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Abstract

Multivariate pattern analysis (MVPA) has become vastly popular for analyzing functional neuroimaging data. At the group level,
two main strategies are used in the literature. The standard one is hierarchical, combining the outcomes of within-subject decoding
results in a second-level analysis. The alternative one, inter-subject pattern analysis, directly works at the group-level by using, e.g.
a leave-one-subject-out cross-validation. This study provides a thorough comparison of these two group-level decoding schemes,
using both a large number of artificial datasets where the size of the multivariate effect and the amount of inter-individual variability
are parametrically controlled, as well as two real fMRI datasets comprising 15 and 39 subjects, respectively. We show that these
two strategies uncover distinct significant regions with partial overlap, and that inter-subject pattern analysis is able to detect smaller
effects and to facilitate the interpretation. The core source code and data are openly available, allowing to fully reproduce most of
these results.

Keywords: fMRI, MVPA, group analysis

1. Introduction

Over the past decade, multi-voxel pattern analysis (MVPA,
[15]) has become a very popular tool to extract knowledge from
functional neuroimaging data. The advent of MVPA has offered
new opportunities to examine neural coding at the macroscopic
level, by making explicitly usable the information that lies in
the differential modulations of brain activation across multiple
locations – i.e. multiple sensors for EEG and MEG, or multiple
voxels for functional MRI (fMRI). Multivariate pattern analy-
sis commonly consists in decoding the multivariate information
contained in functional patterns using a classifier that aims to
guess the nature of the cognitive task performed by the partici-
pant when a given functional pattern was recorded. The decod-
ing performance is consequently used to measure the ability of
the classifier to distinguish patterns associated with the different
tasks included in the paradigm. It provides an estimate of the
quantity of information encoded in these patterns, which can
then be exploited to localize such informative patterns and/or to
gain insights on the underlying cognitive processes involved in
these tasks.

This decoding performance is classically estimated sepa-
rately in each of the participants. At the group level, these
within-subject measurements are then combined – often using a
t-test – to provide population-based inference, similarly to what
is done in the standard hierarchical approach used in activation
studies. Despite several criticisms of this group-level strategy
that have been raised in the literature (see herafter for details),

this hierarchical strategy remains widely used.
An alternative strategy directly works at the group-level by

exploiting data from all available individuals in a single analy-
sis. In this case, the decoding performance is assessed on data
from new participants, i.e. participants who did not provide
data for the training of the classifier (see e.g. [32, 17, 19, 20,
18, 10]), ensuring that the nature of the information is consis-
tent across all individuals of the population that was sampled
for the experiment. This strategy takes several denominations
in the literature such as across-, between- or inter-subject clas-
sification or subject-transfer decoding. We hereafter retain the
name inter-subject pattern analysis (ISPA).

In this paper, we describe a comparison of the results pro-
vided by these two classifier-based group-level decoding strate-
gies with both artificial and real fMRI datasets, which, to the
best of our knowledge, is the first of its kind. This experimental
study was carefully designed to exclusively focus on the differ-
ences induced by the within- vs. inter-subject nature of the de-
coding, i.e. by making all other steps of the analysis workflow
strictly identical. We provide results for both two real fMRI
datasets and a large number of artificial datasets where the char-
acteristics of the data are parametrically controlled. This allows
us to demonstrate that these strategies offer different detection
power, with a clear advantage for the inter-subject scheme, but
furthermore that they can provide results of different nature, for
which we put forward a potential explanation supported by the
results of our simulations on artificial data. The paper is orga-
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nized as follows. Section 2 describes our methodology, includ-
ing our multivariate analysis pipeline for the two group-level
strategies, as well as a description of the real datasets and the
generative model of the artificial datasets. Section 3 includes
the comparison of the results obtained with both strategies on
these data, both in a qualitative and quantitative way. Finally, in
Section 4, we discuss the practical consequences of our results
and formulate recommendations for group-level MVPA.

2. Methods

2.1. Group-MVPA (G-MVPA)

Since the seminal work of [16] that marked the advent of
multivariate pattern analysis, most MVPA studies have relied
on a within-subject decoding paradigm. For a given subject,
the data is split between a training and a test set, a classifier is
learnt on the training set and its generalization performance –
usually measured as the classification accuracy – is assessed on
the test set. If this accuracy turns out to be above chance level,
it means that the algorithm has identified a combination of fea-
tures in the data that distinguishes the functional patterns asso-
ciated with the different experimental conditions. Said other-
wise, this demonstrates that the input patterns contain informa-
tion about the cognitive processes recruited when this subject
performs the different tasks that have been decoded. The de-
coding accuracy can then be used as an estimate of the amount
of available information – the higher accuracy, the more distin-
guishable the patterns, the larger the amount of information.

The group-level extension of this procedure consists in eval-
uating whether such information is present throughout the pop-
ulation being studied. For this, a second level statistical analysis
is conducted, for instance to test whether the average classifica-
tion accuracy (or any other relevant summary statistic measured
at the single-subject level), computed over the group of partic-
ipants, is significantly above chance level. This can be done
using a variety of approaches (see 2.6 for references). This hi-
erarchical scheme is the one that is most commonly used in the
literature. We denote it as Group-MVPA (G-MVPA) in the rest
of the present paper and illustrate it on Figure 1.

2.2. Inter-Subject Pattern Analysis (ISPA)

Besides the hierarchical G-MVPA solution, another classifier-
based framework exists to evaluate multivariate effects at the
group level. Considering the data from all available individu-
als, one can train a classifier on data from a set of subjects –
the training subjects – and evaluate its generalization capability
on data from the others – the test subjects. One can then use a
cross-validation scheme that shuffles the subjects between the
training and test sets, such as leave-one-subject-out or leave-n-
subjects-out. In this setting, obtaining an average classification
accuracy – this time across folds of the cross-validation – signif-
icantly above chance level means that a multivariate effect has
been identified and that it is consistent across individuals. We
denote this strategy as Inter-Subject Pattern Analysis (ISPA).

In this study, we use a leave-one-subject-out cross-validation
in which the model accuracy is repeatedly computed on the

data from the left-out subject. Even if other schemes might be
preferable to multiply the number of measurements [34], this
choice was made to facilitate the comparison of the results ob-
tained with ISPA and G-MVPA, as illustrated on Figure 1.

2.3. Artificial data

The first type of data we use to compare G-MVPA and ISPA
is created artificially. We generate a large number of datasets in
order to conduct numerous experiments and obtain robust re-
sults. Each dataset is composed of 21 subjects (for ISPA: 20 for
training, 1 for testing), with data points in two classes labeled
as Y = {+1,−1}, simulating a paradigm with two experimen-
tal conditions. For a given dataset, each subject s ∈ {1, 2, ..., 21}
provides 200 labeled observations, 100 per class. We denote the
i-th observation and corresponding class label (xs

i , y
s
i ), where

xs
i ∈ R

2 and ys
i ∈ Y. The pattern xs

i is created as

xs
i =

(
cos θs − sin θs

sin θs cos θs

)
x̃s

i ,

where

• x̃s
i is randomly drawn from a 2D Gaussian distribution,
N(C+,Σ) and N(C−,Σ) if ys

i = +1 or ys
i = −1, respec-

tively, which are defined by their centers C+ = (+ d
2 , 0)

and C− = (− d
2 , 0), where d ∈ R+ and their covariance

matrix Σ, here fixed to
(
1 0
0 5

)
(see Supplementary Mate-

rials for results with other values of Σ);

• θs defines a rotation around the origin that is applied to all
patterns of subject s; the value of θs is randomly drawn
from the Gaussian distribution N(0,Θ), where Θ defines
the within-population variance.

