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Abstract

We consider mixtures of longitudinal trajectories, where one trajectory
contains measurements over time of the variable of interest for one individual
and each individual belongs to one cluster. The number of clusters as well as
individual cluster memberships are unknown and must be inferred. We pro-
pose an original Bayesian clustering framework that allows us to obtain an
exact finite-sample model selection criterion. Our approach is more flexible
and parsimonious than asymptotic alternatives such as Bayesian Informa-
tion Criterion (BIC) or Integrated Classification Likelihood (ICL) criterion
in the choice of the number of clusters. Moreover, our approach has other
desirable qualities: i) it keeps the computational effort of the clustering al-
gorithm under control and ii) it generalizes to several families of regression
mixture models, from linear to purely non-parametric.

1 Introduction and background
The question of clustering longitudinal trajectories arises in a number of social sci-
ences concerned with describing human behavior over time (see Erosheva et al.,
2014, and references therein). Here, we focus on longitudinal data involving N
individuals. Each individual is associated with one (and only one) hidden group.
Latent random variable zi labels the group (cluster) of the i-th individual. As-
suming that there is a variable of interest that is measured for all individuals, a
vector yi ∈ RD keeps track of the measurements for the i-th individual, where D
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is the number of measurements. In the following, it is assumed that exactly D
measurements are taken at the same times across N individuals and yij denotes
the j-th measurement for the i-th individual at time tj, with j ≤ D. Assume the
following generative model

yij = φ(tij)Tβzi
+ σεij, ∀i ≤ N, j ≤ D, (1)

where φ(·) : R → RK is a user defined function (e.g., identity, polynomial, etc.),
β1, . . . , βQ are parameters in RK with Q the number of mixing components, and
σ is the scalar standard deviation of the noise term. The residuals εij are all i.i.d
Gaussian N (0, 1) distributed. The following more compact notation will also be
employed

yi = Φβzi
+ σεi, (2)

where Φ ∈ RD×K is the design matrix, whose j-th row is φ(tij)T , yi and εi are vec-
tors in RD and εi follows a multivariate isotropic Gaussian distributionN (0, σ2ID),
with ID denoting the identity matrix of order D. In the following, y1, . . . , yN
are assumed independent, given z1, . . . , zN . Finally, the model can be extended
straightforward by assuming that the standard deviation σ also depends on zi. All
the results reported in this paper are still valid.

1.1 A frequentist approach and some related drawbacks
For a given Q, assuming that z1, . . . , zN are i.i.d. random variables and such that

P{zi = q} = πq, ∀q ∈ {1, . . . , Q},

the observed data likelihood of the generative model described in the above section
is

p(y1, . . . , yN |θ) =
N∑
i=1

Q∑
q=1

πqg(yi; Φβq, σ2ID), (3)

where θ := {βq, πq, σ2}q≤Q is the set of the model parameters and g(·;µ,Σ) de-
notes the probability density function of a multivariate Gaussian distribution with
mean µ and covariance matrix Σ. Clearly, this generative model can be seen as a
constrained Gaussian mixture model (see Appendix A for more details and a proof
that time matters in this model).

A standard approach to estimate the model parameters (see, for instance, Nagin
et al., 2005) would:

1. set φ(·) to some polynomial of reasonable order (possibly one!), depending
on the the data,
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2. maximize the log-likelihood ∑N
i=1 log p(yi|θ,Q) with respect to θ to obtain

θ̂ML. Posterior distributions p(zi|yi, θ̂ML, Q) could then be computed for all
i and they might used to cluster the observations.

Repeating steps 1 and 2 for different Q, the number of clustering components
Q might be estimated via some model selection criterion (e.g. AIC or BIC) (see
e.g. Nagin et al., 2005; Muthén and Asparouhov, 2008).

However, in practice, AIC and BIC are often not able to provide reasonable
choice for choosing the number of longitudinal trajectory clusters. It is common
that these goodness-of-fit criteria keep improving as the number of groups Q in-
creases until models encounter convergence problems (Erosheva et al., 2014). In
addition, when the choice of Q is perceived as large because the identified clusters
do not represent substantively distinct trajectory patterns, the practical advice is
to reduce Q to a lower number that is more meaningful in the applied context (e.g.,
Nagin et al., 2005).

We now describe some know drawbacks to using AIC/BIC for selecting the
number of clusters in standard mixture data analysis. We conjecture that these
drawbacks could provide a possible explanation as to why AIB/BIC often fail to
produce meaningful number of clusters with longitudinal trajectories.

First, we note that BIC (as well as AIC) is an asymptotic criterion needing
a large number of observations to be given and some relevant assumptions to be
fulfilled by the data that may not be straightforward in case of longitudinal ob-
servations. In addition, BIC was shown to possibly overestimate of the number of
clusters in mixture models (see for instance Biernacki et al., 2000; Baudry et al.,
2010). This point is illustrated with an example in Figure 1. One thousand points
were independently sampled from a mixture of Q = 4 Gaussian distributions in
dimension two. The actual number of mixing components can be safely recov-
ered by BIC model selection by some software in standard statistical libraries (e.g.
mclust on R). However, Q is not necessarily the most meaningful number of clus-
ters. Indeed, in Figure 1 there are 2 disjoint sets of points. In our simulations in
Section 4, we show that the over-estimation problem illustrated in Figure 1 might
exist also in longitudinal data mixtures.

Second, a more parsimonious alternative to AIC/BIC for model selection in
mixture models is the Integrated Classification Likelihood (ICL, Biernacki et al.,
2000). See Appendix B for a formal definition of ICL and the proof that ICL is a
lower bound of BIC. Although ICL might select a smaller number of components
than BIC, it still remains an asymptotic criterion. Moreover, whereas ICL was
shown to solve the model selection issue described in Figure 1 (see for instance
Baudry et al., 2010), it does not solve the overestimation problem for longitudinal
data mixtures, as shown in Section 4.

