetCNN) or filters (GCNN).

In the case of the main results (Figures 4, 5,8PS8), the hyperparameters were
tuned manually by trial-and-error. Since eachfi@stwas of size 47 or 48, we simply
set 48 to be the batch size (except GCNN, whidizeti the whole dataset in a single
mini-batch). We initialized with a default set ofgerparameters (e.g., learning
rate=0.01, dropout rate=0.5, number of filter/netB®y and then tuned the optimizer
(learning rate, momentum, and learning rate dedaygr structure (number of layers,
number of nodes/filters), dropout rate, regularmatnd weight initialization. There
was no fixed order for hyperparameter tuning. Wieegally started by tuning the

layer structure, followed by the optimizer and tlmtiner hyperparameters. For GCNN,
we also tuned the graph-related hyperparameténe dteginning of the tuning
process.

Final FNN structure is shown in Table 3. Dropou®d was added before each fully-

connected layer. L2 regularization of 0.02 was ddde layer 2.



Final BrainNetCNN structure is shown in Table 4opwut of 0.4 was added after
E2N layer. LeakyRelLU (Maas et al., 2013) with alpi@.3 was used as the
activation function for the first three layers.

Final GCNN structure is shown in Table 5. Dropo® @ was added for each layer.
L2 regularization of 8e-4 was added for layer 1e Tiodes of the graph corresponded
to subjects. Edges were constructed based on Péacsorelation between subjects’
vectorized RSFC. The graph was thresholded by @témning edges with top 5%
correlation (across the entire graph). Howeves, thight result in a disconnected
graph. Therefore, the top five correlated edge=sach node were also retained (even
if these edges were not among the top 5% correkatgds). The graph convolution
filters were estimated using a 5-degree Chebysbbinpmial (Defferrard et al.,
2016).

In the case of the UK Biobank:

For all three DNNs, model ensemble was used toangfinal test result: for each
DNN and each behavior, five models were traineduseply (with different random
initializations). The predictions were averagedasrthe five models yielding a final
prediction. All four behavioral measures were zmalized based on training data.
The loss function for sex prediction was crossagyri.e., the output layer for sex
prediction have 2 nodes (FNN and BrainNetCNN) berls (GCNN). The loss
function was MSE for the other three measures.othput layer for these three
measures have 1 node (FNN and BrainNetCNN) or fiB&€NN). Adam (Kingma
and Ba, 2015) or SGD were used. See details ire§ahl4 and 5.

For all three DNNs, we utilized the HORD algoritliRegis et al., 2013; llievski et al.,
2017, Eriksson et al., 2019) to assist in hypenpatar tuning using the UK Biobank
validation dataset. For each DNN, the HORD algamittutomatically tuned the DNN
hyperparameters within user-specified ranges abuarhyperparameters. Not all
hyperparameters were tuned by HORD because thd speeperformance of HORD
worsened when too many hyperparameters were tdinedefore, we determined
several hyperparameters based on our previous rnamirzg experience, i.e.
momentum = 0.9, batch size = 128 (except GCNN'stbaize is 1 as it loads all data
at once), weight initialization = Xavier uniformy(Porch) or Glorot uniform (Keras),

Chebyshev polynomial basis filters with degree édrilGCNN.



For FNN, we tuned the number of layers (2 to 4gayerumber of nodes for each
layer (2 to 512 nodes), dropout rate (0 to 0.&xtstg learning rate (1e-2 to 1e-4),
weight decay rate (1e-3 to 1le-7), and epochs teedse learning rate (10 to 200
epochs) using HORD.

For BrainNetCNN, we tuned the number of filters é@e (2 to 48 filters), e2n (2 to
96 filters), and n2g layers (2 to 128 nodes), dubpate (O to 0.8), learning rate (1e-2
to le-4), weight decay rate (1e-3 to 1le-7), anctlepto decrease the learning rate (10
to 200 epochs) using HORD.

