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Abstract— Various EMC problems may be studied from 

numerical simulations involving 3D Maxwell equation solvers.  

However, the EMC risk analysis, either from a susceptibility or 

emissivity point of view requires various configurations of 

coupling paths described by important sets of unknown or 

uncertain parameters. The use of surrogate models is very 

relevant to speed up the risk analysis process. More specifically, 

values at risk corresponding to extreme values of relevant fields, 

currents or voltages are often the most important information 

with regard to a possible EMC risk. Specific methods such as 

controlled stratification provide a way to sample the input space 

of random variables in an efficient way to estimate extreme 

quantiles of a distribution. However, it requires a simple (i.e. fast 

calculation time) companion model. This companion model has to 

be correlated to the reference model in a specific sense. Building 

a surrogate model would be a possible way. This paper discusses 

various surrogate models and provides some conclusions about 

their ability to provide either a direct estimation of extreme 

quantiles of the response of interest, or a companion model for 

the controlled stratification method.  
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I.  INTRODUCTION  

This communication deals with uncertainty propagation 
through electromagnetic compatibility models for reliability 
analysis. 

EMC risk analysis, in the context of intentional 
electromagnetic interference (IEMI), often requires solving 
Maxwell equations with 3D numerical solvers based on, for 
instance, method of moments or finite difference time domain. 
Such models are deterministic and may be considered to 
provide “exact” solutions, but are very time consuming. At 
system-level EMC analysis, many inputs are not well known 
due to epistemic uncertainties. These uncertainties propagate 
through the model making the output uncertain. The output is 
therefore described as random variables. The goal is to estimate 
the distribution of the output for specified input distributions. 
In the context of IEMI risk analysis, we are particularly 
interested in output extreme values. Even though extreme 
values have low likelihood, they mainly contribute to the 
failure probability. 

Monte Carlo (MC) simulation is the standard approach to 
retrieve the output distribution. A design of experiment (DOE) 
is set up with many (thousands or more) input realizations 
(typically from Latin Hypercube Sampling [1]). The model is 
called for each of them so that the empirical distribution of the 

output is computed. This approach is simple and very robust 
but has a very slow convergence especially if extreme values 
are targeted.  

 Surrogate models (SMs) are functions that approximate the 
true model (physical phenomena) and may be calculated from a 
much more reduced set of realizations (hundreds). Once built, 
they have a negligible computational cost. Accurate SMs are 
therefore potential very good alternatives to a standard MC 
approach.  

There are two types of SMs. The first one is considered as 
physical whereas the second one is probabilistic. To build a 
physical SM, a good knowledge of the physical phenomena is 
needed in order to make assumptions and approximations. 
Such SMs are therefore problem specific. The second type of 
SM does not require any physical knowledge and is therefore 
virtually universal. However, many SMs exist (including many 
variants) and their relative performances must be assessed.  

The output distribution can be estimated by propagating the 
uncertainty through the SM as a substitute of the reference 
model.  SMs may also be used in addition to other techniques 
targeting the output distribution tail, such as controlled 
stratification (CS) [2], subset simulation [3], importance 
sampling [4]. The CS has been successfully applied to an EMC 
case study in [5] but the SM was specific and based on physical 
knowledge. In fact, CS performances rely on the strong 
correlation between the SM and the reference model. In such 
conditions, an input producing an extreme event with the SM is 
likely to produce also an extreme event of the reference model. 

In this study we chose five of the most popular SMs: 
Kriging (KRI) [6], Polynomial Chaos Expansion (PCE) [7], 
Support Vector Machine (SVM) [8], Neural Network (NN) [9] 
and Polynomial Chaos Expansion with Kriging (PCE-KRI) 
[10]. These SMs have recently been used in an EMC context. 
In [11], SVM is compared to PCE to estimate the output 
distribution. In [12] a sparse PCE in a high dimension problem 
is compared to MC to estimate the output distribution. In [13] 
an adaptive kriging is compared to classical reliability methods 
(FORM, Importance Sampling, Subset Simulation) to estimate 
the output distribution tail.  