Let Xs = (xs
i )200

i=1 and Y s = (ys
i )200

i=1 be the set of patterns and
labels for subject s. A full dataset D is defined by

D =

s=21⋃
s=1

{Xs,Y s}.

The characteristics of such a dataset are in fact governed by
two parameters:

• d, which defines the distance between the point clouds of
each of the two classes, i.e. the multivariate effect size;

• Θ, which controls the amplitude of the rotation that can
be applied to the data, separately for each subject: when
Θ is small, all the θs angles remain small, which means
that the data of all subjects are similar; when Θ increases,
the differences between subjects become larger; there-
fore, Θ quantifies the amount of inter-individual variabil-
ity that exists within the group of 21 subjects for a given
dataset.

Figures 2a and 2b illustrate the influence of each of these two
parameters. Figure 2c shows different datasets generated with
the same values of d and Θ.
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Figure 1: Illustration of the two approaches available to perform classifier-based group-level multivariate analysis. Left: hierarchical
group-MVPA (G-MVPA). Right: inter-subject pattern analysis (ISPA). Note that if a leave-one-subject-out cross validation is used
for ISPA (as illustrated), the two approaches yield the same number of measurements (equal to the number of subjects S ), which
allows for an unbiased comparison using the same statistical inference method.

In our experiments we used 13 values for d and 11 values for
Θ, d ∈ {0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3,
0.4, 0.6}, Θ ∈ {0.2π, 0.25π, 0.3π, 0.35π, 0.4π, 0.45π, 0.5π, 0.55π,
0.6π, 0.65π, 0.7π}, which gives 143 points in the two dimen-
sional parameter space spanned by d and Θ. Note that by chang-
ing the value of Θ while keeping Σ constant, we control the rel-
ative amounts of within- and between-subject variance, which
have been shown to be critical in group-level decoding situa-
tions [24]. For each pair (d,Θ), we generated 100 datasets. This
yields 14300 datasets, each comprising 21 subjects and a total
of 4200 data points. The code for generating these datasets (as
well as performing the experiments detailed hereafter) is avail-
able online at the following URL: http://www.github.com/
SylvainTakerkart/inter_subject_pattern_analysis.

2.4. fMRI data

We also used two real fMRI datasets that were acquired
at the Centre IRM-INT in Marseille, France. For both experi-
ments, participants provided written informed consent in agree-
ment with the local guidelines of the South Mediterranean ethics
committee.

In the first experiment (hereafter Dataset1), fifteen subjects
participated in an investigation of the neural basis of cognitive
control in the frontal lobe, largely reproducing the experimen-
tal procedure described in [21]. Participants lying supine in
the MRI scanner were presented with audiovisual stimuli that
required a button response, with the right or left thumb. Four
inter-stimulus intervals were used equally in a fully randomized

order (1.8, 3.5, 5.5, 7.1 seconds), with an average of 4.5 sec-
onds over a session. Data was collected with a 3T Bruker Med-
spec 30/80 Avance scanner running ParaVision 3.0.2. Eight
MRI acquisitions were performed. First, a field map using a
double echo Flash sequence recorded distortions in the mag-
netic field. Six sessions with 60 trials each were recorded, each
comprising 133 volumes (EPI sequence, isotropic resolution of
3 × 3 × 3 mm, TE of 30 ms, flip angle of 81.6◦, field of view of
192 × 192 mm, 36 interleaved ascending axial slices acquired
within the TR of 2400 ms) encompassing the whole brain paral-
lel to the AC-PC plane. Finally, we acquired a high-resolution
T1-weighted anatomical image of each participant (MPRAGE
sequence, isotropic voxels of 1 × 1 × 1 mm, field of view of
256 × 256 × 180 mm, TR = 9.4 ms, T E = 4.424 ms).

In the second experiment (Dataset2), thirty-nine subjects
were scanned using a voice localizer paradigm, adapted from
the one analyzed in [29]. While in the scanner, the participants
were asked to close their eyes while passively listening to a set
of 144 audio stimuli, half of them being voice sounds, the other
half being non-vocal. Most of the stimuli were taken from a
database created for a previous study [6], while the others were
extracted from copyright-free online databases. The paradigm
was event-related, with inter-stimulus intervals randomly cho-
sen between 4 and 5 seconds. The images were acquired on a
3T Prisma MRI scanner (Siemens, Eerlangen, Germany) with
a 64-channels head coil. A pair of phase-reversed spin echo
images was first acquired to estimate a map of the magnetic
field. Then, a multi-band gradient echo-planar imaging (EPI)
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Figure 2: Illustration of the artificial datasets generated with the
model described in 2.3. Each line is a subpart of a single dataset
(5 subjects shown amongst 21 in (a) and (b), 10 subjects shown
in (c)). The data points belonging to the class y = +1 and
y = −1 are shown in blue and red, respectively. (a): influence
of the d parameter (increasing effect size from top to bottom).
(b): influence of the Θ parameter (increasing inter-individual
variability from top to bottom). (c) five datasets obtained with
the same values of the two parameters (d = 2 and Θ = 0.2π).

sequence with a factor of 5 was used to cover the whole brain
and cerebellum with 60 slices during the TR of 955 ms, with
an isotropic resolution of 2 × 2 × 2 mm, a TE of 35.2 ms, a flip
angle of 56 degrees and a field of view of 200 × 200 mm for
each slice. A total of 792 volumes were acquired in a single
run of 12 minutes and 36 seconds. Then, a high resolution 3D
T1 image was acquired for each subject (isotropic voxel size
0.8 mm3, TR = 2400 ms, T E = 2.28 ms, field of view of
256 × 256 × 204.8 mm). Dataset2 is part of the InterTVA data
set [1], which is fully available online 1.

2.5. fMRI data analysis

The two datasets were processed using the same sets of op-
erations. The pre-processing steps were performed in SPM122.
They included co-registration of the EPIs with the T1 anatom-
ical image, correction of the image distortions using the field

1https://openneuro.org/datasets/ds001771
2https://www.fil.ion.ucl.ac.uk/spm/

maps, motion correction of the EPIs, construction of a population-
specific anatomical template using the DARTEL method, trans-
formation of the DARTEL template into MNI space and warp-
ing of the EPIs into this template space. Then, a general linear
model was set up with one regressor per trial, as well as other
regressors of non interest such as motion parameters, following
the least-squares-all approach described in [26]. The estimation
of the parameters of this model yielded a set of beta maps that
was each associated with a given experimental trial. The beta
values contained in these maps allowed constructing the vec-
tors that serve as inputs to the decoding algorithms, that there-
fore operate on single trials. We obtained 360 and 144 beta
maps per subject for Dataset1 and Dataset2 respectively. No
spatial smoothing was applied on these data for the results pre-
sented below (the results obtained with smoothing are provided
as Supplementary Materials).