In an attempt to address these issues, this paper focuses on a Bayesian cluster-

3



−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 1: One thousand data points independently sampled from a mixture of
Q = 4 bi-variate Gaussian distributions (identified by the red ellipses), forming
two separated groups.

ing framework for the generative model detailed so far allowing us to compute an
exact (i.e. a finite sample) version of the ICL by adopting prior distributions on
the model parameters and integrating them out. A similar approach was adopted
for Gaussian mixture models by Bertoletti et al. (2015) or by Côme and Latouche
(2015); Corneli et al. (2016), in the context of graph data clustering.

We should note that non-parametric Bayesian approaches such as a Bayesian
extension of the generative model in Eq. 3 to a Dirichlet process (DP) mixture
model (see e.g. MacEachern and Müller, 1998) would represent an alternative way
to analyze longitudinal mixtures. Bayesian non-parametric techniques as well as
their extensions to grouped data sharing cluster memberships (Hierarchical DP,
Teh et al., 2005) have been widely used in the context of mixture models and topic
models (Griffiths and Steyvers, 2004). Apart from their flexibility, one of the main
advantages of the DP mixture models is their ability to perform clustering and
selection of the number of components simultaneously in one shot. In addition,
DP mixture models can be used with a reduced computational cost thanks to
variational inference (Blei et al., 2006). However, we do not pursue Bayesian non-
parametric methods here because one of the main aims of this paper is to detail a
model selection method that could be used on a given clustering separately from
the clustering process. In this way, practitioners will have a choice of using their
preferred clustering tool and just adopt our model selection criterion or using our
complete approach of clustering and model selection in longitudinal data. This
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objective is difficult (and even unnatural) to be reached via DPMMs.
We organize the remainder of our paper as follows. Section 2 develops our

Bayesian framework to clustering longitudinal trajectories. Section 3 develops
the associated estimation routine whose computational cost remains reasonable.
Section 4 presents a simulation study comparing our method to some state-of-the-
art alternatives, in order to highlight the main features of our approach. A final
discussion, in Section 5, concludes the paper.

2 A Bayesian perspective
In this section, we detail a Bayesian extension of the model in Eq. (2) allowing
us to i) cluster the observations y1, . . . , yN in Q groups and ii) select Q in a non
asymptotic framework. The target probability distribution, that we would like to
maximize with respect to the pair (Z,Q) is

p(Z,Q|Y ) =
∫
p(Z,Q|Y, θ)p(θ)dθ (4)

where Z := (z1, . . . , zN), Y := (y1, . . . , yN) and the model parameters θ are seen as
random variables and integrated out. Note that, from a full Bayesian perspective,
the number of clusters Q is also viewed as a random variable in the above equation.
In order to develop an estimation algorithm that is reasonably fast, we choose not
to implement MCMC algorithms to simulate the above posterior distribution and
present the following alternative strategy that relies on the Bayes rule

p(Z,Q|Y ) = p(Y, Z|Q)p(Q)
p(Y ) .

where p(Q) is a prior distribution over Q. Since the denominator does not depend
on (Z,Q), it holds that

arg max
(Z,Q)

p(Z,Q|Y ) = arg max
(Z,Q)

(
p(Y, Z|Q)p(Q)

)
= arg max

Q

(
arg max

Z|Q

(
p(Y, Z|Q)

)
p(Q)

)
.

Note that, because maxZ|Q p(Y, Z|Q) does not depend on the functional form of
p(Q), the results shown in next sections, only involving maxZ|Q p(Y, Z|Q), remain
valid for any choice of p(Q). However, to simplify the exposition, we assume that
Q is uniform distributed (p(Q) ∝ 1) and the above equation then reduces to

arg max
(Z,Q)

p(Z,Q|Y ) = arg max
(Z,Q)

p(Y, Z|Q). (5)

Thus, computing the maximum posterior (MAP) estimates of Z and Q reduces to
maximize the complete data integrated log-likelihood.
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2.1 A closed form complete data integrated log-likelihood
The complete data integrated log-likelihood on the right hand side of Eq. (5) is

p(Y, Z|Q) =
∫
p(Y, Z|θ,Q)p(θ|Q)dθ, (6)

where we recall that θ := {βq, πq, σ2}q.
We stress that, in general, this quantity is not tractable, since the integral

on the right hand side of the above equality cannot be computed. However, some
further assumptions allow us to obtain p(Y, Z|Q) in a closed form, which is essential
in order to develop the clustering/model selection strategy detailed in the next
section. First, we assume that the prior distribution factorizes over the model
parameters, namely

p(β, σ, π) = p(β, σ)p(π),
where, in order to keep the notation uncluttered, we denote β := {βq}q and
π := {πq}q. Thus, the integrated log-likelihood in Eq. (6) factorizes

p(Y, Z|Q) = p(Y |Z,Q)p(Z|Q). (7)

Then, we assume prior conjugate distributions for β, σ and π. Specifically, con-
ditionally on σ2, assume that β1, . . . , βQ follow independent Gaussian prior distri-
butions

βq ∼ N
(
0, σ2ηqIK

)
, (8)

where η1, . . . , ηQ are positive parameters and IK is the identity matrix of order K.
The βqs are further assumed to be independent from εi, for all i. Likewise, assume
σ2 follows an Inverse Gamma prior distribution

σ2 ∼ IΓ(a, b), (9)

where a, b > 0. Finally, assume π follows a Dirichlet prior distribution

π ∼ Dir(α1, . . . , αQ), (10)

where αq > 0 for all q.
The integration with respect to β is detailed in the next section, since it al-

lows us to highlight a central feature of our Bayesian model. The details of the
integration with respect to σ2 and π are postponed in Appendices C and D.