To our knowledge, no SMs performance comparison in 
terms of error and correlation has been made in the particular 
case of estimating extreme values in EMC applications. In this 
paper we aim at undertaking a fair comparison of the SMs with 
EMC inspired analytical models. Our purpose is to identify the 
best SM for CS. This paper also draws some conclusions about 
the legitimacy of using the CS rather than a stand-alone SM. 



 

 

First we specify which SMs variant are used, their 
associated parameters, and the performance measurement. 
Appropriate references are added for theoretical details. Then, 
we present a performance comparison of the SMs on two 
application cases. Finally, a conclusion and perspectives are 
given. 

II. IMPLEMENTATION DETAILS 

A. Support Vector Machine (SVM) [8] 

We used the Matlab UQlab SVM implementation [14] with 
the matern-5_2 kernel, the smooth leave-one-out estimation 
method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
optimization algorithm (200 iterations maximum) to select the 
penalty term, insensitive tube and kernel parameters. 

B. Polynomial Chaos Expansion (PCE) [7] 

We used the Matlab UQLab implementation [15] with a 
least angle regression computation strategy and the adaptive 
maximum degree (from 1 to 3). In addition to select the best 
maximum degree, this algorithm discards polynomials with 
negligible impact on the output.  

C. Kriging (KRI) [6] 

We used the Matlab UQlab kriging implementation [16] 
with ordinary trend, a matern-5_2 correlation function, the 
maximum likelihood estimation method and the limited 
memory variant of BFGS optimization algorithm (maximum of 
200 iterations). 

D. Polynomial Chaos Expansion- Kriging (PCE-KRI) [10] 

The PCE-KRI SM is a hybridization between the two 
previously presented SMs: KRI and PCE. The PCE-KRI is in 
fact a kriging in which the trend is a PCE. The benefits of both 
SMs (local error and Sobol’s indices) are therefore reunited. 
We used the Matlab UQlab implementation [17] with the same 
characteristic used for KRI and PCE alone.  

E. Neural Network (NN) [9] 

We used the Matlab Neural Net fitting Toolbox. The search 
for the optimal weights/bias values was made with the 
Levenberg-Marquardt (LM) algorithm [18] with a Bayesian 
regularization [19]. The data is split into a train set (80%), a 
validation set (10%) and a test set (10%). The LM parameters 
are: μ0=100, μinc=5, μdec=0.5. The maximum of validation 
failures is set to 100 and the maximum time spent is limited to 
15 seconds. We chose arbitrary two hidden layers.  The best 
number of neurons (resulting the lowest test error) in each layer 
is found with a grid search from 10 to 40 (step of 10) for the 
first layer and from 5 to 35 (step of 10) in the second layer.  

F. Performance measurement 

Performances of each SM are evaluated thanks to both the 
relative generalized error in the distribution tail (Err) and the 
statistical order correlation with the initial model (ρ). As long 
as the correlation between the SM and the model is high 
enough, the CS can be very effective in estimating extreme 
values. In fact, the SM error does not systematically affect the 
CS performances. If the error is low enough the SM could be 
used directly to estimate extreme quantiles (uncertainty 
propagation through the SM). It might not be interesting to use 

the CS in addition to the SM in that case. On the contrary, if 
the error is large but the correlation remains good, the CS 
might be better than the SM alone.  

