N

N

On the Parallelization of UCT

Tristan Cazenave, Nicolas Jouandeau

» To cite this version:

Tristan Cazenave, Nicolas Jouandeau. On the Parallelization of UCT. Computer Games Workshop,
Jun 2007, Amsterdam, Netherlands. hal-02310186

HAL Id: hal-02310186
https://hal.science/hal-02310186
Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02310186
https://hal.archives-ouvertes.fr

On the Paralldlization of UCT

Tristan Cazenaveand Nicolas Jouandeau

! Dept. Informatiqueeazenave@i . uni v-pari s8. fr
2 Dept. MIME n@i . uni v-paris8.fr
LIASD, Université Paris 8, 93526, Saint-Denis, France

Abstract. We present three parallel algorithms for UCT. For®Go, they all
improve the results of the programs that use them agaimnsit Go 3.6. The
simplest one, the single-run algorithm, uses very few conmications and shows
improvements comparable to the more complex ones. Furtigoivements may
be possible sharing more information in the multiple-rulg®athm.

1 Introduction

Works on parallelization in games are mostly about the feizdtion of the Alpha-
Beta algorithm. We address here different approaches tpatsalelization of the UCT
algorithm.

Monte-Carlo Go has recently improved to compete with thé Besprograms [3-5,
7]. We show that it can be further improved using parall¢iira

Section 2 describes related work. Section 3 presents tlaredigd algorithms. Sec-
tion 4 details experimental results. Section 5 concludes.

2 Reated Works

In this section we expose related works on Monte-Carlo Go.fiv8e explain basic
Monte-Carlo Go as implemented indBBLE in 1993. Then we address the combination
of search and Monte-Carlo Go, followed by the UCT algorithm.

2.1 Monte-Carlo Go

The first Monte-Carlo Go program is@gBLE [1]. It uses simulated annealing on a list
of moves. The list is sorted by the mean score of the gamesathermove has been
played. Moves in the list are switched with their neighbattva probability dependent
on the temperature. The moves are tried in the games in tlee of the list. At the end,
the temperature is set to zero for a small number of gamesr Aft games have been
played, the value of a move is the average score of the gainas ieen played in first.
GosBBLE-like programs have a good global sense but lack of tactinelWedge. For
example, they often play useless Ataris, or try to save cagtstrings.

2.2 Search and Monte-Carlo Go

A very effective way to combine search with Monte-Carlo Ge baen found by Rémi

Coulom with his program €azy STONE [3]. It consists in adding a leaf to the tree
for each simulation. The choice of the move to develop in tee tlepends on the
comparison of the results of the previous simulations thexttvthrough this node, and
of the results of the simulations that went through its sijpihodes.

23 UCT

The UCT algorithm has been devised recently [6], and it has lagplied with success
to Monte-Carlo Go in the program d0[4, 5, 7] among others.

When choosing a move to explore, there is a balance betwganitation (ex-
ploring the best move so far), and exploration (explorifgeoimoves to see if they can
prove better). The UCT algorithm addresses the explor&igroitation problem. UCT
consists in exploring the move that maximizgst C x /log(t)/s. The mean result of
the games that start with the move isu;, the number of games played in the current
node ist, and the number of games that start with meyis s.

TheC constant can be used to adjust the level of exploration dcdildperithm. High
values favor exploration and low values favor exploitation

3 Paralléelization

In this section, we present the parallel virtual maching Wehave used to implement
the parallel algorithms. Then we present in three sepaundigestions the three parallel
algorithms.

3.1 TheParalld Virtual Machine

To improve search, we choose message passing as paratiehpnming model, which
is implemented in the standard MPI, also supported by LAM/2P. Our virtual par-
allel computer, constituted with classical personal cotepwsets up a fully connected
network of computers. Both communications are done onlly thi¢ global communica-
tor MPI.COMM_WORLD. Each hyper-threaded computer that allows to workvem t
threads at once, supports two nodes of our parallel comteeh node runs one task
with independent data. Tasks are created at the beginnitigegdrogram’s execution,
via the use of the master-slave model. All gtp read and woteroands are realized
from and to the master. Slaves satisfy computing requebtsniaximum time taken by
any slave task is specified during each computing requestefdre, the communica-
tion time is added. According to time limits, the maximumeigpent over all comput-
ing loops is defined by the sum of all slowest answers. We ugechsonous communi-
cation mode for data transmission, with time-constrairmdputing sequences. In the
UCT context, as the algorithm is anytime, it is naturally kadapted for synchronous
programming.