For these real fMRI datasets, we performed a searchlight
decoding analysis [23], which allows to map local multivari-
ate effects by sliding a spherical window throughout the whole
brain and performing independent decoding analyses within each
sphere. For our experiments, we exploited the searchlight im-
plementation available in nilearn3 to allow obtaining the single-
fold accuracy maps necessary to perform inference. For Dataset1,
the decoding task was to guess whether the participant had used
his left vs. right thumb to answer during the trial corresponding
to the activation pattern provided to classifier. For G-MVPA,
the within-subject cross-validation followed a leave-two-sessions-
out scheme. For Dataset2, the binary classification task con-
sisted in deciphering whether the sound presented to the partic-
ipant was vocal or non-vocal. For G-MVPA, because a single
session was available, we used an 8-fold cross-validation. Fi-
nally, all experiments were repeated with five different values
of the searchlight radius (r ∈ {4 mm, 6 mm, 8 mm, 10 mm, 12
mm}).

2.6. Classifiers, Statistical inference and performance evalua-
tion

In practice, we employed the logistic regression classifica-
tion algorithm (with l2 regularization and a regularization weight
of C = 0.1), as available in the scikit-learn4 python module,
for both artificial and real fMRI data. The logistic regression
has been widely used in neuroimaging because it is a linear
model that enables neuroscientific interpretation by examining
the weights of the model, and because it provides results on par
with state of the art methods while offering an appealing com-
putational efficiency [30].

In order to perform statistical inference at the group level,
the common practice is to use a t-test on the decoding accu-
racies. Such a test assesses whether the null hypothesis of a
chance-level average accuracy can be rejected, which would re-
veal the existence of a multivariate difference between condi-
tions at the group level (note that, as detailed in 2.1 and 2.2, the
rejection of this null hypothesis provides different insights on

3http://nilearn.github.io/
4https://scikit-learn.org/stable/

4
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the group-level effect depending on whether G-MVPA or ISPA
is used).

However, several criticisms have been raised in the liter-
ature against this approach, namely on the nature of the sta-
tistical distribution of classification accuracies [28, 2], on the
non-directional nature of the identified group-information [13]
or on the fact that the results can be biased by confounds [33].
This has led to the development of alternative methods (see e.g.
[28, 5, 31, 9, 2]), all dedicated to G-MVPA.

Because our objective is to compare the results given by G-
MVPA and ISPA in a fair manner, i.e using the same statistical
test, we used a permutation test [27] which allows overcom-
ing some of the aforementioned limitations. This test assesses
the significance of the average accuracy at the group-level in a
non-parametric manner for all the experiments conducted in the
present study, whether conducted with G-MVPA or ISPA. Fur-
thermore, this choice allowed maintaining the computational
cost at a reasonable level, a condition that other alternatives, e.g
inspired by [31], would not have met (see the Supplementary
Materials for a longer discussion on this matter). In practice,
for the real fMRI experiments, we used the implementation of-
fered in the SnPM toolbox5 to analyse the within-subject (for G-
MVPA) or the single-fold (for the inter-subject cross-validation
of ISPA) accuracy maps, with 1000 permutations and a signif-
icance threshold (p < 0.05, FWE corrected). For the simula-
tions that used the artificial datasets, we used an in-house im-
plementation of the equivalent permutation test (also available
in our open source code; see 2.3), with 1000 permutations and
a threshold at p < 0.05. Critically, it should be noted that the
same number of samples were available for this statistical pro-
cedure when using G-MVPA or ISPA, as shown on Figure 1.

In order to compare the group-level decoding results pro-
vided by G-MVPA and ISPA, we use the following set of met-
rics. For the artificial data, we generated 100 datasets at each of
the 143 points of the two dimensional parameter space spanned
by the two parameters d and Θ. For each of these datasets,
we estimate the probability p to reject the null hypothesis of
no group-level decoding. We then simply count the number of
datasets for which this null hypothesis can be rejected, using
the p < 0.05 threshold, which we denote NG and NI for G-
MVPA and ISPA, respectively. For the two real fMRI datasets,
we examine the thresholded statistical map obtained for each
experiment. We then compare the maps obtained by G-MVPA
and ISPA by computing the size and maximum statistic of each
cluster, as well as quantitatively assessing their extent and lo-
calization by measuring how they overlap.

3. Results

In this section, we present the results obtained when com-
paring G-MVPA and ISPA on both artificial and real fMRI datasets.
With the artificial datasets, because we know the ground truth,
we can unambiguously quantify the differences between the
two strategies. Our focus is therefore on the characterization

5http://warwick.ac.uk/snpm

of the space spanned by the two parameters that control the
characteristics of the data to evaluate which of these two strate-
gies provides better detection power. For the real datasets, we
do not have access to a ground truth. After having assessed the
consistency of the obtained results with previously published
work, we therefore focus on describing the differences between
the statistical maps produced by G-MVPA and ISPA, examine
the influence of the searchlight radius, and try to relate these
results to the ones obtained on the artificial datasets.

3.1. Results for artificial datasets

The results of the application of G-MVPA and ISPA on the
14300 datasets that were artificially created are summarized in
Tables 1, 2 and 3. In order to facilitate grasping the results on
this very large number of datasets, we proceed in two steps.

First, we represent the two-dimensional parameter space
spanned by d and Θ as a table where the columns and lines
represent a given value for these two parameters, respectively.
The values in these tables are the number of datasets NG and NI

(out of the 100 datasets available for each cell) for which a sig-
nificant group level decoding accuracy (p < 0.05, permutation
test) is obtained with G-MVPA (Table 1 ) or ISPA (Table 2).
In order to analyse these two tables, we performed a multiple
linear regression where d and Θ are the independent variables
used to explain the number of significant results in each cell.
In Table 1, the effect of d is significant (FG−WS PA

d = 941.75,
pG−WS PA

d < 10−10), but the effect of Θ is not (FG−WS PA
Θ

= 0.83,
pG−S PA

Θ
= 0.36), while in Table 2, both factors have signifi-

cant effects (F IS PA
d = 135.20, pIS PA

d < 10−10; F IS PA
Θ

= 774.27,
pIS PA

Θ
< 10−10). This means that, as expected, the effect size

d has an effect on the detection power of both G-MVPA and
ISPA, i.e the smaller the effect size, the more difficult the detec-
tion. But the amount of inter-individual variability, here quan-
tified by Θ, influences the detection capability of ISPA, but not
the one of G-MVPA. This produces the rectangle-like area vis-
ible in green on Table 1 and the triangle-like area visible in red
on Table 2. When the inter-individual variability is low, ISPA
can detect significant effects even with very small effect sizes.
When the variability increases, the detection power of ISPA de-
creases – i.e. for a given effect size, the number of datasets for
which ISPA yields a significant result decreases, but the one of
G-MVPA remains constant.