A SM is built with a small DOE sample of size n. An 
independent, much larger test sample of size N (10000) is then 
used to evaluate the SMs performances. Among those N 
realizations, Next ones belong to the distribution tail. The lower 

tail gathers the set of output realizations iyext smaller than yα 

(the model α quantile). In that case, we arbitrary set α in the 
range 1-10%. The upper tail gathers realizations greater than yα. 
In that case, α is arbitrary set in the range 90-99%. The 
generalized error at extreme values is the relative root mean 
square error of the difference between predicted SM extreme 

values iextŷ  and the true extreme values iyext :  
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The correlation between the model (Y) and the SM (Z) in 
the CS formulation is computed with all the N values at given 
probabilities α. The values yα and zα are the α quantiles of the 
model and the SM, respectively. The correlation is given by: 
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A quick interpretation of (2) follows. If Y and Z are 

independent, the conditional probability in (2) becomes the 

product of marginal probabilities and the correlation is null: 
𝑃(𝑌 ≤ 𝑦𝛼  |𝑍 ≤ 𝑧𝛼) → 𝑃(𝑌 ≤ 𝑦𝛼 )𝑃(𝑍 ≤ 𝑧𝛼  ) = 𝛼2

𝜌 →  0 . 
Another situation is that of a negative correlation: each extreme 
value of Z would not correspond to an extreme value of Y.  

Therefore: 𝑃(𝑌 ≤ 𝑦𝛼 |𝑍 ≤ 𝑧𝛼) →  0 𝜌(𝛼) →
−𝛼2

𝛼−𝛼2 
< 0 . 

Finally, in case of perfect correlation, every extreme value of Z 
would correspond to an extreme value of Y, which means: 
(𝑌 ≤ 𝑦𝛼 |𝑍 ≤ 𝑧𝛼) →  1  𝜌 → 1 . As a result, we look for 
situation where 𝜌(𝛼)  is high enough. 

These performances indicators depend on the sampled 
DOE. Therefore, the distribution of Err and 𝜌(𝛼) is estimated 
from 100 DOEs of size n.  

III. SM PERFORMANCES COMPARISON 

A. PCB trace field emission 

1) Model Inputs/Output 
The model is the electrical far-field magnitude radiated by a 

PCB trace, loaded at each end, above an infinite ground plane. 
See Fig. 1 in [20]. 

The 11 random variable inputs are: the frequency (f), 
geometrical characteristics (the substrate high (h), the trace 
width/length W/l), electrical characteristics (substrate 
permittivity εr, voltage source Vs, impedance source Zs, 
impedance load Zl), and the position where the field is 
measured (spherical coordinates r, θ, and φ). Each input 
follows a Gaussian distribution centered at their nominal value 
with a relative standard deviation of 10%. The nominal values 
are chosen so that the trace appears as a quarter wavelength 



 

 

transmission line: f=404MHz, h=0.775cm, W=0.51cm, 
l=10.16cm, εr=4.6, Vs=1V, Zs=50Ω, Zl=1Ω, r=3m, φ= θ= 2π. 

The model output is the radiated field magnitude computed 
from (23) in [20]. The output is plotted as a function of 
frequency in Fig. 1 where red circles indicate output 
realizations above the y90% quantile.  

 
Fig. 1. PCB radiated field for 10000 random inputs (red points for Y>y90%). 

Field variation with frequency while other inputs are set to their nominal 
value. 

 
Fig. 2. PCB radiation: generalized errors distributions for extreme values 

(Y>y90% ) in function of DOE sizes (n).  

 
Fig. 3. PCB radiation: correlations distributions for a DOE of size n=50  in 

function of the probability α.  

 

1) SM performances 
In Fig. 2, the SM errors are already low even for small n. 

As n increases, every SM errors decreases and are less spread. 
The PCE_KRI has the lowest error, followed by the KRI. The 
SVM is better than PCE and NN for small n but becomes the 
worst at larger n.  Therefore the ranking from the lowest error 
to the greatest is: PCE_KRI, KRI, SVM, NN, PCE for small n 
(50 and 100) and for larger n (200) SVM falls to last place. 

The correlation for small n (50), computed at the α 
probability, is plotted in Fig. 3. As α increases, every SM 
correlation decreases and is more spread as expected. The 

PCE_KRI and KRI correlation are the highest. The PCE has 
the lowest correlation. The ranking from the highest correlation 
to the lowest is the same as the ranking for the error (at small 
n). 