MASTER_PART:
singleRunParallelUCTMoMgoban|], color, ko, time)
1 best+— —1;
2 (wins|], games|]) < initialParallelUCTMovégoban]| |, color, ko, time);
3 forj « 0togoban.size()
4 | best — max(best, wins[j]/gameslj]);
5 returnbest;

initialParallelUCTMovégoban|], color, ko, time)
1 fori < 0to goban.size()
winsli] < 0;
gamesli] < 0;
broadcagyoban|], color, ko, time);
fori «— 0 tonbSlaves
receiveUCTSequenceswWins| |, newGames|]);
for j « 0to goban.size()
wins[j] «— wins[j] + newWins[jl;
games[j] < games[j] + newGames[j];
0 return(wins| |, games|);

P OO ~NO O WN

SLAVE_PART:
singleRunParallelUCTMoveSlaveLoOp
1 while(true)

2 | if(SingleQueryUCTSlaveLodp) == END_GAM E) break;
3 return;
SingleQueryUCTSlaveLodp

1 if(receivegoban][], color, ko, time) == END_GAME) returnEND_GAME;
2 fori « 0to goban.size()

3 wins[i] < 0;

4 gamesl[i] — 0;

5 (wins[], games[]) — playUCTSequencégoban] |, color, ko, time);

6 sendwins|], gamesl]);

7 returnCONTINUE,

ALG. 1: Single-Run Parallel Algorithm.

3.2 Single-Run Parallelization

The single-run parallelization consists in running mudtipCT algorithms in parallel
without communication between the processes. Each préeesa different seed for
the random-number generator, so they do not develop the iiietree. When the
time is over, or when the maximum number of random games ishezh each slave
sends back to the master the number of games and the numbieisdtwall the moves

at the root node of the UCT tree. The master process thensiadals the number of
games and the number of wins of the moves for all the slavesgs®ss.

The master part and the slave part of the single-run paeat@n are given in
algorithm 1.

3.3 Multiple-Runs Parall€elization

On the contrary of the single-run parallelization algarththe multiple-runs paral-
lelization algorithm shares information between the psses. It consists in updating
the number of games and the number of wins for all the movéseatt of the shared
UCT tree every fixed amount of time. The master process stétisending the goban,
the color to move, the ko intersection and the initial thitckiime to the slaves, then
all the slaves start computing their UCT trees, and afterintiteal thinking time is
elapsed, they all send the number of wins and the number oégéonthe root moves
to the master process. Then the master process adds alktiisfer all the moves at
the root, and sends back the information to the slaves. Hveslthen initiate a new
UCT computation with the same shared root moves informafitble communication
from the slaves to the master, the update of the master roeesnoformation, the
update of the slaves root moves information and the slavepuatations are then run
until the overall thinking time is elapsed. It is importaatriotice that at line 5 of the
mul ti pl eQuerySl aveLoop function, thenewW ns andnewGanes arrays con-
tain the difference between the number of wins (resp. gaafes)the UCT search and
the number of wins (resp. games) before the UCT search.

Another important detail of the algorithm is that in the glaythe number of wins
and the number of games of the root moves are divided by théeuaf slaves. During
the experiments of the multiple-runs algorithm, we tried toodivide, and the results
were worse than the non-parallel algorithm. Dividing by thember of slaves makes
UCT develop its tree in the slaves in a similar way as it wouitheut sharing infor-
mation, however the average scores of the root moves are awotgate than without
sharing information. The improvement comes from the imptbaverage scores.

The master part and the slave part of the multiple-runs jgdizgtion are given in
algorithm 2.

3.4 At-the-leavesParallelization

At-the-leaves parallelization consists in replacing toedom game at a leaf of the UCT
tree with multiple random games run in parallel on the slaeegsses. This type of par-
allelization costs much more in communication time thantée previous approaches
since communications between the master and the slavesfoceach new leaf of the
UCT tree.

In the at-the-leaves parallelization algorithm, the maistéhe only one to develop
the UCT tree. For each new leaf of the UCT tree, it sends to lthes the sequence
that leads from the root of the tree to the leaf. Then eachegidays a pre-defined
number of random games that start with the sequence, andsehe average score of
these random games. The master collects all the averagke efaves and computes
the average of the averages.

