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Abstract
The cloud has emerged as an attractive platform for resource-intensive scientific applications,

such as epidemic simulators. However, building and executing such applications in the cloud

presents multiple challenges, including exploiting elasticity, handling failures, and simplifying

multi-cloud deployment. To address these challenges, this paper proposes a novel, service-based

framework called DiFFuSE that enables simulation applications with a bag-of-tasks structure to

fully exploit cloud platforms. The paper describes how the framework is applied to restructure

two legacy applications, simulating the spread of bovine viral diarrhea virus and Mycobac-

terium avium subspecies paratuberculosis, into elastic, cloud-native applications. Experimental

results show that the framework enhances application performance and allows exploring differ-

ent cost-performance trade-offs while supporting automatic failure handling and elastic resource

acquisition from multiple clouds.
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1 INTRODUCTION

As global transport networks continue to expand, the risk of infectious disease transmission grows, making research in pathogen spread on humans
and animals increasingly important. An essential tool for studying pathogen spread is computer simulation based on mechanistic modelling. How-
ever, running epidemic simulations at large scale is time consuming for multiple reasons. First, the simulation models can capture fine-grained
dynamics, considering different population scales (individual, population, meta-population) and accounting for multiple layouts (e.g., combining
population and infection dynamics with farm management decisions) . 1 Second, some processes can be data-driven and exploit large amounts
of real-life observed data, mostly concerning the population dynamics of hosts. Third, understanding the underlying biological system requires
performing and comparing many simulation scenarios, e.g., through a model sensitivity analysis. Finally, producing reliable results demands large
numbers of simulation runs when models are stochastic.

Speeding up the execution of large-scale simulations requires parallelism. Parallelism can be implemented at the single-computer level using
multiple cores and processors as well as the distributed level using multiple computers interconnected through a network. There are currently
three main options for obtaining the necessary computing resources for running simulations in parallel. The first option is using dedicated, high-end
multicore systems or clusters. The limitation is that such infrastructures are typically shared amongmany local users, resulting in long waiting times.
At the same time, extending such infrastructures to increase user satisfaction is time consuming and costly. The second option is grid computing,
which allows sharing computers from multiple clusters in multiple sites. The main limitation of grids is the heterogeneity of the software stacks in
each cluster, which makes application deployment difficult. Moreover, grid-based applications are assigned a statically-fixed number of resources,
leading to poor resource utilisation or reduced performance in the face of dynamic variations in resource demand.
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The third option for obtaining computing resources is cloud computing, which enables users to rapidly obtain and release practically unlimited
amounts of resources while being charged only for actual resource usage. Thanks to virtualisation, cloud computing enables applications to have
their own software stacks and to run reliably in various environments. Cloud computing thus overcomes the limitations of the previous two options,
bringing immediate economic and agility benefits, and lowering the barrier to running complex simulations. Despite the attractiveness of cloud
computing, converting epidemic simulation applications to become cloud-native applications presents several challenges.

A main challenge is facilitating the deployment and operation of simulation applications. Indeed, using clouds requires considerable manual
effort for obtaining cloud resources, configuring and launching multiple runs of the simulation on these resources, making input data available, and
collecting and processing simulation results. This effort becomesmore complex when the application is deployed onmultiple clouds, which is useful
for avoiding dependence on a single vendor, enhancing availability, and taking advantage of lower resource prices or specialised resource capabili-
ties. Another challenge is exploiting cloud elasticity to optimise the performance and cost of simulation applications. Indeed, simulation applications
may require different amounts of resources at different times. For instance, the initialisation phase may require fewer compute resources than the
main processing phase, thus making it more efficient to scale up the resource allocation at run time. A third challenge is handling failures, which
are unavoidable when executing long-running, distributed applications, such as epidemic simulators, on the cloud. Handling failures is essential for
avoiding data loss and ensuring the correct and efficient completion of the simulation.

To address these challenges, this paper presents a framework, called DiFFuSE, that enables simulation applications to fully exploit cloud plat-
forms. The framework assumes that the core of the application’s computation takes the form of a bag of independent tasks, in which tasks are
simulation runs and can be executed in parallel. Specifically, the paper makes two main contributions. First, it describes the DiFFuSE framework
for building and executing pathogen spread simulators. The main novelty of DiFFuSE lies in its service-based architecture; simulation applications
are decomposed into services that can be deployed across multiple clouds and independently scaled, while the framework transparently handles
service failures. Second, the paper presents the application of DiFFuSE to building cloud-native simulators of the spread of bovine viral diarrhea
virus (BVDV) and of Mycobacterium avium subsp. paratuberculosis (MAP) and uses these applications to evaluate the benefits of the DiFFuSE
framework. The paper completes and extends our previous work on the DiFFuSE framework. 2,3Specifically, the paper provides further details on
the operation of the framework, including the allocation of simulation runs and failure handling. Furthermore, the paper adds the case study of the
MAP application and reports new experiments to provide a thorough evaluation of the framework using both case studies.

The rest of this paper is organised as follows. Section 2 discusses related work. Section 3 briefly presents the BVDV and MAP case studies, the
simulations used throughout the paper as practical examples. Section 4 details the architecture of DiFFuSE and its application in the case studies.
Section 5 reports a set of experiments using the case studies, and Section 6 concludes the paper.

2 RELATEDWORK

This section examines related research that focuses on exploiting large amounts of computing power to execute epidemic simulations.
Eriksson et al. 1 use OpenMP to parallelise pandemic simulations, taking advantage of multi-core processors. The evaluation demonstrates that

performance can be improved by dynamically switching between single- and multi-core modes as the computational load varies. This work does
not consider parallelisation at the distributed level. Bhatele et al. 4 introduce EpiSimdemics, a highly scalable, parallel code written in Charm++ using
agent-based modelling to simulate disease outbreak over large, realistic, co-evolving interaction networks. The paper presents an implementation
of EpiSimdemics simulating the spread of influenza on different supercomputers. The authors argue that EpiSimdemics obtains five times greater
speedup than the second fastest parallel code in the field. Similarly to the work by Eriksson et al. 1, the authors do not consider parallelisation at
the distributed level.