Secondly, in order to easily depict the compared behaviors
of G-MVPA and ISPA, we overlapped the results of the two
strategies into Table 3. In this third table, the blue cells in-
dicate that NG > 50 and NI > 50 (i.e. that both G-MVPA
and ISPA produce significant results in more than half of the
100 datasets), while the green and red regions contain cells
where it is the case only for G-MVPA or ISPA respectively
(i.e. NG > 50 and NI < 50 in green cells; NI > 50 and
NG < 50 in red cells). Note that for completeness, we also used
different values of this arbitrary threshold set at 50, which did
not qualitatively change the nature of the results described be-
low (hence these results are not shown). We observe a large
blue region in which both strategies provide concordant de-
tections, for the largest values of the effect size d and with

5
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Table 1: Number of datasets NG (out of 100) for which G-MVPA provides significant group decoding (in green: cells where
NG ≥ 50)

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π 7 11 15 22 27 36 40 44 53 59 68 96 100
0.65π 9 14 16 23 29 36 39 45 55 63 70 98 100
0.6π 13 16 17 25 27 35 44 53 58 71 76 95 100
0.55π 10 14 17 21 25 32 37 46 50 61 76 96 100
0.5π 7 8 15 17 22 30 36 46 55 59 64 94 100
0.45π 4 7 13 14 22 32 39 46 51 62 69 96 100
0.4π 8 11 18 22 26 31 40 49 54 63 72 97 100
0.35π 4 7 15 24 34 37 46 51 61 61 68 96 100
0.3π 10 14 24 26 31 40 46 57 58 71 78 95 100
0.25π 9 13 20 25 32 43 45 53 60 62 69 94 100
0.2π 9 12 15 19 28 34 39 50 59 67 75 95 100

Table 2: Number of datasets NI (out of 100) for which ISPA provides significant group decoding (in red: cells where NI ≥ 50)

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π 8 8 9 10 11 10 10 10 8 10 10 9 13
0.65π 5 8 8 8 9 10 9 10 14 14 14 13 19
0.6π 8 13 12 13 15 15 14 17 16 18 20 20 21
0.55π 13 13 14 15 20 19 23 22 25 26 26 25 27
0.5π 16 15 16 22 24 24 28 27 29 29 30 38 45
0.45π 19 21 22 26 29 32 34 42 47 53 53 59 67
0.4π 22 28 33 34 39 41 42 49 49 50 54 69 85
0.35π 21 27 32 37 44 50 55 61 68 69 74 85 93
0.3π 25 30 39 46 60 67 70 74 82 83 90 98 99
0.25π 44 56 63 69 73 79 84 90 94 96 96 100 100
0.2π 42 55 63 71 80 86 91 93 94 98 98 100 100

Table 3: Visual comparison of G-MVPA vs. ISPA (in blue: cells where both NG ≥ 50 and NI ≥ 50; in green: cells where NG ≥ 50
and NI < 50; in red: cells where NG < 50 and NI ≥ 50).

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π
0.55π
0.5π
0.45π
0.4π
0.35π
0.3π
0.25π
0.2π

a moderately low amount of inter-individual variability. In-
terestingly, the green and red regions, where one strategy de-
tects a group-level effect while the other does not, also take an
important area in the portion of the parameter space that was
browsed by our experiments, which means that the two strate-
gies can disagree. G-MVPA can provide a positive detection
when the inter-individual variability is very large, while ISPA
cannot (green region). But ISPA is the only strategy that of-
fers a positive detection for very small effect sizes, requiring a
moderate inter-individual variability (red region).

3.2. Results for fMRI datasets

3.2.1. Qualitative observations
For our two real datasets, the literature provides clear ex-

pectations about brain areas involved in the tasks performed by
the participants and the associated decoding question addressed
in our experiments. The active finger movements performed by

the participants during the acquisition of Dataset1 are known to
recruit contralateral primary motor and sensory as well as sec-
ondary sensory cortices, ipsilateral dorsal cerebellum as well
as the medial supplementary motor area [25]. In Dataset2,
the participants were passively listening to vocal and non-vocal
sounds. The contrast, or decoding, of these two types of stimuli
is classically used to detect the so-called temporal voice areas,
which are located along the superior temporal cortex (see e.g.
[29]). We now describe the results obtained with G-MVPA and
ISPA with respect to this priori knowledge.

The searchlight decoding analyses performed at the group
level were all able to detect clusters of voxels where the de-
coding performance was significantly above chance level (p <
0.05, FWE-corrected using permutation tests) with both G-MVPA
and ISPA, for Dataset1 and Dataset2 and with all sizes of the
spherical searchlight. The detected clusters were overall con-
sistent across values of the searchlight radius, with an increas-
ing size of each cluster when the radius increases. In Dataset1,
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both strategies uncovered two large significant clusters located
symmetrically in the left and right motor cortex. Additionally,
ISPA was able to detect other significant regions located bilat-
erally in the dorsal part of the cerebellum and the parietal oper-
culum, as well as a medial cluster in the supplementary motor
area (note that some of these smaller clusters also become sig-
nificant with G-MVPA with the larger searchlight radii). These
areas were indeed expected to be involved bilaterally given that
button presses were given with both hands in this experiment.
In Dataset2, both G-MVPA and ISPA yielded two large signif-
icant clusters in the temporal lobe in the left and right hemi-
spheres, which include the primary auditory cortex as well as
higher level auditory regions located along the superior tem-
poral cortices, matching the known locations of the temporal
voice areas. Figure 3 provides a representative illustration of
these results, for a radius of 6 mm.

Figure 3: Illustration of the results of the group-level search-
light decoding analysis for a 6 mm radius. Top two rows:
Dataset1; bottom two rows: Dataset2. Brain regions found
significant using G-MVPA and ISPA are depicted in green
and red, respectively. A: primary motor and sensory cortices
B:ipsilateral dorsal cerebellum C: medial supplementary motor
area D: secondary sensory cortices E: superior temporal cortex

3.2.2. Quantitative evaluation
Our quantitative evaluation focuses on the two largest clus-

ters uncovered in each dataset, i.e. the ones in the motor cortex
for Dataset1 and the ones in the temporal lobe for Dataset2.

We first examine the size of these clusters, separately for each
hemisphere and each of the five values of the searchlight ra-
dius. The results are displayed in the left column of Figure 4.
In almost all cases, the size of the significant clusters increased
with the searchlight radius (left column). Moreover, the clus-
ter located in the right hemisphere is consistently larger than
the one on the left. In Dataset1, the cluster detected by ISPA
is larger than the one detected by G-MVPA, regardless of the
hemisphere, while in Dataset2, it is G-MVPA that yields larger
clusters (except for a 4 mm radius where the sizes are similar).
Then, we study the peak value of the t statistic obtained in each
cluster (right column of Figure 4). In Dataset1, the peak t value
is higher for ISPA than G-MVPA, for all values of the radius.
In Dataset2, ISPA yields higher peak t values than G-MVPA
for the searchlight radii smaller or equal than 8 mm, and lower
peak t values for the larger radius values.

Figure 4: Quantitative evaluation of the results obtained on the
real fMRI datasets for G-MVPA (green curves) and ISPA (red
curves). Solid and dashed lines for the largest cluster in the
left and right hemispheres respectively. Left column: size of
the significant clusters. Right column: peak t statistic. Top vs.
bottom row: results for Dataset1 and Dataset2 respectively.

Then, we quantify the amount of overlap between the clus-
ters found by G-MVPA and ISPA, by splitting the voxels into
three sub-regions: voxels uncovered only by ISPA, only by G-
MVPA or by both strategies (overlap). Figure 5 provides an
illustration of these sub-regions, which shows that the overlap
region (in blue) is located at the core of the detected clusters,
while the voxels significant for only one strategy are located
in the periphery; these peripheral voxels appear to be mostly
detected by ISPA for Dataset1 (red voxels) and by G-MVPA
for Dataset2 (green voxels). Figure 6 shows the voxel counts in
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each sub-region, which confirms this visual inspection. Overall,
the size of the sub-region found by the two strategies increases
with the searchlight radius. The ISPA-only sub-region is larger
in Dataset1 than in Dataset2, representing between 38% and
83% of all significant voxels. Conversely in Dataset2, the G-
MVPA-only sub-region is more important – with a percentage
of all significant voxels comprised between 18% and 60%.