For GCNN, we tuned the number of filters for GCNiydr (2 to 128 filters), methods
to generate graph adjacency matrix, dropout rate (08), L, regularization rate (le-
3 to 1le-7), and learning rate (1e-2 to 1e-4) usi@iRD.

For all DNNs, model was tuned for each behavioassely. Tables 3, 4 and 5 show
the final DNN structures and hyperparameters.

Final FNN structure is shown in Table 3. For FNkgmbut of
0.00275/0.309/0.285/0.526 (for sex/age/pairs maggfiuid intelligence respectively)
were added before each fully-connected layer. gRlegization of 0.02 was added for
layer 2. Weight decay of 2.662e-4/2.799e-5/1.141e485e-4 (for sex/age/pairs
matching/fluid intelligence respectively) were dpglto the weights of all fully
connected layers.

Final BrainNetCNN structure is shown in Table 4r BoainNetCNN, dropout of
0.463/0.573/0.264/0.776 (for sex/age/pairs matcfiing intelligence respectively)
were added after the E2E, E2N, and N2G layers. ylRaekU was replaced by linear
activation for all four models.

Final GCNN structure is shown in Table 5. Dropou® ©150/0.316/0.308/0.555 (for
sex/age/pairs matching/fluid intelligence respestiywere added before the first and
second hidden layers. L2 regularization of 3.344=181e-7/4.716e-7/7.183e-4 (for
sex/age/pairs matching/fluid intelligence respesttivwere added for layer 1. The
nodes of the graph corresponded to subjects. Badgesconstructed based on
Pearson’s correlation between subjects’ vector8&C. Thresholding of the graph
was tuned separately for each behavior or demograpbasure. For pairs matching
prediction, the top five correlated edges of eamthenwere retained. For age, sex and
fluid intelligence prediction, the graph was threlsled by only retaining edges with

top 5% correlation (across the entire graph). Furtiore, the top five correlated



edges of each node were also retained (even i thedges were not among the top 5%
correlated edges). The graph convolution filtersalbfour GCNNs were estimated

by a 1-degree Chebyshev polynomial (Defferrard.eP816).

Dataset Predicting MOd.eI Optimizer
architecture
HCP 58 behaviors 223,128,192,58 SGD
Sex 3,2 SGD
. Age 9,1 SGD
UK Biobank Pairs matching 415, 437, 1 SGD
Fluid intelligence 318, 357, 1 SGD

Table 3. FNN architecture and hyperparameters for LP and UK Biobank. Under
“Model structure”, the numbers represent the nunalb@iodes at each fully connected layer.
For example, “256, 96, 256, 58” represents a 4rl&)&N with 256, 96, 256 and 58 nodes.

Dataset Predicting Mod_el Optimizer
architecture
HCP 58 behaviors 18, 19, 84, 58 SGD
Sex 38,58,7,2 SGD
. Age 22,79,91,1 SGD
UK Biobank Pairs matching 27, 29, 54, 1 SGD
Fluid intelligence 40, 60, 41, 1 SGD

Table 4. BrainNetCNN architecture and hyperparametes for HCP and UK Biobank.
Under “Model structure”, the numbers representritnber of filters or nodes at each layer.
For example, “15, 93, 106, 2" represents a Brai@N with 15 filters for the E2E layer, 93
filters for the E2N layer, 106 filters (nodes) the N2G layer and 2 nodes in the final fully

connected layer. All BrainNetCNNSs follow the saragdr order: E2E, E2N, N2G and then a
final fully connected layer.

Dataset Predicting Mod_el Optimizer
architecture
HCP 58 behaviors 256, 58 SGD
Sex 71, 2 Adam
. Age 10,1 SGD
UK Biobank Pairs matching 3,1 Adam
Fluid intelligence 72,1 Adam

Table 5. GCNN architecture and hyperparameters foHCP and UK Biobank. Under
“Model structure”, the numbers represent the nunotbdiiters for each graph convolutional
layer. For example, “64, 1" represents a 2-layeNBIGvith 64 and 1 filters respectively.