Many solutions exploit parallelisation at the distributed level in order to enhance performance. Martin and Carretero 5 present an MPI-based
epidemic simulator, EpiGraph, used to study the propagation of infectious diseases between regions due to people movements. EpiGraph can be
executed efficiently both on clusters and shared-memory nodes. Perumalla and Seal 6 present an optimistic, parallel, discrete event execution of
a reaction-diffusion simulation of epidemic outbreaks. The simulation scales to 65,536 cores of a large Cray XT5 system with speedup of over
10,000. Rao andChernyakhovsky 7 present an eco-modeling, bio-simulation environment, called SEARUMS++, for studying the global epidemiology
of avian influenza. The environment uses Time Warp synchronised parallel simulations executed on clusters. Bisset et al. 8 present a modelling
environment, called Indemics, for supporting complex epidemic simulations, not limited to a specific disease model. Although all previous solutions
are scalable, they do not exploit the advantages of the cloud in reducing the cost and in increasing the agility of obtaining resources.

Zou et al. 9 propose using GPU clusters to implement large-scale, contact-network based epidemic simulations. The paper describes optimisation
techniques for improving the efficiency of memory accesses and reducing the communication latency between compute nodes. The techniques
are tested on a cluster whose compute nodes are equipped with GPUs, and experimental results show that the execution on GPUs can achieve 7.4
to 11.7 times speedup over the execution on CPUs. Holvenstot et al. 10 use general-purpose GPU devices to accelerate an agent-based simulation
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of influenza spread. Experimental results show that the GPU implementation achieves significantly greater speedups than a multi-threaded CPU
implementation. Although the previous solutions demonstrate the performance benefits of using GPUs, they require purchasing expensive, high-
end hardware rather than using clouds, which currently provide GPU-based resources with low prices.

Eriksson et al. 11 present a cloud-based approach for performing simulations of pandemic influenza. The approach relies on the HTCondor
architecture in which a central master schedules and distributes jobs and a set of workers receive and execute the jobs. The approach allows
adding workers by renting Amazon EC2 virtual machines (VMs). The tests show that the network capacity of the master node can become a
bottleneck when the number of workers increases. The authors discuss possible solutions, such as compressing data or choosing nodes connected
to high-speed networks. Unlike our work, this work does not exploit elasticity to dynamically handle increases in resource demand.

Sukcharoen et al. 12 propose a cloud-based framework for simulating the spread of epidemic diseases. The framework applies loop decomposition
to parallelise the simulation onmultiple VMsof a private cloud, built using theXenCloudPlatform. This framework is restricted to a specific epidemic
model, namely, a modified version of the SEIR model (Susceptible, Exposed, Infectious, Recovered) and does not support elasticity. Price et al. 13

present an approach for executing a compute-intensive application for epidemic analysis on cloud resources. The approach uses the Nimbus cloud
to obtain resources on demand. This work considers neither elasticity nor the cost of using cloud resources. Haris and Manzoor 14 present a cloud-
based framework for simulating the spread of the dengue virus in Pakistan. This framework does not support parallelisation at single-computer
level and does not exploit the elasticity of cloud resources.

Work focusing on executing bag-of-tasks applications on the cloud is also related to ours. Benedictis et al. 15 present a framework, called BOT, for
developing bag-of-tasks scientific applications on themOSAIC cloud platform. Similarly to our work, BOT can be used on the resources of any cloud
providers, and it includes strategies for fault-tolerance. BOT was evaluated using an application that solves a classical combinatorial optimisation
problem (binary knapsack). Agarwal and Prasad 16 present a similar framework for developing bag-of-tasks applications, called AzureBOT. However,
this framework targets exclusively a single cloud, that is, the Azure cloud. AzureBOT was evaluated using two applications, an Internet data scraper
and a master-slave simulator. Krol et al. 17 discuss a data farming platform, called Scalarm, which relies on the master-worker pattern, and presents
its extension for running a molecular dynamics simulation on clusters and on clouds. The evaluations of BOT, AzureBOT, and Scalarm focus on
application performance and cost without considering fault-tolerance and elasticity. In addition, unlike our work, frameworks for bag-of-tasks
or master-worker applications lack specialised facilities for building simulation applications, making it complex and inefficient to use them for
real-world applications. Lacking facilities include managing simulation experiments, coordinating simulation runs, replicating simulation data for
resilience and performance, and elastically scaling the computation and data transfer capacities involved in running the simulation.

Much research has focused on algorithms for scheduling bag-of-tasks applications on cloud resources, aiming to optimise application per-
formance or monetary cost. 18 Similarly, such research does not provide a complete solution for building epidemic simulation applications.
Nevertheless, such research can form a basis of optimising task scheduling in our work, which currently only applies basic scheduling policies.

To summarise, some of the related work for executing epidemic simulations does not exploit clouds and their associated parallelisation, cost,
and agility benefits. 1,4,5,6,7,8,9,10 Other related work exploits clouds but lacks support for elasticity, 11,12,13,14 multi-cloud deployment, 16, fault tol-
erance, 17 or required facilities beyond bag-of-tasks execution. 15,18 To the best of our knowledge, our work is the first to propose a complete,
practical solution for building and executing simulation applications, structured as bags of tasks, across multiple clouds with support for elasticity
and fault-tolerance.

3 CASE STUDIES: BVDV ANDMAP SPREAD SIMULATORS

This section discusses the use of simulation for studying two diseases, bovine viral diarrhea and bovine paratuberculosis. These are endemic
diseases in cattle, caused respectively by a virus (BovineViral DiarrhoeaVirus, BVDV) and a bacteria (Mycobacterium avium subsp. paratuberculosis,
MAP), that lead to economic losses owing to reproductive disorders, decrease in milk production as well as increases in morbidity and mortality
among infected animals. 19,20To identify the main drivers of the spread of the diseases in a region and to compare a large range of regional control
strategies, two distinct original stochastic metapopulation models have been proposed. They are both discrete-time compartment models based
on characteristics of dairy cattle herds in Brittany.

