

Near-Field diffraction of spin waves

Vincent Vlaminck, Nicolas Loayza, Vincent Castel, Daniel Stoeffler, Matthieu Bailleul, Benjamin Youngfleisch, Axel Hoffmann

▶ To cite this version:

Vincent Vlaminck, Nicolas Loayza, Vincent Castel, Daniel Stoeffler, Matthieu Bailleul, et al.. Near-Field diffraction of spin waves. Colloque Louis Néel XIX, May 2019, Toulouse, France. 2019. hal-02310439

HAL Id: hal-02310439 https://hal.science/hal-02310439

Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

Near-field diffraction of spin waves

Motivations

Shaping spin wave beams in continuous layers From special design of constricted microwave antennae [1-3]

Diffraction model for all spin wave modes

Analytical understanding of the spin wave interference mechanisms from Fresnel's near-field diffraction [3]

Authors

Vincent VLAMINCK^{1,2} Nicolas LOAYZA² Vincent CASTEL¹ Daniel STOEFFLER³ Matthieu BAILLEUL³ BenjaminYoungfleisch^{4,5} Axel Hoffmann⁴

Affiliations

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

¹ IMT- Atlantique Campus de Brest Département Micro Ondes Technopole Brest-Iroise CS83818 29238 Brest Cedex 03

² USFQ Universidad San Francisco de

Isotropic out-of-plane modes (MSFVW) [3]

Spin wave spectroscopy in continuous YIG films

No need to structure a spin wave guide

Discrete mapping of MSFVW modes Via inductive technique with a smaller probe [3]

Quito, Colegio de Ciencias e Ingeneria Quito, Ecuador

³ IPCMS Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS Université de Strasbourg

⁴ MSD-ANL

Material Science Division Argonne National Laboratory Argonne, Illinois, USA

⁵ University of Delaware Dept. of Physics and Astronomy Newark, Delaware, USA

Funding

Near-field diffraction model for in-plane modes

Anisotropic dispersion

f [GHz]

8.6 8.4 8.2 8.2 7.8 7.6 7.6 7.4

Μ

Each direction (θ_k) corresponds to a distinct **k** [4]

 $\omega(H,k,\theta_M,\theta_k) = \sqrt{(\omega_H + \eta k^2)(\omega_H + \eta k^2 + \omega_M F(k,\theta_k,\theta_M))}$ $F(H,k,\theta_k,\theta_M) = 1 - P\cos^2(\theta_k - \theta_M) + \frac{\omega_M P(1-P)}{\omega_M + nk^2}\sin^2(\theta_k - \theta_M)$

In-plane modes diffraction pattern adapted from Eq. 34 of [6]

$$\widetilde{m}(\vec{r},\theta_{M}) = \int_{-\infty}^{+\infty} dy' \int_{-\infty}^{+\infty} dx' \begin{cases} \aleph_{in}(\vec{r}-\vec{r}') \cdot h_{in}(\vec{r}') \cdot \cos\theta_{M} + \\ +\aleph_{out}(\vec{r}-\vec{r}') \cdot h_{out}(\vec{r}') \end{cases} e^{-\frac{\|\vec{r}-\vec{r}'\|}{L_{att}}} e^{-ik\|\vec{r}-\vec{r}'\|}$$

 $L_{att} = \frac{2}{\alpha(2\omega_H + \omega_M)} \frac{\partial \omega}{\partial k} (\vec{r} - \vec{r}', \theta_M)$ $\aleph_{in} = i\omega_M \left[\omega - \left(\omega_H + \eta k^2 + \omega_M (1 - P(k)) \right) \right];$

$f_{res} = 7.80 \ GHz - H_{ext} = 0.2T$

ANR-11-LABX-0058_NIE

References

[1] P. GRUSZCEKI et al., Sci. Rep. 6, 22367 (2016) [2] H. S. KÔRNER et al., Phys. Rev. B 96, 100401 (2017) [3] N. LOAYZA et al., Phys. Rev. B 98, 144430 (2018) [4] O. Büttner et al., Phys. Rev. B 61, 11576 (2000) [5] T. Brächer et al., Phys. Rev. B 95, 064429 (2017) [6] B. A. Kalinikov, Fizika, No. 8, pp. 42-56 (1981)

Both h_{in} and h_{out} excites spin waves [5]

Conclusions

Excellent agreement between a Fresnel approach and micromagnetic simulations for MSFVW

- Spin wave spectroscopy in continuous layers possible with sharply constricted antenna
- Near-field diffraction model for in-plane modes to be validated with micromagnetic simulations

Contact : vincent.vlaminck@imt-atlantique.fr