We also count the number of voxels in each sub-region for
each hemisphere. Figure 6 shows that for both datasets, the
clusters in the right hemisphere are larger than in the left hemi-
sphere. For both hemispheres, in most cases the number of
voxels in each sub-region increases as the searchlight radius in-
creases. However, in Dataset1, the number of voxels found
only by G-MVPA is much smaller than that of overlap and
ISPA-only sub-regions with all five radius values. In contrast,
in Dataset2 the number of voxels in ISPA-only sub-regions de-
creases for the four smallest values of the searchlight radius,
and voxels only uncovered by ISPA are much fewer than those
found only by G-MVPA.

4. Discussion

4.1. G-MVPA and ISPA provide different results

In this study, we have performed experiments on both real
and artificial functional neuroimaging data in order to compare
two group-level MVPA schemes that rely on classifier-based
decoding analyses: the vastly used G-MVPA, and ISPA. Our
results show that both strategies can offer equivalent results in
some cases, i.e. that they both detect significant group-level
multivariate effects in similar regions of the cortex for our two
real fMRI datasets, and in parts of the two-dimensional param-
eter space browsed using our artificially generated datasets, but
that their outcomes can also differ significantly. For instance, in
Dataset1, ISPA was the only strategy that detected multivariate
group-level effects in several regions such as the supplementary
motor area, the bilateral parietal operculum and dorsal cerebel-
lum, for most of the searchlight radii that we tested (see an ex-
ample on Figure 3 with a 6 mm radius). Furthermore, when
a region is detected by both strategies, it usually differs in its
size, extent and/or precise location, resulting in partial overlap;
in most cases, the areas of concordance between the two strate-
gies appeared to be centrally located, while the disagreements
are located towards the periphery: in some areas, G-MVPA de-
tects a group-level effect while ISPA does not, and inversely in
other areas. Note that for Dataset2, our results generalize some
of the observations reported in [13] with a different, yet compa-
rable, framework of analysis, on a closely related data set.

Surprisingly, the peripheral behaviors were not consistent
across the two real fMRI datasets: on Dataset1, ISPA only
was able to detect effects on the periphery of the core region
where both strategies were equally effective, while on Dataset2,
it was G-MVPA which provided significant results on the pe-
riphery. The results of the experiments conducted on the ar-
tificial datasets can actually shed some light on these results,
thanks to the clear dissociation that was observed in the two-
dimensional parameter space browsed to control the properties

of the data. Indeed, ISPA is the only strategy that allows detect-
ing smaller multivariate effects when the inter-individual vari-
ability remains moderate, which is the case in the largest re-
gions detected in Dataset1 because they are located in the pri-
mary motor cortex, the primary nature of this region limiting
the amount of inter-subject variability. On the opposite, the pe-
ripheral parts of the temporal region detected in Dataset2 are lo-
cated anteriorly and posteriorly to the primary auditory cortex,
towards higher-level auditory areas where the inter-individual
variability is higher, a situation in which G-MVPA revealed
more effective in the experiments conducted with our artificial
data.

4.2. ISPA: larger training sets improve detection power
Our experiments revealed a very important feature offered

by the ISPA strategy: its ability to detect smaller multivariate
effects. On the one hand, this greater detection power was ex-
plicitly demonstrated through the simulations performed on ar-
tificial data, where the multivariate effect size was one of the
two parameters that governed the generation of the data; we
showed that with an equal amount of inter-individual variabil-
ity, ISPA was able to detect effects as small as half of what
can be detected by G-MVPA. Furthermore, on both real fMRI
datasets, ISPA was able to detect significant voxels that were
not detected using G-MVPA, in a large amount in Dataset1, and
to a lesser extent in Dataset2. This detection power advantage
is of great importance, since detecting weak distributed effects
was one of the original motivations for the use of MVPA [15].

This greater detection power of ISPA is in fact the result
of the larger size of the training set available: indeed, when
the number of training examples is small, the performance of a
model overall increases with the size of the training set, until an
asymptote that is reached with large training sets – as encoun-
tered in computer vision problems where millions of images are
available from e.g. ImageNet6. In the case of functional neu-
roimaging where an observation usually corresponds to an ex-
perimental trial, we usually have a few dozen to a few hundred
samples per subject, which clearly belongs to the small sample
size regime, i.e. very far from the asymptote. In this context,
ISPA offers the advantage to multiply the number of training
samples by a factor equal to the number of subjects in the train-
ing set, which is of great value. However, here, the increased
sample size comes at the price of a larger heterogeneity in the
training set, because of the differences that can exist between
data points recorded in different subjects. If these differences
are too large, they can represent an obstacle for learning, but
if more moderate, the inter-subject variability can reveal ben-
eficial by increasing the diversity of the training set. The fact
that we observe a higher detection power with ISPA than with
G-MVPA suggests that we are in the latter situation.

4.3. ISPA offers straightforward interpretation
When using the ISPA strategy, obtaining a positive result

means that the model has learnt an implicit rule from the train-
ing data that provides statistically significant generalization power

6http://www.image-net.org
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Figure 5: Comparison of the clusters detected by G-MVPA and ISPA for the different values of the searchlight radius, in Dataset1
(top row) and Dataset2 (bottom row).

on data from new subjects. Since a cross-validation of the type
leave-one-subject-out or leave-n-subjects-out is performed on
the available data to quantitatively assess such results, it allows
to draw inference on the full population from which the group
of participants was drawn, including individuals for which no
data was available. As previously pointed out in [22], the inter-
pretation that follows is straightforward: a significant effect de-
tected with ISPA implies that some information has been iden-
tified to be consistent throughout the full population. In more
details, this means that the modulations of the multivariate pat-
terns according to the experimental conditions that were the ob-
ject of the decoding analysis are consistent throughout the pop-
ulation, at least at the resolution offered by the modality used
for the acquisition. This is the case for all voxels colored blue
and red on Figure 5.

4.4. G-MVPA is more sensitive to idiosyncrasies
A significant result detected by G-MVPA but not ISPA –

i.e. the green voxels on Figure 5, indicates that there is in-
formation at the population level in the input patterns that can
discriminate the different experimental conditions, but that the
nature of the discriminant information present in the input vox-
els differs across individuals. In other words, G-MVPA has
detected idiosyncratic pattern modulations between conditions,
which can be of great neuroscientific interest (see e.g. [7]), that
could not have been identified with ISPA. This could be caused
by two phenomenons. First, it could mean that the underlying
coding strategy is nonetheless invariant across individuals, but
that the nature of the data or of the feature space used in this
analysis does not allow to identify it as such, e.g. because of
an unperfect inter-subject registration of the functional maps.
One would then need to acquire additional data using a differ-
ent modality ([8]) or to transform the feature space (e.g. us-
ing methods such as [14], [32] or [11]) in order to attempt to
make this invariance explicit. Secondly, it could also mean that
the neural code is simply intrinsically different across subjects,

for instance because several strategies had been employed by
different individuals to achieve the same task, or because each
subject employs its own idiosyncratic neural code. G-MVPA
therefore only provides part of the answer, which makes the
interpretation much less direct.

Note that beyond searchlight analyses, this potential ambi-
guity could also occur with decoding performed in pre-defined
regions of interest. Although such ROI-based decoding are
vastly analysed at the group level using G-MVPA, numerous
papers interpret the results as if G-MVPA allows identifying
population-wise common coding principles, which cannot be
claimed with only G-MVPA. These limitations have been pointed
out previously in the literature, as in e.g. [33], [2] or [13], and
we feel that the community should tackle this question more
firmly. This could start by defining what a group-level multi-
variate analysis should seek – a consistent amount or nature of
the information. Finally, because G-MVPA and ISPA are some-
how complementary, one could think about using both types of
analysis to better assess neural coding principles.