The model of BVDV spread accounts for the two main transmission pathways between herds: trade movements of animals carrying the virus
and virus transmission during the grazing season due to over-the-fence contacts with animals from neighbouring herds. 21In addition, the model
accounts for the local within-herd virus spread, using as a building block a previous within-herd model. 19,22Practically, the simulation uses a 2 GB
database describing cattle life trajectories in Brittany from 2005 to 2013. This database provides information on the demography of dairy animals
(e.g., birth, death, culling rates) and trade movements between farms (e.g., holding farms, dates and reasons of entry/exit). The metapopulation
model represents the spread of BVDV within and between 12,750 dairy cattle herds located in Brittany and takes into account 1,056,565 animals
movements over the 9-year period.



4 PARLAVANTZAS et al

Resource	Coordination

Cloud	Deployment	and	Execution

Data	Services

Computing	Services

Experiment	Services

Epidemic Simulation	Services

FIGURE 1 Architecture of DiFFuSE

The model of MAP spread 23,24 accounts only for between-herds spread through animal trade movements, which represents the main pathway.
The regional model consists in coupling numerous (one per farm) stochastic within-farm epidemiological models 25 through cattle trademovements.
Practically, for both animal movements and farming management, pre-processed real observed data (extracted from the same database used for
the BVDV model) are plugged into the model. The metapopulation model represents the spread of MAP within and between 12,857 dairy cattle
herds located in Brittany, and takes into account 919,304 animals movements over the 9-year period.

These complex simulations pose the challenges of performance and operational costs, already discussed in Section 1 for generic epidemic
simulations. Indeed, ensuring accurate predictions requires performing from 200 to 500 repetitions, which is time-consuming and highly susceptible
to failures from the human or machine side. Moreover, researchers have to perform simulations for many possible spreading scenarios and carry
out sensitivity analyses for many model parameters. As a result, performing such simulations remains beyond the budget of small and medium
laboratories and research groups. The BVDV and MAP case studies will be used in demonstrating and evaluating the DiFFuSE framework.

4 DiFFuSE FRAMEWORK AND APPLICATIONS

Fig. 1 shows the architecture of the DiFFuSE framework, which is structured in three layers. Seen from the bottom up, the layers are increasingly
specific to the domain of epidemic simulations. At the bottom is a cloud deployment and execution platform, capable of running any modular
application across clouds. Next is the resource coordination layer that supports building services that exchange data using a specific set of provided
mechanisms. At the top is the epidemic simulation services layer that supports building epidemic simulation applications as sets of cooperating
services. The rest of this section provides details on each layer and on applying the framework in the case studies.

4.1 Cloud Deployment and Execution
The aim of this layer is to hide the intricacies of cloud technologies (e.g., diverse cloud providers, interfaces, services). Specifically, the layer facilitates
deploying an application across multiple clouds and automatically adapting this deployment, when needed (e.g., elastically scaling components
to handle workload variations). The layer assumes that applications are structured as interconnected, deployable components and relies on the
PaaSage platform 26,27, a holistic solution for automatic deployment and execution of cloud applications.

Briefly, the PaaSage platform operates as follows. First, PaaSage receives as input descriptions of cloud providers (e.g., VM types, prices) and
applications (e.g., components and interconnections, objectives), all written in CAMEL, the PaaSage application modelling and execution language.
PaaSage then decides how to best deploy the application on available cloud resources and performs the deployment through obtaining VMs,
installing and configuring software. At runtime, PaaSage monitors and adapts the deployment to react to events, such as violations of performance
objectives, or changes in cloud prices. It can notably trigger elasticity actions (e.g., scale out a component) based on ECA (Event Condition Action)
rules defined in CAMEL.Within DiFFuSE, PaaSage receives as input CAMEL descriptions of the simulation services and of available cloud providers
and generates and dynamically maintains an appropriate multi-cloud deployment.
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4.2 Resource Coordination
The aim of this layer is to facilitate the coordination of distributed services, communicating over the network. Specifically, the layer enables services
to exchange data in a reliable and scalable way. Each service is running as a separate process and can be deployed using the cloud deployment and
execution layer discussed previously. Next, we discuss how the resource coordination layer supports data exchange and failure handling.

4.2.1 Data Exchange
The layer relies on the concepts of resource, resource manager, resource user, resource provider, and resource monitor. A resource is any data that
can be named and exchanged between services (e.g., experiment configuration, experiment data). A resource manager owns and provides access
to local resources and is identified by a URL. Resource managers can be linked in a hierarchy in which a resource manager can provide access to
the resources of its parent resource manager.

A service can play three roles with regards to a resource: (1) resource user, which sends requests to a resource, demanding the associated
data, (2) resource provider, which receives and replies to such requests, providing access to the resource data, and (3) resource monitor, which
tracks the state of a resource (e.g., providers are present, providers have failed). A resource supports one of four management styles determining
how data are distributed among providers:

• Single provider management: the resource has only a single provider offering all the data.

• Replicated management: the resource can have multiple providers, each offering the same data. A request to the resource is delivered to
any of the providers. This management style can be used to support fault-tolerance; if one provider fails, the requests are handled by the
remaining providers. Moreover, it can be used to improve the request response time through balancing the load among providers. A service
can obtain the data from an available provider and become itself a provider.

• Individual management: the resource can have multiple, independent providers, each offering different data. A resource user can send
requests to an identified provider to obtain the data.

• Collective management: the resource has a fixed set of providers, each offering a different part of the data. A resource user can obtain
the data if all providers are available. If a provider fails, a notification is sent that allows reacting to this failure.

Resource coordination in DiFFuSE is implemented using three C++ classes: the resourceManager class owns local resources and interacts
with its parent resource manager, the resourceLocalClient supports interacting with local resources, and the resourceClient class supports
interacting with remote resources.

4.2.2 Failure Handling
Services are distributed and interdependent, which introduces many opportunities for failure:

• Deployment-order failures: services may fail when they try to interact with services that are not yet deployed.

• Cleanup failures: services may fail to release allocated resources when the overall computation ends.

• Service failures: services may fail due to hardware errors or bugs.