2.1.1 Integrating with respect to β

By integrating out βq in Eq. (2), we obtain the marginal conditional density of yi

yi|zi, σ2 ∼ N
(
0, σ2

(
ηzi

ΦΦT + ID
))
. (11)
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By the law of iterated expectations it follows that

Cov(yi, yj|zi, zj, σ2) = E
[
yiy

T
j |zi, zj, σ2

]
= E

[
Φβzi

βTzj
ΦT |zi, zj, σ2

]
= σ2ηzi

ΦΦT1{zi=zj},

where 1A(·) denotes the indicator function over a set A. The above equation has an
important consequence: after βq is integrated out, the random vectors yi sharing
the same cluster are no longer independent, as they were in the frequentist model.
Moreover, let us denote by

y(q) := {yi|i ≤ N, zi = q}, (12)

the set of trajectories forming the q-th cluster, whose cardinality is denoted by Cq.
Since all vectors in y(q) are Gaussian distributed, their joint conditional density
can be specified as

Yq|Z, σ2 ∼ N
(
0, σ2Gq

)
, (13)

where Yq ∈ RDCq is a column vector obtained by concatenating all the observa-
tions in cluster y(q) and Gq ∈ RDCq×DCq is a block matrix. The blocks on the
main diagonal are of the form

(
ηqΦΦT + ID

)
, whereas the blocks outside the main

diagonal look like
(
ηqΦΦT

)
.

Remark. Equation (11) shows that the generative model detailed so far can en-
tirely be expressed in terms of kernels. In other terms, we can directly work with
ΦΦT without previous specifying the feature map Φ(·). By doing that, the genera-
tive approach described so far embodies

1. mixtures of linear regression models, with [ΦΦT ]jl := tjtl,

2. mixtures of polynomial regression models, with [ΦΦT ]jl := (1 + tjtl)r being
a polynomial kernel of degree r,

3. mixtures of non-parametric regression models, with [ΦΦT ]jl := exp
(
− (tj−tl)2

2γ

)
being a radial basis function (RBF) kernel, for some positive scale parameter
γ,

4. any other mixture of regression models depending on the choice of a symmet-
ric, positive definite kernel matrix ΦΦT .
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3 Inference
The closed form expression of the integrated log-likelihood is reported in Eqs (20)-
(21) in Appendices C-D. This quantity depends on the value of the hyper-parameters
ι := {η, a, b, α}, that must be set based on the prior knowledge about the the data.
If the number of groups Q is assumed to vary in a range {1, . . . , Qmax}, for a given
Q, we aim at estimating

Z∗Q := arg max
Z|Q

log p(Y, Z|Q).

Then, the Q leading to the highest value of log p(Y, Z∗Q|Q) will be the estimated
number of clusters (see Section 2)1.

The estimation of Z∗Q is challenging. The strategy that we propose relies on a
greedy maximization of log p(Y, Z|Q). In simple terms, we compute changes in the
integrated log-likelihood obtained by switching yi from its current cluster to other
proposal clusters, and retain the proposal leading to the highest increase in the log-
likelihood. We stress that having a close form expression for log p(Y, Z|Q) is crucial
to adopt such strategy. All vectors y1, . . . , yN are switched once. Notice that, since
Q is given, if yi is alone in its cluster, no movement is allowed. This classification
step (CS) is repeated recursively until no further increase of log p(Y, Z|Q) is
possible. We stress that the CS described so far is not guaranteed to converge
to a global optimum. Indeed, CS is a greedy step. In order to reduce the risk of
being trapped into local optima, one should either run the algorithm several times
(for each Q), with different initialization, or run the algorithm with a “clever”
initialization of Z, for instance the one obtained by k-means clustering. We adopt
this latter solution in experiments in Section 4. However, notice that also in case
of smart initialisation, it might be useful to run the CS several times, randomizing
over the switch order of the observations.

The CS is described in more details in Appendix E, where some original results
are reported in order to reduce the computational complexity of this step. Instead,
we conclude this section with a couple of important remarks. First, we notice that
the algorithm described in this section is reminiscent of the Classification EM al-
gorithm (C-EM, Celeux and Govaert, 1991) that replaces the expectation step of
the standard EM algorithm with a classification step similar to the one described
here. However, while EM algorithms maximize the complete data log-likelihood
with respect to the model parameters, here, those parameters are integrated away
and the maximization is performed with respect to the cluster assignments alone.
Second, it has been shown in the literature that, in latent variable models, like-
lihood maximization strategies involving a greedy search over the group labels

1More generally, when Q in not (a priori) uniformly distributed, the selected Q is the one
maximizing log p(Y, Z∗

Q|Q) + log p(Q), where the last term is independent of Z∗
Q.
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can outperform alternative variational approaches in terms of classification accu-
racy (see for instance Bertoletti et al., 2015; Côme and Latouche, 2015; Corneli
et al., 2016).

4 Experiments
Based on simulation studies, this section compares the Bayesian approach previ-
ously described2 with some alternative methods, both in terms of pure clustering
(Q fixed) and model selection. The methods considered for comparison are:

1. flexmix3: in the eponymous R package, it is a function fitting mixtures of
generalized linear models. Here, it is used to fit the generative model in
Eq. (3). Since it is the frequentist version of the generative model introduced
in Section 2, we consider flexmix as our major competitor.

2. funHDDC4: it performs (in R) clustering and model selection of functional
longitudinal data based on a latent mixture model which fits high dimen-
sional data in group-specific sub-spaces (Bouveyron and Jacques, 2011; Schmutz
et al., 2020).

3. BayesianGaussianMixture5: from the Python library scikit-learn, it is used in
order to compare our approach with a very popular model based clustering
technique. Here, longitudinal data are seen as unconstrained multivariate
mixtures of Gaussian distributions (despite the discussion in Appendix A),
possibly with non diagonal covariance matrices. A prior Dirichlet process,
allowing for a potentially infinite number of components is considered and
the cluster assignments are estimated via variational inference.