4.5. A computational perspective
Finally, we examine here some practical considerations that

are important for the practitioner, by comparing the computa-
tional cost of G-MVPA and ISPA, and the availability of ready-
to-use software implementations.

To assess the computational complexity of the two approaches,
we first compare the number of classifiers that need to be trained
for a full group analysis. Using G-MVPA, we need to train
K classifiers per subject, where K is the chosen number of
within-subject cross-validation folds, so KS classifiers in to-
tal (where S is the number of available subjects). For ISPA,
the number of cross-validation folds equals to S (for leave-one-
subject-out), meaning we need to train a total of S classifiers.
The training time of a classifier also depends on the number
of training examples: it is linear for classifiers such as logis-
tic regression (when using gradient-based optimizers [3]), and
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Figure 6: Comparison of the voxel counts detected by G-MVPA-only (green), ISPA-only (red) or both (blue) for the different values
of the searchlight radius, in Dataset1 (left) and Dataset2 (right).

quadratic for e.g. support vector machines [4]. Assuming we
have n examples per subject, the number of training examples
available for each classifier is (K−1)n

K for G-MVPA and (S − 1)n
for ISPA. Overall, with linear-time classifiers, the total com-
plexity of a group-level decoding analysis amounts to O(nKS )
for G-MVPA and O(nS 2) for ISPA, which makes them almost
equivalent if one assumes that K and S are of the same order
of magnitude. With quadratic-time classifiers, the total com-
plexity is O(n2KS ) for G-MVPA and O(n2S 3) for ISPA, which
makes ISPA significantly more costly. We therefore advice to
use linear-time classifiers such as logistic regression to perform
ISPA analyses, particularly with searchlight decoding where the
computational cost is further multiplied by the number of vox-
els. Furthermore, note that thanks to its hierarchical nature,
G-MVPA can be performed in an incremental manner for a low
computational cost as participants get scanned: every time data
from a new subject becomes available during the acquisition
campaign, it suffices to run within-subject decoding for this new
subject, which costs O(nK), plus the statistical test. This offers
more flexibility for the experimenter than with the inter-subject
scheme, for which performing IPSA every time a new subject is
scanned amounts to re-doing a full analysis on all the subjects.

In terms of software implementation, because within-subject
analyses have been the standard since the advent of MVPA, all
software packages provide well documented examples for such
analyses which are the base tool for G-MVPA. Even if it is not
the case for ISPA, it is easy to obtain an equivalent implemen-
tation because to perform inter-subject decoding, one simply
need to i) have access to the data from all subjects, and ii) set
up a leave-one-subject-out cross-validation, these two opera-
tions being available in all software packages. As an example,
we provide the code to perform ISPA searchlight decoding from

pre-processed data available online, which allows reproducing
the results described in the present paper on Dataset2:
http://www.github.com/SylvainTakerkart/inter_subject_

pattern_analysis.

5. Conclusion

In this paper, we have compared two strategies that allow
performing group-level decoding-based multivariate pattern anal-
ysis of task-based functional neuroimaging experiments: the
first is the standard method that aggregates within-subject de-
coding results and a second one that directly seeks to decode
neural patterns at the group level in an inter-subject scheme.
Both strategies revealed effective but they only provide par-
tially concordant results. Inter-subject pattern analysis offers
a higher detection power to detect weak distributed effects and
facilitate the interpretation while the results provided by the hi-
erarchical approach necessitate further investigation to raise po-
tential ambiguities. Furthermore, because it allows identifying
group-wise invariants from functional neuroimaging patterns,
inter-subject pattern analysis is a tool of choice to identify neu-
romarkers [12] or brain signatures [22], making it a versatile
scheme for population-wise multivariate analyses.
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Supplementary materials

1. Influence of the number of subjects and number of sam-
ples per subject

Aim. Although the two real fMRI datasets used in our ex-
periments have approximately the same total number of ob-
servations (5400 observations in Dataset1, 5616 observations
in Dataset2), they differ in the number of subjects that were
scanned and the number of trials per subject: Dataset1 includes
360 trials for each of the 15 subjects, while Dataset2 offers 144
trials for 39 subjects. We here attempt to investigate whether
this could explain some of the differences we observed in the
results of G-MVPA and ISPA on these two datasets, using new
artificial datasets.

Experiments. We therefore repeat the same set of experi-
ments as in the paper, using new sets of 14300 datasets gener-
ated to maintain the size of the training set constant and modu-
lating the ratio between the number of subjects S and the num-
ber of samples per subject N. We used the following parameter
values: (S ,N) ∈ {(9, 500), (11, 400), (17, 250), (21, 200),
(51, 80), (101, 40), (201, 20), (401, 10)}, which allows maintain-
ing the size of the group-level dataset approximately constant
(and more particularly, the size of the ISPA training set is ex-
actly constant at (S − 1) × N = 4000).

Results. We present below the results we obtained, under
the same summarized form as in Table 3 of the paper. Tables S1
to S8 represent the two-dimensional parameter space spanned
by d and Θ, for various values of the (S ,N) couple. The cells
colored in blue are those where G-MVPA and ISPA yielded sig-
nificant group-level decoding for 50 or more datasets out of the
100, whereas in the green cells it is the case only for G-MVPA
and in the red ones it is the case only for ISPA.

The shape of the region where G-MVPA yields 50 or more
significant detections, corresponding here to the green and blue
cells, remains approximately rectangular for all values of (S ,N).
But when the number of subject S increases, it is shifted to the
right of the table, i.e. G-MVPA is effective only for larger ef-
fect sizes. This is a direct consequence of the decreasing value
of N, which is critical for within-subject decoding. For ISPA,
the shape and location of the colored region (red and blue cells)
where it is effective remains fairly constant, showing that ISPA

is not or weakly affected by the ratio N/S when the size of the
training set is constant.

We now try to address the question of whether the difference
in the N/S ratio between Dataset1 and Dataset2 can explain
the fact that the most peripheral regions of the main clusters are
detected by ISPA for Dataset1 and G-MVPA for Dataset2, in
the light of the present results where we vary N/S in artificial
datasets. The N/S ratio for Dataset1 is 360/15 = 24, while
for Dataset2, it is 144/39 = 3.7. We reformulate the previous
question as follows: if the N/S ratio of Dataset1 were smaller
(i.e. closer to the one of Dataset2), could the peripheral voxels
– which are red on Figure 5 of the paper, i.e. are detected by
ISPA – become green, i.e. be detected only by G-MVPA? For
this, consider a red cell in Table S3 (for which the N/S ratio is
the closest to the one of Dataset1): can it become green when
the ratio N/S decreases? We clearly see that it is not possible,
i.e. that all red cells in Table S3 are also red (in almost all
cases) in Tables S4 to S8 where N/S is smaller. We then ask
the opposite question: if the N/S ratio of Dataset2 were larger
(i.e. closer to the one of Dataset1), could the peripheral voxels
– which are green on Figure 5 of the paper, i.e. are detected by
G-MVPA – become red, i.e. be detected only by ISPA? For this,
consider a green cell in Table S5 (for which the N/S ratio is the
closest to the one of Dataset2): can it become red when the ratio
N/S increases? We clearly see that it is not possible, i.e. that
all green cells in Table S5 are also green (in almost all cases)
in Tables S1 to S4 where the N/S ratio is larger. This parallel
between the real and the artificial datasets therefore suggests
that it is not the difference of N/S ratio between Dataset1 and
Dataset2 that can explain the different behaviors observed in
the periphery of the significant clusters between G-MVPA and
ISPA, illustrated on Figure 5 of the paper.
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Table S1: Visual comparison of G-MVPA vs. ISPA, 9 subjects, 500 data
points per subject