DiFFuSE handles deployment-order failures through using the nanomsgmessage library. 28With classical TCP sockets, a connection to a service
fails if the service is not already running. With nanomsg, the library transparently uses retry and timeout mechanisms, removing any dependencies
on deployment order. Cleanup failures are avoided by ensuring that when a specified service service stops, all other services stop and cleanly
release their resources. DiFFuSE handles service failures through the connections between each resource manager (except the root manager) and
its parent resource manager. The services on both sides of such connections check that they periodically receive messages from the other side
and take appropriate actions when failures are detected. For instance, if the resource manager detects the failure of a remote service that was a
resource provider, the manager updates the resource state and notifies all resource users and resource monitors.

4.3 Epidemic Simulation Services
The aim of this layer is to facilitate building epidemic simulation applications as sets of cooperating services. Specifically, the layer provides reusable
design and code for commonly-required functionality in such applications, such as controlling experiments, executing simulation runs, andmanaging
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the flow of simulation data between services. This functionality is provided as a collection of services, built on the resource coordination layer,
that can be easily customised and used by developers. Next, we discuss the types of provided services and how they collaborate to execute the
simulation, handle associated failures, and transfer data.

4.3.1 Provided Services
The simulation services fall into three main categories.

• Data Services: retrieve data from databases and provide these data as well as related meta-data to other services.

• Computing Services: perform the main computations of the simulation, either sequentially or in parallel, using single-computer paral-
lelisation (e.g., using OpenMP). Computing services include services that execute simulation runs (called worker services), a service that
generates final results (called final results service) as well as services that process these results.

• Experiment Services: control the life-cycle of experiments. They track the progress of the computations, they handle service failures, and
they provide configuration data about the experiments to other services.

DiFFuSE provides three generic C++ classes that serve as templates for developing services of the previously-mentioned categories. Each service
defines a routine executedwhen requests are received and instantiates a resourcemanager class that provides access to local and remote resources.

4.3.2 Allocation of Simulation Runs

NbRR=r
ExeR=0
NbTh=n

Calculate
AlloR p1

Worker
i

a)

Experiment
Service

Failure
Detected

Execute
AlloR p1

Probe

RR=NbR
ExpR=0

b)

RR-=p1
ExpR+=p1

AlloR
i
+=p1

AlloR=p1

ExeR=p1

Calculate
AlloR p2

RR-=p2
ExpR+=p2

AlloR
i
+=p2

AlloR=p2

NbRR=r
ExeR=0
NbTh=n

Calculate
AlloR p1

Worker
i

Experiment
Service

RR=NbR
ExpR=0

RR-= p1
ExpR+=p1

AlloR
i
+=p1

AlloR=p1

ExeR=p1-u1
ExeR

i
+=p1-u1

RR+=u1
ExpR-=p1

AlloR
i
-=p1

Calculate
AlloR p2

RR-=p2
ExpR+=p2

AlloR
i
+=p2

AlloR=p2

Execute
AlloR p1

UR=u1<=p1

ExeR=p1

Calculate
AlloR p2

Worker
i

Experiment
Service

RR-=p2
ExpR+=p2

AlloR
i
+=p2

AlloR=p2

ExeR=0

ExeR
i
=0

RR+=AlloR
i
+ExeR

i
ExpR-=p2

AlloR
i
-=p2(==0)

Calculate
AlloR p3

RR-=p3
ExpR+=p3

AlloR
i
+=p3AlloR=p3

Worker
i

Failed

UR=ExeR
i
+p2

Worker
i

Revived

c)

RR: Remaining Runs
NbR: Number of Runs required by the simulation
NbRR: Number of Runs requested by a worker
ExeR: Executed Runs by a worker
NbTh: Number of Threads supported by a worker
ExpR: Allocated Runs are expected to finish
AlloR: Runs allocated by the simulation to a worker
UR: Unsuccessful Runs of a worker due to failures
AlloR

i
: Run allocated by the simulation to worker

i

ExeR
i
: Executed Runs by worker

i

ExeR
i
=0

AlloR
i
=0

ExeR
i
=0

ExeR
i
+=p1

ExeR
i
+=p1

ExpR-=p1

ExeR
i
+=p1

ExpR-=p1

AlloR
i
-=p1

ExeR
i
=0

ExeR
i
=0

AlloR
i
=0

ExeR
i
+=p1-u1

ExeR
i
+=p1

ExeR
i
=0

ExeR
i
=0

AlloR
i
=0

t
0

t
0

t
1

t
1

t
1

FIGURE 2 Protocol for Allocating Simulation Runs in Different Situations: a) Normal, b) Lost Runs and c) Failed Workers

This section discusses how the experiment service allocates simulation runs to worker services. The allocation assumes that simulation runs
are independent, and thus that the overall computation has the structure of a bag of tasks. Moreover, the allocation follows a simple policy that
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requires only information on the number of threads supported by the node hosting a worker. Adding more complex policies that exploit richer
information on the underlying nodes (e.g., memory size, network bandwidth) and on simulation runs (e.g., expected execution time) could improve
application performance. However, the current paper does not focus on optimising performance but on providing a complete solution for running
simulations across clouds in a flexible, scalable, and fault-tolerant manner.

The simple policy is shown in Figure 2a. At the beginning (t0), aworkeri sends a request message to the experiment service to ask for the number
of runs to execute. The request contains a suggested number of runs (NbRR), the number of threads (NbTh) supported by the node hosting the
worker, and the number of runs executed successfully by the worker after the previous allocation (ExeR). Typically, the NbRR parameter is set to
the NbTh value in order to enable parallel execution of the runs; if NbRR is larger than NbTh, some runs will be queued at the worker. The ExeR
parameter is used to calculate the cumulative number of executed runs for this worker (ExeRi) at the experiment-service side.

The experiment servicemaintains the list of executed runs of all participating workers as well as cumulative variables, such as remaining runs (RR)
and expected runs (ExpR). RR is the total number of remaining runs to be allocated to workers. ExpR is the number of runs that were allocated, but
the experiment service is still waiting for their results. Initially, ExpR is set to zero while RR is set to the number of runs required by the simulation
(NbR).