4. mclust6: in the eponymous R package, it fits mixtures of Gaussian distribu-
tions to the data, in a frequentist framework. Definitely a gold standard in
model based clustering.

4.1 Setup I
Aim. One of the major claims of this paper is that, in longitudinal data mixture
analysis, our Bayesian approach might outperform asymptotic model selection cri-

2The Python code implementing the clustering/model selection method described in this
paper is publicly available at https://github.com/marcogenni/BayesianLongitudinal.

3https://cran.r-project.org/web/packages/flexmix/index.html.
4https://cran.r-project.org/web/packages/funHDDC/index.html.
5https://scikit-learn.org/stable/modules/mixture.html#

variational-bayesian-gaussian-mixture.
6https://cran.r-project.org/web/packages/mclust/index.html.
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teria (BIC and ICL) in some scenarios. This might happen either because BIC
tends to overestimate the number of components and/or the number of observa-
tions is not large enough to ensure the convergence of the asymptotic criteria to
the corresponding posterior probabilities. This section focuses on such scenarios.

Settings. An increasing number of simulated trajectories, around Q = 6 mean
signals, is considered. The mean signals are fixed (coloured curves in Figure 2b).
Each trajectory is assigned to a group uniformly at random (πq = 1/6 for all q)
and the number of simulated trajectories increases from N = 20 to N = 190.
Each simulated trajectory is obtained via perturbations around the corresponding
signal. We setD = 12 points per trajectory, not equally spaced. Figure 2a shows 40
(linearly interpolated) sampled trajectories over the time horizon [5, 60]. The same
number of sampled trajectories and the underlying signals are shown in Figure 2b.
For each value of N , we simulated 10 independent data sets (around the same 6
signals) and each model was fitted on each data set testing a value of Q from 1 to
8. In order to avoid convergence to local maxima, each algorithm run 10 times, one
for each data set and for each value of Q, provided with a k-means initialization of
Z. The estimates leading to the highest value of the objective function were finally
retained. Our model and flexmix were equipped with a polynomial kernel of order
4, the choice of the hyper-parameters for our model is discussed later in this section.
Finally, we tested two different families of random perturbations, Gaussian and
Gumbel, respectively, both centered and with standard deviation σ = 0.5. The
results for model selection are reported in Figure 3. Note that the legend reports
our method as “Bayes" and BayasianGaussianMixture as “NPBGMM". For each
value of N we report the mean value of the selected Q by each model (over 10
runs). For all models, except Bayes and NPBGMM, the reported Q was selected
via ICL, whose calculation was supported by different packages. Interestingly, the
differences with respect to BIC were absolutely negligible, knowing that QBIC ≥
QICL. In case of flexmix we always found that QBIC = QICL.

Discussion. Although in a context of mixture density estimation it is of course
desirable to be able to select Q = 6 mixture densities, in a clustering perspective it
is fully reasonable to desire a model selection criterion selecting three main groups
of trajectories, especially for small N , as it can be understood when looking at
Figure 2a (three groups of well separated trajectories and not six). This point was
raised and discussed in more general terms in Section 1.1. Thus, when looking for
“clusters", both flexmix and mclust might be overestimating the number of groups
for small values of N both in case of Gaussian and Gumbel perturbations (in the
Gaussian case the overestimation is more striking). Not surprisingly, a Gaussian
mixture model is unfit to model longitudinal data with Gumbel residuals and this
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(a) Sampled trajectories
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(b) Sampled trajectories with underlying signals

Figure 2: Figure 2a shows N = 40 random trajectories distributed around Q = 6
signals (not showed). Figure 2b shows another sample of N = 40 trajectories as
well as the underlying signals. In both cases, the random trajectories are obtained
by means of centered Gaussian perturbations around the mean signals (σ = 0.05).

might explain why the actual number of components is not fully recovered by
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Figure 3: The mean Q selected by each model over ten runs in case of Gaussian
residuals (Figure 3a) and Gumbel residuals (Figure 3b).
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Figure 4: Adjusted Rand indexes obtained by the clustering algorithms for Q = 6.
Gaussian residuals in Figure 4a, Gumbel residuals in Figure 4b.

mclust, in Figure 3b, even for large N . flexmix always selects more groups than
our model and, interestingly, BIC and ICL produce the very same selected Q.
This suggests that also the over penalization induced by ICL (see Appendix B)
fails to produce a more conservative model selection criterion than BIC. In our
model (Bayes), the role of the hyper-parameters is crucial. We will come onto
this point in a while. The other competitor approaches (funHDDC and NPBGMM)
seem to suffer less overestimation issues for small N . However, the low values of
Q estimated by funHDDC are certainly dues to a poor clustering more then to a
more penalizing model selection design. This can be seen in Figure 4. It reports
the mean Adjusted Rand indexes (ARIs, Rand, 1971) (over 10 runs) obtained
by each method when fixing Q = 6. The first four values for funHDDC are not
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reported since, for Q = 6, the log-likelihood went to minus infinity and the model
produced NA. Starting from N > 50 the ARIs can always be computed but they
are lower then those obtained by other methods. We think that funHDDC might
need more observations per trajectory to work properly. On the opposite, our
clustering method outperforms the competitors most of the time. We stress that,
for values of N around 50 trajectories, the ARIs are almost one, meaning that the
model can perfectly recover the Q = 6 mixture components. Still, if it is allowed
to choose the number of clusters, it selects Q = 3. NPBGMM has good clustering
performances for high N . The fact that it needs more observations to recover the
true clustering is consistent with the discussion in Appendix A. Note, however,
that NPBGMM is not capable of performing clustering with a fixed number of
groups. This might penalize it for smaller values of N when it selects Q < 6.
Several values of the hyper-parameters were tested both for the mean precision
and the weight concentration priors in NPBGMM but the best results were always
obtained with the default parameters provided by the function.