MASTER_PART:

multipleRunsParallelUCTMovgoban]| |, color, ko, time)

1 best+— —1;

2 (wins|], games|]) < initialParallelUCTMovégoban| |, color, ko,
initial PassTime);

3 forj « 0togoban.size()

4 | best — max(best, wins[j]/gameslj]);

5 time « time — initial PassTime;

6 while(runPassTime < time)

7 | (wins[], games[]) < runParallelUCTMovéwins| |, games|],

runPassTime);
8 | time «— time — runPassTime;
9 forj « 0to goban.size()
10 | best — max(best, wins[j]/games]j]);
11 returnbest;
runParallelUCTMovéwins|], games]], time)
1 broadcastins|], games|], time);
2 fori «— 0tonbSlaves
3 receiveUCTSequenceswWins, newGames);
4 for j « 0to goban.size()
5 wins[j] «— wins[j] + newWins[jl;
6 games[j] < games[j] + newGames[j];
7 return(wins|], games|]);

SLAVE_PART:
multipleRunsParallelUCTMoveSlavelLoQp
1 while(true)

2 if(SingleQueryUCTSlaveLodp) == END_GAM E) break;
3 state +— CONTINUE,

4 while(state == CONTINUE)

5 state «+ multipleQueryUCTSlavelLodp);

6 return;

multipleQueryUCT SlaveLodp

1 if(receivwins| |, games|], time) == END_LOOP) returnEND_LOOP;
2 fori « 0togoban.size()

3 winsli] « winsli]/nbSlaves;

4 gamesli| < gamesli|/nbSlaves;

5 (newWins[],newGames[]) < continueUCTSequenc@sme);

6 sendnewWins|], newGames|]);

7 returnCONTINUE,

ALG. 2: Multiple-Runs Parallel Algorithm.

MASTER PART:

AtLeavesParallelUCTMoMgoban]], color, ko, time)

1
2
3

4
5
8
6
7
8
9
1

best — —1;
broadcagyoban|], color, ko);
while(moreTimétime)))
sequence| | — getUCTSequencég
newWins — runParallelimproveAtLeavésequence]]);
for nodeld in sequence]]
wins[nodeld] — wins[nodeld] + newWins;
games[nodeld] < games[nodeld] + 1;
for j < 0to goban.size()
| best — max(best, wins[j]/gameslj]);

0 returnbest;

runParallelimproveAtLeavésequence|])

1
2
3
4
5
6

broadcagkequence|]);

improvedWins « 0;

fori < 0 tonbSlaves

receivénodeWins);

improvedWins «— improvedWins + nodeWins;
returnimprovedWins/nbSlaves;

SLAVE_PART:

atLeavesParallelSlaveLop

1
2
3
4
5
6

while(true)
if(receivé goban]], color, ko) == END_GAM E) break;
state +— CONTINUE,
while(state == CONTINUE)
state — atLeavesQuerySlavelLoOp
return;

atLeavesQuerySlavelLo@p

1
2
3
4
5
6
7
8
9

if(receive sequence[]) == END_LOOP) returnEND_LOOP;
fori « 0 to sequence.size()
| playMove(sequenceli));

nodeWins «— 0
fori « 0 to nbGamesAtLeaf

newNodeWins < playRandomGang;

nodeWins «— nodeWins + newNodeWins;
sendnodeWins/nbGameAtLeaf);
returnCONTINUE;

ALG. 3: At-The-Leaves Parallel Algorithm.

The master part and the slave part of the at-the-leavesiglaation are given in
algorithm 3.

4 Experimental Results

Tests are run on a simple network of computers running LINUKIB. The network
includes 100 Mb switches. The BogoMips rating of each nodg@moximately 6000.

In our experiments, UCT uses + 4/ l{’é’% to explore moves.

The random games are played using the same patterns as@olM] near the last
move. If no pattern is matched near the last move, the sefecfimoves is the same as
in CRAZY STONE[3].

Table 1 gives the results (% of wins) of 2069 games (100 with black and 100
with white) for the single-run parallel program againstGGo 3.6 default level. The
parallel algorithm has been tested with either 3,000 sitimria (random games) for
each UCT search, or 10,000 simulations. The single-runlipbzation improves the
result bringing them from 27.5% for 1 CPU and 3,000 games t0%3Jor 16 CPUs
and 3,000 games per CPU. Concerning the experiments wi@®Q@ames per CPU,
the results increase from 45.0% for 1 CPU to 66.5% for 16 CHRdsthe single-run
parallelization, the communication time is very small cargnl to the computation
time. The single-run parallelization successfully imgrsthe UCT algorithm.