When the experiment service gets the request from a worker, it calculates the number of runs allocated to the worker (AlloR) using Algorithm
4.3.2. The algorithm takes into account the number of runs suggested by the worker (NbRR), the total number of workers (nbOfWorkers) and the
remaining number of runs (RR). The algorithm allocates a larger number of runs at the beginning, which decreases as the remaining number of runs
decreases. The goal of this strategy is to have all workers finish their computations at approximately the same time. The experiment service then
sends the value of AlloR in a reply message to the worker and updates the cumulative variables including the AlloRi variable, storing the number
of runs allocated to that specific worker.

When the worker gets the reply message from the experiment service, it executes the runs allocated to it, and then sends another request
message to the execution service. This process repeats until all the simulation runs are allocated. The next subsection includes a discussion of cases
when workers fail to execute the allocated runs.

Algorithm 4.3: Pseudocode of Allocation Algorithm

i n t ge tA l l o ca t i on ( message request ) {
i n t propose ;
propose = ( ( RR + nbOfWorkers − 1) / nbOfWorkers )

∗ request . NbTh ;
i f ( propose > request .NbRR ) propose = request .NbRR ;
i f ( propose >= RR ) propose = RR ;
e l se i f ( propose == 0) propose = RR ;
return propose ;

}
Al loR = ge tA l l o ca t i on ( request ) ;

4.3.3 Handling Worker Failures
This section discusses failures of workers to execute their allocated runs; generic failure handling mechanisms were discussed in Section 4.2.2.
The workers are resource providers that provide the partial results resource. The management style of this resource is collective (see 4.2.1), which
means that workers offer different parts of results data and any failure to provide the data must be handled. There are two situations when the
collective results cannot be provided. The first is when some of the simulation runs allocated to a worker fail to be successfully executed (e.g., due
to insufficient memory). In this situation (see Figure 2b), the worker subtracts the amount of unsuccessful runs (UR) from the number of allocated
runs and sends the result to the experiment service (t1), which updates the corresponding variables. Specifically, the amount of the unsuccessful
runs is added to RR, and the amount of successful ones is added to ExeRi. The unsuccessful runs will then be reallocated to other workers or again
to workeri. The second situation is when the worker service fails completely and thus all its executed runs from the beginning are lost. When the
execution service detects this failure (see Figure 2c), it updates the corresponding variables. Specifically, the total number of lost runs of workeri
is added to RR, and ExeRi is set back to zero. The lost runs will then be reallocated to other workers. If workeri is later revived, all its variables are
set to zero. The worker will still be recognised by the experiment service thanks to a serial identification number. The worker will send requests to
obtain simulation runs, and the process continues as before. Similarly with the allocation policy of Section 4.3.2, more optimised failure-handling
policies could be added (e.g., using replication), but this is beyond the scope of the current paper.
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4.3.4 Data Management
In general, services exchange data through resources, which also serve as the synchronisation mechanism. For instance, in the case of collective
management, a service acting as a resource user must wait for all providers to be available before obtaining the data. To transfer or process data,
services do not need to use disk storage, increasing application performance. In addition, services do not need to update data, avoiding consistency
issues.

The typical data flow in an epidemic simulation application is as follows. A data service provides access to input data (e.g., animal demography)
contained in a local file or database. If further services are configured as providers of the same resource (i.e., following the replicated management
style), they contact the initial service and obtain the complete data in a serialised form over the network.When the data are available at all providers,
the experiment service is notified, and the workers start receiving simulation runs, following the previously-described allocation policy. Next, the
workers obtain data from the data services, as needed, and execute the allocated simulation runs. A special case is when workers obtain data from
other workers acting as resource providers; this configuration can reduce data transfer times in multi-cloud environments, as demonstrated in
Section 5.3.2. In executing the simulation runs, the workers produce partial results. The workers store these results in memory, acting as providers
of the partial results resource (following the collective management style). If there are lost runs, these runs are re-executed, as seen in Section 4.3.3,
and the corresponding partial results are reproduced. When all runs are successfully executed, all providers of the partial results resource are
available. This enables the final results service to gather the partial results and produce the final results. These data can then be obtained by other
services for further analysis or visualisation.

4.4 The BVDV and MAP spread simulators
The legacy BVDV and MAP spread simulators were transformed to cloud-based applications based on the DiFFuSE framework. Specifically, the
original BVDV code (around 4600 lines of C++ code) was sequential and was first modified to add single-computer parallelism using OpenMP. The
original MAP code (around 14000 lines of C++ code) already supported single-computer parallelism using OpenMP. In both cases, the services to
be used in the target version were then identified and implemented by extending the generic C++ classes and integrating the existing code. Most
of the effort was spent on implementing the data services, which required decomposing the original data model into separate pieces of data (e.g.,
herds, movements) managed by independent services. Implementing computation services required minor modifications for adapting the original
simulation computation code and inserting it into the generic class. The experiment services were largely based on the generic class.

In total, 6.3% of the original BVDV code and 1.78% of the originalMAP codeweremodified in order to convert them to cloud-based applications.
In the final DiFFuSE-based BVDV application, the proportion of the code that is specific to the BVDV spread simulation (rather than reusable code)
is around 17.7%. In the final MAP application, this proportion is around 5.93%. These measures provide evidence of the limited effort required for
applying DiFFuSE and of the added value of the DiFFuSE reusable code.

The services used in the DiFFuSE-based applications are shown in Fig. 3. The data services (Herd, Move and Neighbour) provide descriptions of
herds, movements, and herd neighbours applying replication to improve failure tolerance and responsiveness. Each Worker retrieves descriptions
from the data services and configuration data from Experiment and interacts with Experiment to compute partial simulation results. Final Result

gets the partial results from workers and computes the final results, while Plot Final Result generates a graphical view. Finally, Experiment
controls the life-cycle of an experiment.

The services are deployed through the cloud deployment and execution layer based on PaaSage. Figure 4 shows a possible deployment of the
BVDV application in a multi-cloud environment.