 
Fig. 4. Reflection coefficient (in linear) for 10000 random inputs (red points 
for Y≤y10%). Reflection variation with frequency while other inputs are set to 

their nominal value.  

 
Fig. 5.  RLC reflection: generalized errors distributions for extreme 
values(Y≤y10% )  in function of DOE sizes (n). 

 
Fig. 6.  RLC reflection: correlations distributions for a DOE of size n=50  in 
function of the probability α. 

 
 Although the ranking according to the error is the same as 
the ranking according to the correlation, the error is already 
very low (≤ 2%) whereas the correlation is not very high. We 
suspect that in the PCB case, the CS would not be needed as 
the PCE_KRI already approximates well the model in the 
distribution tail. In fact, due to moderate correlation, the CS 
with the PCE_KRI might be worse than the PCE_KRI alone. 

B. Reflection of a RLC serial circuit  

1) Model Inputs/Output 
The second studied model is the reflection coefficient of a 

RLC serial circuit. The 4 random inputs are: the frequency, the 
resistance, the capacitance and the inductance. The load 
impedance is fixed (Zl=50 Ω) as well as the input voltage (1V).  



 

 

The frequency is uniformly distributed from 100 to 900 
MHz. The resistance, capacitance and inductance are uniformly 
distributed between 90% and 110% of their nominal values. 
The model output (the reflection coefficient) is plotted in Fig. 
4. The nominal values (R=50Ω, C=1.5e-12 F and L=6.75e-8 H) 
are chosen to reach a resonance at 500 MHz.  

TABLE I.  RLC REFLECTION CASE: PCE-KRI MEAN CORRELATION (%) 

AND MEAN ERROR (%)  

n 50 100 200 

ρ  58.9 69.9 77.0 

Err  243.3 169.9 121.9 

2) SM performances 
In Fig. 5, every SM has a very high error. SVM and PCE 

yield to the most important errors. KRI, PCE_KRI and NN are 
similar although NN performs slightly better. The ranking 
according to the error is: (PCE_KRI, KRI, NN), PCE, SVM. 
“KRI is almost identical to PCE_KRI, which is a KRI with a 
PCE trend. This indicates that the random process has either a 
constant trend or that the PCE cannot estimate it. From a study 
not reported here for brevity, we found out that the random 
process trend can be indeed considered constant.” 

In Fig. 6, the ranking of the correlation is the same as for 
the error. Negative correlations encountered with the SVM, are 
not impossible but obviously not desired. 

In Table I, the mean error at extreme values (Y≤y10%) is 
reported with the mean correlation for extreme probabilities 
(α≤10%). The errors are very high whereas the correlations are 
not very low. In that case, we suspect that the CS might be 
useful.  

IV. CONCLUSION 

In this paper we investigated four SMs, candidates for the 
CS approach in order to estimate extreme quantiles when brute 
force MC is too expensive.  

In most cases the PCE_KRI performed the best, closely 
followed or similarly as the KRI. Like KRI, PCE_KRI 
provides a local error estimation of its prediction. An adaptive 
refinement of the DOE could be easily implemented and 
therefore would most likely improve the performances. 
Moreover the PCE-KRI has also sensitivity indices, unlike 
KRI. In case of very high dimensions, the sparse PCE variant 
[21] and the Partial Least Square in Kriging [22] could be used. 
Even though the NN is appealing, it does not provide a local 
error or sensitivity analysis.  

We found out in the RLC application example that with the 
best SM (PCE_KRI) the generalized error in the output 
distribution tail is very important (above 120%), the correlation 
is in fact not that low (above 58%). This encourages the use of 
the CS rather the SM alone. In the PCB radiation case example, 
the error is already low (≤ 2%) with the best SM (PCE_KRI) 
whereas the correlation is not very high. In that case, the CS 
may be less interesting than the SM alone. 

As a conclusion, we retain the PCE-KRI to supply the 
control stratification method CS. Test will be undertaken in the 
near future.  
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