The experiments reported so far were performed with the simple settings showed
in Table 1. To simplify the hyper-parameter choice we assumed a symmetric Dirch-
let distribution in Eq. 10 and fixed ηq = η for all q. In this setup, the value of

Parameter Value
η 1.0
a 1.0
b 1.0
α 10

Table 1: Values of the prior hyper-parameters.

α was not relevant when the algorithm was provided with a “smarter” k-means
initialization. On the contrary, we observed that with a random initialization of
Z, the choice of the Dirichlet parameter α had an impact on the final clustering
(not reported). In more detail, we noticed that the Classification Step detailed in
Appendix E tended to switch too many observations at once, thus emptying some
clusters. A similar remark was previously made by Côme and Latouche (2015);
Corneli et al. (2016) in the context of graph clustering. However, such a tendency
to over-switching can be resisted by picking a large value for the initial α (see Ch.4
of Fruhwirth-Schnatter et al., 2019, for a detailed discussion about the Dirichlet
prior hyper-parameters in mixture analysis.). A value of α = 10 or even higher can
make the job in this framework. We noticed that the value of the hyper-parameters
a and b did not impact on the final result. Instead, the hyper-parameter η has an
important role. We performed again model selection in the same settings described
at the beginning of this section, with Gaussian residuals, but testing several values
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Figure 5: Selection of Q performed by our model, with Gaussian perturbations, in-
creasing number of trajectories and for different values of the prior hyper-parameter
η.

of η. As it can be observed in Figure 5, our model selection criterion could even be
more parsimonious for small values of η, thus needing higher values of N to select
highers Q’s. On the opposite, higher values of η allow us to select a higher num-
ber of clustering components for smaller values of N . However, the “convergence"
of our model selection criterion toward its asymptotic counterpart (ICL) is never
fulfilled when N < 30: the selected Q is still 3.

4.2 Setup II
Aim. As stated in Section 2.1, the Bayesian formulation of the generative model
in Eq. 2 allows us to directly fit mixtures of linear, polynomial or non-parametric
regression models to the data. A non-parametric scenario is considered in this
section.

Settings. A fixed number of N = 40 (random) trajectories is considered. The
trajectories are obtained by means of centred random Gumbel perturbations around
Q = 4 signals

sb(x) := sin(3x)
bx

, b = {1, 2, 4, 8}.

Each trajectory consists of D = 100 measurements and the standard deviation
σ of the Gumbel perturbations varies in [0.5, 1.2]. Gumbel perturbations were
preferred to Gaussian residuals in order to make the experiment more challenging.
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(b) Sampled trajectories with underlying signal

Figure 6: Figure 6a shows N = 40 random trajectories distributed around Q = 4
signals (not showed). Figure 6b show the same sample with the underlying signals.
The random trajectories are obtained by means of centered Gumbel perturbations
around the mean signals (σ = 0.5).

Figures 6a and 6b show a sample of trajectories over the time horizon [−10, 10],
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with and without the underlying signals, respectively, for a value of σ = 0.5.
Unlike the previous setup, here trajectories are not assigned to clusters in equal
proportions, but according to the following scheme: 4 trajectories around s1(·), 8
trajectories around s2(·), 12 trajectories around s3(·) and, finally, 16 trajectories
around s4(·). Note that, such a setting is more challenging with respect to the
equally balanced case, since most of the trajectories are affected to s3(·) and s4(·)
who are the nearest signals. As long as σ increases, it becomes impossible to
separate these two clusters. For different values of σ, 10 independent samples of
N trajectories each simulated. Our model was equipped with a RBF kernel

[ΦΦT ]jl = exp
(
−(tj − tl)2

2γ

)

with γ = 0.04, selected by cross validation. The hyper-parameters are set as in the
previous setting, except for η, whose role is discussed at the end of this section.
We stress that, once fitted to the data, our approach implicitly provides estimates
for the mean signals in Figure 6b. Indeed, the estimated parameters (as well as
the estimated Z) can be used to compute the mean and variance of the (Gaussian)
predictive distribution p(yi(t)|yi, ẑi, σ̂2, ι), where t is a new time point correspond-
ing to a potential measurement for the i-th individual. In Figure 7 the estimated
mean signals (the mean values of the predictive distributions over time) are plotted
together with the original simulated data clustered by our algorithm. Dashed lines
delimit 95% empirical confidence regions, obtained via sampling according to the
estimated predictive distributions. All models were fitted 5 independent times on
each simulated dataset, provided with a k-means initialisation. The run leading
to the highest value of the objective function was finally retained. The results for
clustering and model selection are reported in Figure 8.

Discussion. As it can clearly be seen in Figure 8a, our algorithm and flexmix
outperform other approaches. In case of mclust and NPBGMM this is not surpris-
ing: in this setup, the number of points for trajectory (D = 100) is higher than
the number of observations (N = 40). Thus, both these approaches work in very
high dimension (see also Appendix A). For NPBGMM we tried several options for
the maximum number of iterations, the mean precision prior and the weight con-
centration prior. The best results are reported in Figure 8 and correspond to the
default values of the hyper-parameters provided by the Python function.

We also report that, since flexmix does not support mixture of non-parametric
regressions, we needed to perform progressively higher order polynomial regressions
(up to order 6) in order to obtain the best results showed in Figure 8a. Still, our
method slightly outperforms flexmix. For completeness, results of model selection
are shown in Figure 8b. As in the previous section, the model selection via ICL
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Figure 7: Trajectories clustered via our algorithm (σ = .5). The solid dark lines
are the means of the predictive distributions on time. The dashed lines delimit
95% empirical confidence regions.

criterion was reported for flexmix, Mclust and funHDDC: the differences between
ICL and BIC were negligible. Being the number of mixing components smaller
in this setup, model selection was less challenging. Basically all methods tend to
select Q = 4 groups for the smallest value of σ = 0.5. Then, trajectories around
s3(·) and s4(·) are less and less separated and models tend to select Q = 3 groups
and finally Q = 2 (our approach still selects Q = 3 for some samples, for σ = 1.1).