5 EVALUATION

We conducted a set of experiments to evaluate DiFFuSE in terms of performance, cost effectiveness, failure handling and elasticity in sin-
gle or multi-cloud environments. The BVDV and MAP spread simulations are used throughout the experiments as the reference applications.
We ran experiments with the BVDV application in three cloud environments: Amazon EC2, GWDG 29, and an OpenStack deployment on
Grid5000. 30Specifically, OpenStack was deployed on nodes of the Parasilo Grid5000 cluster at Inria in Rennes. We ran experiments with the MAP
application in Google Compute Cloud and two OpenStack deployments on Grid5000, one on nodes of the Paranoia cluster in Rennes and one on
the Econome cluster in Nantes. All experiments were repeated 5 times and we show the averages.
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Experiment

Worker Final	
Result

Plot	Final	
ResultWorker

Herd MoveNeighbor

Computing	Services

Data	Services

Experiment	Services

…

FIGURE 3 Services of the BVDV and MAP spread simulators

FIGURE 4 The BVDV application deployed in the cloud

5.1 Performance and Cost
5.1.1 Experiment 1
This experiment evaluates the execution time and cost of running the DiFFuSE-based BVDV simulation in a private cloud and in a public cloud.
As a private cloud, we use our OpenStack-based cloud in Grid5000, where each worker service is packed into one VM with 13 cores and 100 GB
memory. The cost is calculated as the total price of all used VMs multiplied by the running time. Although the VMs in our private cloud are free,
we use the price of a similar VM type in the Amazon EC2 cloud as the reference price (in $/hour); specifically, we use the price of the r4.4xlarge
VM type in the EU (Ireland) region.

Fig. 5 shows the time and cost to conduct 20, 40, 100, 200 and 500 runs in the private cloud. The execution time is almost linear in the number
of runs. With 500 runs, the execution times are notably 268.36 and 127.76 minutes with 4 and 9 worker services. For comparison, according to
experiments done at INRA, performing 500 runswith the sequential legacy code takes around 1980minutes (33 hours) in a server of the BioEpAR 31

research unit equipped with 13 cores and 100 GB memory. This server has the same configuration with the used VMs, but note that the legacy
code uses only 1 core. The figure also shows that the performance increases when the number of workers rises from 4 to 9, and the effect is greater
with increasing number of runs. The cost slightly increases when the number of workers increases from 4 to 9.

As a public cloud, we use Amazon EC2. As each run of the simulation needs at least 35 GBs of memory, we consider two scenarios, each using
a different type of memory-optimised EC2 VM: r4.xlarge (4 cores, 30.5 GB RAM + 16 GB swap) and r4.2xlarge (8 cores, 61 GB RAM). In a third
scenario, we execute an OpenMP-based BVDV spread simulator, not integrated into DiFFuSE, on a single EC2 VM of r4.2xlarge type. The results
are also compared with a fourth, base scenario, which executes the legacy, sequential BVDV code on the previously-mentioned BioEpAR server.
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FIGURE 5 BVDV in Private Cloud: Number of Runs vs. a) Execution Time, b) Cost
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FIGURE 6 BVDV in Public Cloud: Number of Runs vs. a) Execution Time, b) Cost

Fig. 6 shows the time and cost to conduct 5, 10, 20 and 40 runs with coloured lines representing the 4 scenarios.We see that the DiFFuSE-based
simulator with 4 workers of the r4.2xlarge type shows the best performance. In particular, the simulator using r4.2xlarge outperforms the one
using r4.xlarge. The reason is that r4.xlarge does not have enough RAM (< 35 GB), thus having to consume its swap space in both data loading and
transferring phases. This leads to 60% slower time in these phases than in the case of r4.2xlarge, according to our measurements. The simulator
using r4.xlarge, the lower configuration, performs better than the legacy code in the base scenario for more than 32 runs. The OpenMP-based
simulator shows the worst performance owing to the high parallelisation overhead for the given number of runs. Regarding cost, the OpenMP-
based, single-node scenario has the lowest cost for up to 40 runs. The r4.2xlarge scenario costs more than the r4.xlarge scenario, except with 10
runs, where their costs are almost equal. The base BioEpAR scenario has the highest cost.

This experiment validates that using DiFFuSE reduces execution time and cost compared to the legacy BVDV simulator solution, thus enabling
scientists to perform simulations previously considered as impractical or prohibitively expensive. Moreover, the experiment demonstrates the
flexibility in the deployment of DiFFuSE-based applications, which can use different number of workers on different types of VMs in private or
public clouds.

5.1.2 Experiment 2
This experiment evaluates the execution time and cost of running the DiFFuSE-based MAP simulation in various private and public cloud envi-
ronments. As a public cloud, we use Google Compute Engine. As private clouds, we use two OpenStack deployments on Grid5000, one on nodes
of the Paranoia cluster in Rennes and one on the Econome cluster in Nantes. In the private clouds, each worker service is packed into one VM
with 20 cores and 100 GB memory. We use the price of the same VM type in Google Compute Engine as the reference price increased by 30% to
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reflect the typically higher unit costs of private clouds. We also assume that the price of VMs in the Rennes cluster is 5% higher than that of VMs
in Nantes. As a base scenario, we use the execution of the legacy MAP code, parallelised using OpenMP, on a BioEpAR server equipped with 20
cores and 64 GB memory.

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
in

u
te

s
)

Number of Runs

Running Time vs Number of Runs - p-propInf=90%

4 workers - Grid5K.Rennes-Paranoia
4 workers - Grid5K.Nantes-Econome

4 workers - GoogleCompute.Europe-w1-b
3 workers - Grid5K.Rennes-Paranoia
2 workers - Grid5K.Rennes-Paranoia

2 workers - GoogleCompute.Europe-w1-b
1 node - BioEpAR

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50  100  150  200  250  300  350  400  450  500

C
o

s
t 

($
)

Number of Runs

Running Time vs Cost - p-propInf=90%

4 workers - Grid5K.Rennes-Paranoia
4 workers - Grid5K.Nantes-Econome

4 workers - GoogleCompute.Europe-w1-b
3 workers - Grid5K.Rennes-Paranoia
2 workers - Grid5K.Rennes-Paranoia

2 workers - GoogleCompute.Europe-w1-b
1 node - BioEpAR

(b)

FIGURE 7MAP in various clouds: Number of Runs vs. a) Execution Time, b) Cost

Fig. 7 shows the time and cost to conduct 20, 50, 100, 200 and 500 runs of the simulation with the proportion of infected herds (p-propInf) set
to 90%. Similar results were obtained with this parameter set to lower values (60% and 30%), which reduces the simulation duration. The figure
shows that the base BioEpAR scenario has lower performance than the other scenarios, except when conducting less than 80 runs with 2 workers
in Grid5000 Rennes. It also shows that performance improves when the number of workers increases. The scenario with 4 workers in Google
Compute Engine shows the best performance.