Table 1. Results of the single-run program againstGGo 3.6.

1 CPU2 CPUs4 CPUs8 CPUs16 CPUs
3,000 simulation27.5% 40.0% 48.0% 55.594 53.0%
10,000 simulationst5.09q4 62.09% 61.5% 65.0% 66.5%

Table 2 gives the results of 209 games for the multiple-runs parallel program
against Giu Go 3.6 default level. In these experiments, the multiple-ralgerithms
updates the shared information every 250 simulations. €kalts are similar to the
results of the single-run parallelization. They are slighetter with 10,000 simulations.

Table 2. Results of the multiple-runs program againstGo 3.6.

1 CPU2 CPUg4 CPUs8 CPUsS16 CPUs
3,000 simulations20.09%4 32.09% 48.09% 53.5% 56.0%
10,000 simulation$19.09%4 58.594 72.0% 72.0% 68.0%

Table 3 gives the results of 200<9 games for the at-the-leaves parallel program
against Giu Go 3.6 default level. We can see an improvement when the nunfber o

CPUs increases from 1 to 8. However increasing the numbemote than 8 does not
improve much as can be seen from the second line of the tab&gathe slaves all play
8 games per leaf. Playing 8 games per leaf is equivalent tmg× more CPUs

with one game per leaf.
Concerning the 10,000 simulations experiments, the p&genof wins also in-

creases until 8 CPUs.

Table 3. Results of the at-the-leaves parallel program againgi Go 3.6.

nbGamesAtLeal CPU2 CPUs4 CPU$8 CPU$16 CPUg
3,000 simulations 1 21.0% 35.09% 42.09q 46.0% 45.0%
3,000 simulations 8 54.59% 48.5% 49.5% 47.5% 51.0%
10,000 simulations 1 47.0% 53.5% 53.5% 69.5% 62.0%

Table 4 shows the communication overhead for the at-theeteparallel program.
For one CPU, the slave process runs on the same machine aaster process, so the
communication time is small and the time used to find the firsteron an empty 99
goban can be used as a reference for a non-parallel prograse&\in the next columns
that the communication time progressively increases, lilogithe thinking time for 8
CPUs.

Table 4. Times for the first move for the at-the-leaves parallel paogr

nbGamesAtLeall CPU2 CPUs4 CPU$8 CPUS
10,000 simulations 1 6.21s| 10.85s} 11.56s| 13.07s|

The communication time for the at-the-leaves parallel paogis significantly higher
than the two previous algorithms. Given that it gives similaprovements in level, it
is preferable to use the single-run or multiple-runs alfjons. The at-the-leaves paral-
lelization could be of interest to multiple CPUs machinetwai shared memory where
the communication costs are less of a problem.

5 Conclusion

We have presented three parallel algorithms that imprové& W€arch. They all give
similar improvements. The single-run parallelizationtie most simple one and also
the one that uses the fewest communications between thegaex

The at-the-leaves parallelization currently costs too mcemmunications, how-
ever it could still be interesting on a multiple CPUs machine

We believe that the multiple-runs algorithm can be furtheprioved to share more
information and then may become the best algorithm.

References

[EEN

. Bruegmann, B.: Monte Carlo Go. ftp://ftp-igs.joyjoytigw/computer/mcgo.tex.z (1993)
. Burns, G., Daoud, R., Vaigl, J.: LAM: An Open Cluster Eoviment for MPI. In: Proceedings

of Supercomputing Symposium. (1994) 379-386

. Coulom, R.: Efficient selectivity and back-up operataorsnonte-carlo tree search. In: Pro-

ceedings Computers and Games 2006, Torino, Italy (2006)

. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: ModificatidnhUCT with patterns in Monte-

Carlo go. Technical Report 6062, INRIA (2006)

. Gelly, S., Wang, Y.: Exploration exploitation in go: UCdrMonte-Carlo go. In: NIPS-2006:

On-line trading of Exploration and Exploitation Workshaighistler Canada (2006)

. Kocsis, L., Szepesvari, C.: Bandit based monte-cadarphg. In: ECML-06. Number 4212

in LNCS, Springer (2006) 282—293

. Wang, Y., Gelly, S.: Madifications of UCT and sequence-lgimulations for Monte-Carlo

go. In: CIG 2007, Honolulu, USA (2007) 175-182