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S2: Visual comparison of G-MVPA vs. ISPA, 11 subjects, 400 data
points per subject

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S3: Visual comparison of G-MVPA vs. ISPA, 17 subjects, 250 data
points per subject

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S4: Visual comparison of G-MVPA vs. ISPA, 21 subjects, 200 data
points per subject

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S5: Visual comparison of G-MVPA vs. ISPA, 51 subjects, 80 data points
per subject

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S6: Visual comparison of G-MVPA vs. ISPA, 101 subjects, 40 data
points per subject

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S7: Visual comparison of G-MVPA vs. ISPA, 201 subjects, 20 data
points per subject

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S8: Visual comparison of G-MVPA vs. ISPA, 401 subjects, 10 data
points per subject

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π
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2. Influence of the within-subject covariance

Aim. Group-level decoding is strongly influenced by the
ratio of the inter- and within-subject variance. To study the in-
fluence of this ratio, we performed experiments in the paper
where the within-subject covariance Σ was fixed and the inter-
subject variability was parametrically controlled, using our gen-
erative model to create a large number of artificial datasets.
Here, we study whether our results hold when we change the
within-subject variance.

Experiments. In this section we vary both the within- and
inter-subject variability. We keep the same range of values for
Θ, which controls the amount of inter-subject variability:
Θ ∈ {0.2π, 0.25π, 0.3π, 0.35π, 0.4π, 0.45π, 0.5π, 0.55π, 0.6π,
0.65π, 0.7π}. And we generate five new sets of 14300 datasets
using five values for the within-subject covariance matrix:

Σ1 =

(
1 0
0 5

)
,Σ2 =

(
3 0
0 5

)
,Σ3 =

(
5 0
0 5

)
,Σ4 =

(
7 0
0 5

)
,

Σ5 =

(
9 0
0 5

)
. We fix the number of subjects to 21 and generate

200 data points for each subject. Figure S1 illustrates the effect
of each of these five covariance matrices on the properties of
the generated datasets, for d = 2 and Θ = 0. In short, the
distinctiveness of the two classes decreases from Σ1 to Σ5.

Figure S1: Illustration of the artificial datasets generated with five covariance
matrices. Each line is a subpart of a single dataset (5 subjects shown amongst
21), d = 2 and Θ = 0.

Results. Our results are shown in Tables S9 to S13. As pre-
viously, G-MVPA and ISPA yield more that 50 detections out
of the 100 datasets available in each cell in regions that only
partially overlap. Both strategies are strongly influenced by the
within-subject covariance Σ, i.e. they prove less effective when
going from Σ1 to Σ5, i.e. when the within-subject distinctive-
ness of the patterns decreases. However, the shape of the differ-
ent regions in this parameter space remains constant: G-MVPA
is effective in a rectangle area (blue + green cells), showing that
it is not affected by the amount of inter-subject variability; and
ISPA is effective in a triangle-like area (blue + red cells). This
shows that the qualitative nature of our results does not seem to
be affected by the value of Σ.

Table S9: Visual comparison of G-MVPA vs. ISPA, Σ1

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S10: Visual comparison of G-MVPA vs. ISPA, Σ2

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S11: Visual comparison of G-MVPA vs. ISPA, Σ3

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S12: Visual comparison of G-MVPA vs. ISPA, Σ4

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π

Table S13: Visual comparison of G-MVPA vs. ISPA, Σ5

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π

0.55π
0.5π

0.45π
0.4π

0.35π
0.3π

0.25π
0.2π
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3. Influence of spatial smoothing on the results obtained on
the real fMRI datasets

Aim. The preprocessing steps performed in the paper on the
two fMRI datasets did not include any spatial smoothing. Since
there is a debate in the literature on the validity and interest
of such smoothing when performing MVPA, we here study the
influence of the smoothing on our results.

Experiments. We replicate the same experiments as in the
paper by adding some spatial smoothing on the beta maps that
are used to construct the inputs of the classifier. We use the
Gaussian kernel implemented in SPM to perform the smoo-
thing, with full-width at half-maximum values of 3 mm and
6 mm.

Results. For clarity, we denote as Dataset1-s3 and Dataset2-
s3 the versions of the two datasets with the 3 mm smoothing,
and Dataset1-s6 and Dataset2-s6 with the 6 mm smoothing.
The results are presented in the same way as in the paper for
the unsmoothed data: Figure S2 and S3 show the thresholded
statistical maps, displaying the significant clusters; Figure S4
and S5 present the analysis of the size of the main cluster and
its peak statistic value, for each dataset, each hemisphere and
each size of the searchlight radius; finally, Figure S6 and S7 de-
scribe how the main clusters obtained with G-MVPA and ISPA
overlap.

Overall, the results obtained with smoothing are consistent
with what we found with the unsmoothed data: clusters were
found in the same regions of the brain, their size increased with
the value of the searchlight radius and the patterns of overlap
between the clusters found by G-MVPA and ISPA were overall
similar.

The main effect of smoothing appears to be that the number
of significant voxels increases when the size of the smoothing
kernel increases, from 0 mm to 3 mm to 6 mm. This can be
explained by the fact that a small amount of smoothing helps
reduce noise which can slightly improve decoding accuracies
on the one hand and also increase the reproducibility across
cross-validation folds on the other hand. This therefore facili-
tates detection as probed by our statistical test on accuracies.

Furthermore, a notable difference observed with 6 mm smoo-
thing is the fact that the size of the activated clusters found by
ISPA for Dataset2-s6 is as large as the ones found by G-MVPA,
which is not the case with smaller or no smoothing (see bottom-
left graph in Figure S5, compared with the one in Figure S4 or
with Figure 4 in the paper). Congruently, the pattern of overlap-
ping of the clusters found by the two strategies is modified for
Dataset2-s6 when compared with the one found with smaller or
no smoothing (see the right graph of Figure S7, compared to the
right graph on Figure S6 and Figure 6 in the paper): the number
of voxels detected only by G-MVPA (green voxels) decreased
in an important proportion. This is consistent with the puta-
tive explanation that was put forward in the paper, that stated
that the large amount of green voxels found in Dataset2 could
be caused by a large inter-individual variability: indeed, one
of the effect of spatial smoothing is often to reduce this inter-
individual variability. In a complementary manner, this could
also mean that the idiosyncrasies that could drive the detection

of the green voxels leave at high spatial frequencies. The spatial
smoothing, by attenuating these frequencies, would therefore
make them vanish as we observe in this experiment.
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Figure S2: Illustration of the results of the group-level searchlight decoding
analysis for a 6 mm radius with Dataset1-s3 and Dataset2-s3. Top two rows:
Dataset1-s3; bottom two rows: Dataset2-s3. Brain regions found significant
using G-MVPA and ISPA are respectively depicted in green and red.