This experiment validates the performance and cost advantage of using DiFFuSE compared to the legacy MAP simulator solution. Moreover, it
provides further evidence of the supported deployment flexibility, which allows users to make different cost-performance trade-offs by controlling
the number and types of used cloud resources.

5.1.3 Experiment 3
This experiment evaluates the impact of increasing the number of workers on the cost and execution time. Fig. 8 shows the execution time and cost
of running the BVDV simulator with an increasing number of workers (from 1 to 4) for 5 and 20 runs. As expected, the execution time decreases
and then levels off. The cost keeps increasing as the number of workers increases. Fig. 9 and 10 show the execution time and cost of running the
MAP simulator with an increasing number of workers in a private and a public cloud. Again, the execution time decreases and then levels off. The
cost typically increases, except when passing from 4 to 5 workers in Google Compute Engine. In this case, the effect of the reduced execution time
on total cost is greater than that of the added VM.

This experiment validates that deploying DiFFuSE-based simulators in diverse cloud environments provides expected scalability properties, and
thus that DiFFuSE can effectively exploit cloud resources to perform growing amounts of computation.

5.2 Failure Handling
5.2.1 Experiment 1
This experiment evaluates the failure handling capabilities of DiFFuSE. We use the DiFFuSE-based application for BVDV spread simulation with
three workers packed in VMs of our OpenStack private cloud (see Section 5.1.1). In one scenario, one of the workers fails early and the others get
the burden of redoing the runs until there are zero remaining runs. In the second scenario, the failed worker is revived and takes on further work,
if the number of remaining runs is larger than zero. Before the recovery of the failed worker, the other workers recalculate the lost blocks and get
other blocks from the experiment service if they are free. We set the NbRR parameter to 2, which means that a worker can receive a maximum of
two simulation runs. The simulation is repeated 21 times.
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FIGURE 8 Execution Time and Cost to run the BVDV spread simulator: a) 5 runs b) 20 runs
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FIGURE 9 Execution Time (a) and Cost (b) to run the MAP spread simulation with different number of workers in OpenStack cloud

Fig. 11a and 12a demonstrate the number of runs distributed to the three workers over simulation time in the two scenarios. Worker 3 is the
failed worker (around the 7th minute) which never recovers in scenario 1 and recovers in scenario 2 (around the 94th minute). The results in Fig.
11b and Fig. 12b show that number of remaining runs are distributed, executed and finished faster at the end of the experiment in scenario 2. This
makes the distribution of runs about 23 minutes sooner than scenario 1, which reduces the total execution time. The experiment validates that
DiFFuSE enables the simulator to dynamically adapt to service failures and recoveries.

5.2.2 Experiment 2
This experiment evaluates the management of additional types of failures. Specifically, it considers also situations where workers fail to execute a
certain number of simulation runs without crashing completely. These are situations described in Figure 2b. The previous experiment considered
only situations described in Figure 2c. The setup of the experiment is similar to that of the previous experiment (Section 5.2.1) with 21 simulation
runs distributed to 3workers in VMs of our OpenStack private cloud.We observe how the runs are reallocated in four scenarios: when aworker fails
and never revives (WF), when a worker loses one run (L1) or two runs (L2) and when a worker fails completely but is later revived (RL). Specifically,
the failed worker is worker 3 and failure/loss and recovery follow the same timing as in the previous experiment. The results of this experiment are
shown in Table 1. Specifically, the table presents the number of runs allocated to each worker for every scenario and for different values of NbRR
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FIGURE 10 Execution Time (a) and Cost (b) to run the MAP spread simulation with different number of workers in Google Compute cloud
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FIGURE 11 DiFFuSE with failure handling - Scenario 1

(2, 4 and 8). The table also shows the maximum number of runs allocated to a worker (MAX) which determines the execution time of the scenario
(the lower the MAX, the better).

We observe that the value of MAX is best in scenarios L1 and L2 that achieve better distributions of runs. The value of MAX is not affected by
the NbRR parameter. When the worker fails without revival (scenario WF), larger values of NbRR lead to worse values of MAX. The reason is that
a greater number of runs has to be redistributed to surviving workers. Inversely, when the worker fails but recovers (scenario RL), larger values of
NbRR lead to better values of MAX since the recovered worker obtains more runs to execute. The experiment validates that DiFFuSE can handle
a wide range of failure scenarios.

5.3 Multi-Clouds
5.3.1 Experiment 1
This experiment evaluates the support provided by DiFFuSE for multi-cloud deployment. We deploy the services of the BVDV spread simulator in
2 VMs (r4.2xlarge and m4.4xlarge) of Amazon EC2 and 1 VM (m2.xlarge - 4 cores 32 GB RAM + 16 GB swap) of GWDG, which is a cloud-serving
research community of Göttingen University and the Max Planck Society in Germany. The price of the GWDG m2.xlarge VM type is derived from
the EC2 r4.xlarge VM type with an identical configuration. All three workers must collectively execute 20 runs. Table 2 shows statistics for this
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FIGURE 12 DiFFuSE with failure handling - Scenario 2

TABLE 1 DISTRIBUTION OF RUNS AMONGWORKERS

NbRR 2 4 8
WF L1 L2 RL WF L1 L2 RL WF L1 L2 RL

Worker 1 11 8 8 10 12 8 8 9 13 8 8 8
Worker 2 10 6 7 9 9 6 7 8 8 8 8 8
Worker 3 0 7 6 2 0 7 6 4 0 5 5 5
MAX 11 8 8 10 12 8 8 9 13 8 8 8