Finally, Figure 9 reports the effect of the hyper-parameter η on the selection of
Q. Similarly to the previous experiment, smaller values of η can be used to have a
more parsimonious model selection. Notice that the value η = 1.2 is the one used
to obtain the curve in Figure 8b. Moreover, as in the previous scenario, different
values of η affect the model selection but not the clustering: the four values of η
always lead to the Bayes ARIs reported in Figure 8a (not reported).
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Figure 8: Adjusted Rand indexes obtained by the clustering algorithms for Q = 4
and selected number of clusters.
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Figure 9: The estimated number of groups selected by Bayes with decreasing η.

5 Discussion and perspectives
The experiments in the previous section suggest that our approach can be used
as a viable alternative as a pure clustering and model selection tool in appli-
cations. Indeed, it outperforms the state-of-the art when performing clustering
(with a fixed Q) of longitudinal data and provides the user with a model selection
criterion which is by far more flexible than BIC and ICL. Our criterion can be
very parsimonious depending on the choice of the hyper-parameter η. As usual
in Bayesian statistics, this parameter must be set by the statistician based on the
prior knowledge he/she has about the phenomenon under observation. Smaller
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prior variances should be preferred when the aim is to detect very well separated
clusters of trajectories, higher prior variances when one is interested in the number
of Gaussian mixing components needed to fit the data distribution. The higher
the number of observations the less crucial the choice.

Although both the proposed Bayesian modeling (based on conjugated prior dis-
tributions on the model parameters) and the inference strategy (based on a greedy
search over trajectory labels) can easily be extended to multivariate regression
models not involving time or to longitudinal data mixtures whose measurements
are not taken at the same times, we recall that, on those cases, the results pre-
sented in Appendix E would no longer be valid. Future researches might focus
on strategies to keep under control the complexity of the estimation procedure
under less restrictive assumptions. Also, it would be interesting to extend the
generative model considered here in order to account for individual effects and/or
autoregressive components.
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A Relation with multivariate Gaussian mixture
models

To simplify the exposition, let us consider here the simple case where φ(·) is the
identity function. Then, Eq. (2) reduces to

yi = tβzi
+ σεi,

where βzi
is a scalar and t = (t1, . . . , tD)T ∈ RD. Thus

yi|zi ∼ N
(
tβzi

, σ2ID
)
.

First, we stress that, since a Gaussian distributions is fully characterized by its
mean and variance matrix, a permutation of the times inside t induces a different
probability distribution on yi. Thus, unless β1 = · · · = βQ = 0, time matters. Sec-
ond, recalling that y1, . . . yN are assumed independent, the above equation defines
a constrained version of a multivariate Gaussian mixture model, since

p(yi|π, β, σ2) =
Q∑
q=1

πqg(yi; tβq, σ2ID), (14)

where π := (π1, . . . , πQ)T are the mixing proportions, g(·;µ,Σ) denotes the pdf
of a multivariate Gaussian distribution with mean µ and variance Σ and zi was
integrated out. Since, yi follows a multivariate Gaussian mixture distribution,
would it be reasonable to attack the problem of clustering y1, . . . , yN via standard
unconstrained Gaussian mixtures machinery (thus ignoring the data dependence
on time)? Not really. It is worth noticing that the generative model induced by
the above equation has 2Q free parameters to estimate. On the contrary, if also
we saw that model as a not constrained Gaussian mixture model with spherical
shared variance (the most parsimonious version), namely

p(yi|π, β, σ2) =
Q∑
q=1

πqg(yi;µq, σ2ID),

with µq ∈ RD, unknown, the above equation would count Q(D+1) free parameters
to estimate. Thus, as long as D ≥ 2 the longitudinal formulation is more parsi-
monious. In particular, in a high dimensional framework, the difference between
the two approaches would be dramatic.

B ICL and BIC
We consider a standard mixture model where the N observed variables are denoted
by X := (x1, . . . , xN) and the corresponding latent variables by Z = (z1, . . . , zN).
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The unknown number of mixing components is K. The (asymptotic) BIC and
ICL criteria are defined as follows

BICK := max
θ

log p(X|θ,K)− ν(K)
2 logN (15)

and
ICLK := max

θ
log p(X,Z|θ,K)− ν(K)

2 logN, (16)

where θ denotes the set of the model parameters, ν(K) is the number of model
parameters and log p(·) denotes the log density of the observations.
Remark. The ICL criterion in Eq. (16) is an approximation of the marginal log-
likelihood

log p(X,Z|K) = log
∫
θ
p(X,Z|θ,K)p(θ|K)dθ, (17)

where the model parameters are integrated out (Biernacki et al., 2000). If the prior
distribution p(θ|K) is conjugated, the quantity on the left hand side of the above
equation can be computed explicitly. We sometimes call it exact ICL.

The following notations are adopted
θ̂ = arg max

θ
log p(X|θ,K), (18)

θ = arg max
θ

log p(X,Z|θ,K) (19)

and we stress that, in general, θ̂ 6= θ.
The following Proposition formally shows that ICLK in Eq. (16) is a lower

bound of BICK . This result was mentioned in (Biernacki et al., 2000; Baudry
et al., 2010) but not formally proven.
Proposition 1.

ICLK ≤ BICK .

Proof.