Figure S3: Illustration of the results of the group-level searchlight decoding
analysis for a 6 mm radius with Dataset1-s6 and Dataset2-s6. Top two rows:
Dataset1-s6; bottom two rows: Dataset2-s6. Brain regions found significant
using G-MVPA and ISPA are respectively depicted in green and red.
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Figure S4: Quantitative evaluation of the results obtained on the smoothed fMRI datasets for G-MVPA (green curves) and ISPA (red curves), 3 mm Gaussian
kernel. Solid and dashed lines for the largest cluster respectively in the left and right hemispheres. Left column: size of the significant clusters. Right column: peak

t statistic. Top vs. bottom row: results for Dataset1-s3 and Dataset2-s3 respectively.

Figure S5: Quantitative evaluation of the results obtained on the smoothed fMRI datasets for G-MVPA (green curves) and ISPA (red curves), 6 mm Gaussian
kernel. Solid and dashed lines for the largest cluster respectively in the left and right hemispheres. Left column: size of the significant clusters. Right column: peak

t statistic. Top vs. bottom row: results for Dataset1-s6 and Dataset2-s6 respectively.
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Figure S6: Comparison of the voxel counts detected by G-MVPA-only (green), ISPA-only (red) or both (blue) for the different values of the searchlight radius, in
Dataset1-s3 (left) and Dataset2-s3 (right)

Figure S7: Comparison of the voxel counts detected by G-MVPA-only (green), ISPA-only (red) or both (blue) for the different values of the searchlight radius, in
Dataset1-s6 (left) and Dataset2-s6 (right).
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4. Bias and variance analyses for G-MVPA and ISPA

Aim. In order to further compare G-MVPA and ISPA, we
here assess their bias and variance for estimating classifiers. For
this, we exploit the generative model used to construct our arti-
ficial dataset to define the true classifier, and measure how each
strategy deviates from this ground truth.

Experiments. In this section we use the same artificial
datasets as in Section 2.3 of the paper. Before inducing some
random inter-individual variability with a rotation around the
origin, the two classes are separated by the the straight line
x = 0. Because the mean variability (i.e. rotation angle) across
the population is equal to zero, the true group-level classifier is
defined by f : x = 0. Classifiers estimated from the i-th subject
in G-MVPA or the i-th cross-validation split in ISPA are de-
noted as f i

G and f i
I , respectively. We use the angle between the

estimated and true classifiers to measure the estimation error:
the angles between f i

G and f , f i
I and f are denoted as θi

G and θi
I ,

respectively. We can then compute:

biasG =
1
S

i=S∑
i=1

θi
G

varG =
1
S

i=S∑
i=1

(θi
G − biasG)2

biasI =
1
S

i=S∑
i=1

θi
I

varI =
1
S

i=S∑
i=1

(θi
I − biasI)2

where biasG, varG and biasI , varI are the bias and variance of
G-MVPA and ISPA respectively. For each point in the parame-
ter space defined by d and Θ, we compute the average bias and
variance of the 100 datasets available in each cell of the tables
shown in Section 3.1 of the main paper.

Results. The values of the average bias and variance of
G-MVPA and ISPA are shown as the intensities of the images
presented on Figure S8, which represent the parameter space
defined by d and Θ, as in Tables 1-3 of the main manuscript.
Overall, the bias and variance of ISPA appears to be more con-
stant than the ones of G-MVPA, which reach much higher val-
ues. ISPA leads to a smaller bias than G-MVPA everywhere,
except in a limited part of the parameter space with large ef-
fect size and relatively low inter-subject variability, which cor-
responds to cases where both strategies provide equivalent de-
tection power. Moreover, the variance of ISPA is smaller than
the one of G-MVPA in all cases. In summary, ISPA present
smaller bias and variance than G-MVPA in all the challenging
part of the parameter space, i.e. where the effect size is small or
the variability is large.

Figure S8: Results of the bias and variance analyses. Top, from left to right:
bias of G-MVPA, bias of ISPA, difference biasG − biasI . Bottom, from left to

right: variance of G-MVPA, variance of ISPA, difference varG − varI .
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5. Assessing false positive rates in G-MVPA and ISPA

Aim. In order to complement the sensitivity analyses pre-
sented in the main manuscript, we here perform a specificity
analysis by measuring the number of false positives produced
by G-MVPA and ISPA on artificial data sets where the true ef-
fect size is null.

Experiments. We use the same generative model as in the
paper, but we set d to zero, which allows obtaining datasets that
contain no effect. Furthermore, we generate datasets with dif-
ferent amounts of inter-individual variability by choosing Θ in
{0, 0.05π, 0.1π, 0.15π, 0.2π, 0.25π, 0.3π, 0.35π, 0.4π, 0.45π, 0.5π,
0.55π, 0.6π, 0.65π, 0.7π}. For each value of Θ, we generate 1000
independent datasets. The number of datasets for which group-
level decoding accuracy is significant is counted using the pro-
cedure described in Section 2.6. Because there is no true effect,
all these datasets are false positives. With a threshold set at
p < 0.05 in the permutation test, we should obtain 5% false
positives or less, i.e. 50 datasets at most.

Results. The numbers of false detections obtained with G-
MVPA and ISPA are shown in Table S14. Overall, in all cases,
both strategies detect an effect in more than 50 datasets out of
1000 whereas there is none. This indicates an inflated false
positive rate (on average 6.4% for G-MVPA and 9.7% for ISPA)
when the statistical inference is performed with a permutation
test on accuracies.

Discussion. For G-MVPA, as already documented in the
literature, this could be caused by the non-symmetric nature of
the distribution of accuracies (which violate the exchangeabil-
ity assumption of the permutation test), or by the lack of use of
the uncertainty of single-level measurements (as addressed in
(Olivetti et al., 2012)). Several solutions have been proposed, as
mentioned in the main manuscript (Olivetti et al., 2012; Broder-
sen et al., 2013; Stelzer et al., 2013; Etzel, 2015; Allefeld et
al., 2016). For ISPA, the same argument about the asymmetry
of the distribution holds as a potential cause for this inflated
rate of false positives. Furthermore, another potential cause
might be the dependence between the accuracies measured on
each fold: indeed, even though the test sets are totally inde-
pendent between the different folds of a leave-one-subject-out
cross-validation, the classifiers learnt on each fold are not in-
dependent because of the large amount of overlap between the
training sets of each fold. To the best of our knowledge, no so-
lution has been proposed in the neuroimaging literature to han-
dle this specific question of statistical inference on inter-subject
accuracies. A solution directly applicable could be to use label
permutations on the observations (as in Stelzer et al., 2013). We
did not use it because of the exponentially high computing time
required for this, and also because we believe that these inflated
positive rates observed for the two strategies do not question
the nature of our results. Indeed, even if a few percents of the
detections are mistagged as positives, i) the shape of Table 3
of the main manuscript (that summarizes the comparison of G-
MVPA and ISPA on the artificial datasets) will hold, and ii) the
qualitative assessment of the statistical maps obtained on real
data would barely be affected because it is based on the largest
clusters, which are clearly not false positives.

Table S14: Number of false positives obtained using the permutation test with
G-MVPA and ISPA

variability G-MVPA ISPA
0.7π 62 80

0.65π 64 112
0.6π 69 100

0.55π 55 105
0.5π 62 98

0.45π 62 99
0.4π 70 92

0.35π 63 102
0.3π 57 89

0.25π 69 82
0.2π 56 98

0.15π 68 94
0.1π 62 98

0.05π 75 112
0π 71 95
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