TABLE 2 THE BVDV SPREAD SIMULATOR IN A HETEROGENEOUS MULTI-CLOUD ENVIRONMENT

BVDV spread simulator - Total runs 20
VM Type # Cores # Runs Execution Time Total CPU Time Total Cost R_CPU Cost per Run

ec2_m4_4xlarge 16 10 32.62(m) 14591.30(s) 0.651$ 46.60% 0.065$

ec2_r4_2xlarge 8 8 36.10(m) 11115.20(s) 0.435$ 64.15% 0.054$

gwdg_m2_xlarge 4 2 27.93(m) 2706.91(s) 0.217$ 40.38% 0.108$

experiment. Total CPU time is the amount of time spent by all VM cores for simulation processing. R_CPU is the exploitation rate of the VM cores,
calculated as follows:

R_CPU =
TotalCPUTime ∗ 100

ExecutionTime ∗ NumberofCores
(1)

From the table, we see that the experiment service distributes more blocks of runs to VMswith better configuration (e.g., 10 for ec2_m4_4xlarge
and only 2 for gwdg_m2_xlarge). Still, the time to finish 10 runs in ec2_m4_4xlarge is not much different than the time to finish 2 runs in
gwdg_m2_xlarge. The cost per run of ec2_m4_4xlarge is lower than that of gwdg_m2_xlarge (0.065$ and 0.108$). While ec2_m4_4xlarge and
gwdg_m2_xlarge exploited about 40% to 45% of the potential capacity of their cores, ec2_r4_2xlarge used its cores more efficiently (64.15%).
This experiment validates the ability of DiFFuSE to simultaneously exploit diverse VMs from multiple clouds and shows that the choice of VM
types has a strong impact on the resulting cost. Moreover, it validates the ability of the simple allocation policy (see Section 4.3.2) to balance the
computation load among heterogeneous VMs.
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5.3.2 Experiment 2
This experiment evaluates the impact of network performance on application execution time in multi-cloud deployments. In such contexts, com-
ponents of the simulation application are deployed at different data centers, located at different areas and even different continents. As a result,
network characteristics can have a strong effect on application performance.

The setup of this experiment is similar to Figure 4 with data services in our OpenStack-Grid5000 private cloud and worker services in the EC2
public cloud. The workers are configured to be in the same EC2 availability zone in order to reduce network latency. The data services provide
data on animals, herds, movements and neighbours. When a worker is initialised, the worker obtains these data causing a traffic of about 2GBs
from the private cloud to the public cloud over a wide-area Internet connection. This is repeated for every worker that joins the simulator, having
a negative effect on the performance of the BVDV simulator.

To reduce this negative effect, one can take advantage of the replication feature supported by DiFFuSE. Specifically, the data resources provided
by data services are configured to support the replicated management style and the worker services are configured to play both user and provider
roles for these resources (see Section 4.2.1). This enables the worker that first obtains the data to provide replicas of the data to other workers. In
this way, data transfer traffic is isolated within the boundary of the public cloud, which provides high network performance.

We compare data transfer times for the BVDV simulator when data replication is enabled (E) and disabled (D) for different numbers of workers
(4, 8, 12, 16 workers) processing a total of 40 simulation runs. Fig. 13 shows that the time is lower when the replication feature is used, regardless
of the number of workers. The amount of data transferred inside (I) and outside (O) the public cloud is shown in Fig. 14. Regardless of the number
of workers, the portion of the traffic inside the public cloud is greatly increased when replicated management is enabled. This experiment validates
that the replication feature of DiFFuSE helps reducing data transfer times in multi-cloud deployments.
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5.4 Elasticity
This experiment evaluates the elasticity support provided by DiFFuSE. We use a scenario in which several dozens of worker services are simulta-
neously accessing a data service to load initial data, which causes the data service to become a bottleneck. We compare the performance of the
simulator with and without the elasticity feature, which enables scaling out the data service.

Fig. 15 shows the CPU utilisation (%) of the data service in response to 20 worker services. All services are deployed in EC2 r4.xlarge VMs. The
green and orange lines represent the cases with and without elasticity. The scale-out action is triggered if the CPU utilisation of the data service
goes over 80% (the point A), which results in adding one more VM with the data service (green line from point A to B). Without elasticity, the
single data service is busy with processing requests from the workers (orange line from point A to C). Importantly, the duration of processing data
requests with elasticity is about 30% shorter than without elasticity, showing the usefulness of elasticity support in DiFFuSE.

6 CONCLUSION

The main goal of this work is to facilitate building and executing epidemic simulation applications in the cloud. To this end, the paper proposes
DiFFuSE, a framework for structuring such applications as cloud-native applications composed of a set of distributed, collaborating services, which
are independently developed, deployed and scaled in multi-cloud environments. The framework provides (1) mechanisms that allow services to
exchange data in a reliable and scalable way and to automatically handle failures, (2) reusable code for managing experiments, simulation data,
and computations following the bag-of-tasks model, and (3) tools for configuring the deployment and auto-scaling of services across clouds in a
declarative way.

The paper also describes the use of DiFFuSE to restructure two legacy applications (simulators of BVDV and MAP spread) into elastic, cloud-
native applications. Based on these applications, a comprehensive set of experiments were performed, demonstrating the advantages of the
framework. These advantages are outlined next. DiFFuSE can exploit variable numbers and types of cloud resources, allowing making different
trade-offs between performance and cost. It can automatically handle a wide range of failure and recovery scenarios, reducing the time to com-
plete the simulation. DiFFuSE allows using resources from multiple clouds; notably, it allows combining private resources with those of public
clouds, enabling, for instance, small institutions, such as local centers for disease control and prevention, to find cost-optimal resource allocations.
Moreover, the replication support of DiFFuSE helps reducing data transfer times in multi-cloud deployments. Finally, DiFFuSE allows elastically
modifying resource allocations to adapt to dynamic variations in resource demand; notably, it allows automatically and independently scaling the
data service to avoid performance bottlenecks.

We intend to continue this work in three dimensions. First, we will apply DiFFuSE to further simulation applications, which will produce useful
feedback for improving the framework. Second, wewill refine the basic allocation and failure-handling policies in order to optimise the performance
of an application deployment, even in the case of failures. Third, we will extend DiFFuSE with policies for intelligent deployment optimisation,
integrated into the PaaSage platform. 27This will provide us with a fully automatic solution for identifying the best initial deployment for a simulation
application and for dynamically modifying this deployment to react to environment changes.
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