ICLK −BICK = log p(X,Z|θ)− log p(X|θ̂)

= log p(X,Z|θ)
p(X|θ̂)

= log p(X,Z|θ)p(X|θ)
p(X|θ)p(X|θ̂)

log p(Z|X, θ) + log p(X|θ)
p(X|θ̂)

≤ 0,

where the dependence on K was omitted for simplicity and the last inequality
comes from the discrete nature of the random variables z1, . . . , zN and the defini-
tions of θ̂ and θ.
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C Integrating with respect to σ2

In Section 2.1.1 we saw that the marginal conditional density p(Y |Z, σ2, Q) is

p(Y |Z, σ2, Q) =
Q∏
q=1

p(Yq|Z, σ2)

= 1
(2πσ2)

DN
2
∏Q
q=1

√
det(Gq)

exp
− 1

2σ2

Q∑
q=1

Y T
q (Gq)−1Yq

 ,
where Gq ∈ RDCq×DCq is the block matrix introduced in Eq. (13). Since, Eq. (9)
states that

p(σ2|a, b) = ba

Γ(a)

( 1
σ2

)a−1
exp

(
− b

σ2

)
1(σ2)]0,∞[,

when looking at the joint conditional density p(Y, σ2|Z,Q) as a function of σ2 we
recognize the pdf of an Inverse Gamma distribution IΓ

(
a+ DN

2 , b+ 1
2
∑Q
q=1 Y

T
q G

−1
q Yq

)
.

Therefore, σ2 can be integrated out to obtain

p(Y |Z,Q) = 1
(2π)ND

2
∏
q

√
det(Gq)

ba

Γ(a)
Γ
(
DN

2 + a
)

(
b+ 1

2
∑
q Y T

q (G−1
q )Yq

)DN
2 +a

. (20)

D Integrating with respect to π

The second integral on the right hand side of Eq. (7) can be computed in a similar
fashion. Due to Eq. (10), the posterior distribution p(π|Z,Q) is still a Dirichlet.
It can easily be seen that

p(Z|Q) =
Γ
(∑Q

q=1 αq
)

∏Q
q=1 Γ(αq)

∏Q
q=1 Γ(Cq + αq)

Γ
(
N +∑Q

q=1 αq
) , (21)

where we recall that Cq is the number of trajectories in cluster q.

E Classification step in depth
Consider the observation yi ∈ RD and assume it currently belongs to the q-th
cluster, namely zi = q. The change in the integrated log-likelihood due to a switch
of yi from the q-th cluster to the l-th cluster can be computed as

∆i:q→l
ll : = log p(Y, Za|Q)− log p(Y, Zb|Q)

= log p(Y |Za, Q)− log p(Y |Zb, Q)
+ log p(Za|Q)− log p(Za|Q),

(22)
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where Za and Zb denote the configurations after and before the switch, respec-
tively. As it can be seen by looking at Eqs. (20)-(21), the calculation of ∆i:q→l

ll

basically boils down to compute i) the determinant of Gq and ii) the quadratic
term Y T

q G
−1
q Yq, for all q ≤ Q. We report in the following some results allowing us

to speed up the calculation of these two terms.

First term. First, recall that

Gq =


Bq Aq . . . Aq
Aq Bq . . . Aq

Aq Aq
. . . Aq

Aq . . . . . . Bq

 (23)

where Aq = ηqΦΦT ∈ RD×D and Bq = Aq + ID. Since the size of Gq changes
whenever an observation is switched from one cluster to another, we need a fast way
to compute det(Gq)7. Theorem 1 in Silvester (2000), whose precise formulation is
reported in Appendix F, can help us. This theorem basically allows us to compute
det(Gq) in two steps:

1. a first intermediate determinant (IDq) is computed as if Aq, Bq in Eq. (23)
where numbers

IDq := det(Gq) ∈ RD×D, (24)
where the over line is used to differentiate this determinant from the real
one, that we are actually trying to compute. Then,

2. since IDq is itself a matrix, det(Gq) is computed as

det(Gq) = det(IDq). (25)

According to Theorem 1 in Silvester (2000), the above equality holds as long as
all the possible matrix products between two blocks in Gq are commutative. This
condition is fulfilled as stated in the following

Proposition 2. The product between each pair of blocks of Gq is commutative.

Proof. For simplicity, in this proof the subscript q is removed from Aq and Bq,
since not needed. Clearly the products AA and BB are commutative. Moreover,

AB = A(A+ ID) = AA+ A = (A+ ID)A = BA

and the proposition is proven.
7 For instance, the cost of computing det(Gq) via an LU decomposition is O(D3N3) and this

approach is used by most linear algebra libraries.
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Now we can state the following Theorem

Theorem 1. The determinant of Gq can be computed in O(D) as

det(Gq) =
D∏
j=1

(1 + Cqλ
(q)
j ), (26)

where λ(q)
1 , . . . , λ

(q)
D are the eigenvalues of Aq and Cq is the cardinality of the q-th

cluster (see Eq. (12)).

Proof. The proof of this Theorem relies on Lemma 1 in Appendix F, stating that
IDq in Eq. (24) is

IDq = ID + CqAq,

which is a matrix in RD×D. Now, since Aq is symmetric it admits a diagonal
representation Aq = QqΛqQ

T
q , where Λq ∈ RD×D is a diagonal matrix whose non

null entries are the eigenvalues of Aq andQq is an orthogonal matrix whose columns
are the corresponding eigenvectors. Thus

det(IDq) = det(ID + CqQqΛqQ
T
q )

= det
(
Qq(ID + CqΛq)QT

q

)
= det (ID + CqΛq)

=
D∏
j=1

(1 + Cqλ
(q)
j ).

Second term. The quadratic form

Y T
q G

−1
q Yq (27)

is now considered. Adopting the notation in Eq. (23), Theorem 3 in Appendix F
states that the inverse matrix G−1

q is also a diagonal block matrix

G−1
q =


Vq Wq . . . Wq

Wq Vq . . . Wq

Wq Wq
. . . Wq

Wq . . . . . . Vq


where

Wq : = −(ID + CqAq)−1Aq,

Vq : = Wq + ID.
(28)
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Thus, to compute the quadratic form in Eq. (27) it is not required to invert the
whole Gq but only the matrix (ID +CqAq). Notice that the computational cost of
this operation is independent of the number of observations N8. Moreover

Y T
q G

−1
q Yq =

Cq∑
i=1

y
(q)
i

T
Vqy

(q)
i +

Cq∑
i=1

Cq∑
j=1
j 6=i

y
(q)
i

T
Wqy

(q)
j

=
Cq∑
i=1

y
(q)
i

T
Idy

(q)
j +

Cq∑
i=1

Cq∑
j=1

y
(q)
i

T
Wqy

(q)
j

= ‖Yq‖2
2 +

 Cq∑
i=1

y
(q)
i

T

Wq

 Cq∑
j=1

y
(q)
j

 ,
where ‖·‖2 denotes the Euclidean norm and we denoted by y

(q)
i ∈ RD the i-th

column vector in cluster y(q). Since the sum of all observations in cluster y(q)

(namely ∑Cq

j=1 y
(q)
j ) can be pre-computed before and after each switch and Wq does

not depend on i, the last term on the right hand side of the above equation can
be computed in O(D2) that can be sensibly smaller than O(N2D2) needed for a
direct calculation of Y T

q G
−1
q Yq.

F Linear algebra results
Theorem 2 (Silvester (2000)). Let R be a commutative subring of F n×n, where
F is a field and F n×n denotes the set of matrices n× n over F . Let M ∈ Rm×m.
Then

det
F
M = det

F

(
det
R

(M)
)
.

Lemma 1. Consider a RN×N square matrix A such that

Aij =

a+ ε if i = j

a otherwise

where a, ε are two real constants. Then

det(A) = εN−1(ε+Na). (29)

Proof. We proceed by recurrence. For N = 1, A = (a+ ε) and Eq. (29) is verified.
Now, let us assume that Eq. (29) holds for all i ≤ N . The case where N is an even

8For instance, relying on the Gauss-Jordan elimination, the computational cost of the inver-
sion would be O(D3), which is smaller than O(ND3) required to invert Gq.
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number is considered at first. Thus

detMN+1 = det


a+ ε a . . . a
a a+ ε . . . a
... . . . ...
a a . . . a+ ε


︸ ︷︷ ︸

N +1 columns

= (a+ ε) det(MN)− aN det


a a . . . a
a a+ ε . . . a
... . . . ...
a a . . . a+ ε


︸ ︷︷ ︸

N columns

= (a+ ε) det(MN)− a2N det(MN−1) + a2N(N − 1) det


a a . . . a
a a+ ε . . . a
... . . . ...
a a . . . a+ ε


︸ ︷︷ ︸

N - 1 columns

and pursuing the recursion we obtain
detMN+1 = (a+ ε) det(MN)

− a2
(
N−2∑
i=0

(−a)i N !
(N − i− 1)! det(MN−i−1)

)
− aN+1N !,

(30)

where the sign of the last term on the right hand side (r.h.s.) of the equality is
due to the assumption of an even N . Thanks to the inductive assumption, the
first term on the r.h.s of the equality is

(a+ ε) det(MN) = (a+ ε)εN−1(ε+Na)
= aεN−1(ε+Na) + εN(ε+Na)
= εN(ε+ (N + 1)a) + a2NεN−1.

Similarly, the inductive assumption can bu used to replace det(MN−i−1) = εN−i−2(ε−
(N − i − 1)a) in the second term on the r.h.s. of Eq. (30). Thus, by developing
the sum over i we obtain

det(MN−1) = εN(ε+ (N + 1)a)
+ �����
a2NεN−1 −�����

a2NεN−1

+ · · ·+ ����aNεN ! −����aNεN !
= εN(ε+ (N + 1)a).
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The case where N is odd is analogous and the lemma is proven.

Lemma 2. Consider a RN×N square matrix A such that

Aij =

a+ ε if i = j

a otherwise

where a, ε are two real constants. Then the inverse A−1 is

A−1
ij =


ε+(N−1)a
ε(ε+Na) if i = j

− a
ε(ε+Na) otherwise

(31)

Proof. It suffices to verify that, given A−1 in Eq. (31), AA−1 = IN .

Theorem 3. Consider an invertible square block matrix M ∈ RDN×DN such that

M =


B A . . . A
A B . . . A

A A
. . . A

A . . . . . . B

 (32)

where the non diagonal blocks A ∈ RD×D are symmetric matrices and the diagonal
blocks are B = A+ ID. Then, the inverse matrix M−1 is still a block matrix

M−1 =


V W . . . W
W V . . . W

W W
. . . W

W . . . . . . V


where the non-diagonal blocks W are

W = −(ID +NA)−1A, (33)

and the diagonal blocks V are

V = (ID +NA)−1(ID + (N − 1)A) = W + ID. (34)

Proof. We need to prove that MM−1 is a block matrix whose non-diagonal blocks
are matrices in RD×D having zero everywhere (henceforth denoted by 0RD×D) and
whose diagonal blocks are ID. We observe that (ID+NA)−1 =

(
det(M)

)−1
, where

det(·) is defined in Eq. (24) and (ID +NA) is invertible thanks to the assumption
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of invertible M combined with Lemma 1 and Theorem 1 in Silvester (2000). Now,
the following notation is introduced

DM := (ID +NA)−1

to simplify the exposition. Moreover, with a slight abuse of notation we denote by
(MM−1)ij the block (and not the real entry!) at position (i, j) in MM−1. Then,
for j 6= i

(MM−1)ij = −BDMA+ ADM(ID + (N − 1)A)
− (N − 2)ADMA

= −DMA+ ADM

= 0RD×D ,

where the last equality comes from

A(ID +NA) = (ID +NA)A ⇒
A = (ID +NA)A(ID +NA)−1 ⇒

(ID +NA)−1A = A(ID +NA)−1.

(35)

Similarly, for i = j

(MM−1)ii = BDM(Id + (N − 1)A)− (N − 1)ADMA

and some easy calculations show that the above quantity is equal to ID.
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