N
N

N

HAL

open science

Experimental, analytical and numerical investigation to
prevent the tow buckling defect during fabric forming

Mohamed Medhat Salem, Emmanuel de Luycker, Marina Fazzini, Pierre

Ouagne

» To cite this version:

Mohamed Medhat Salem, Emmanuel de Luycker, Marina Fazzini, Pierre Ouagne.
mental, analytical and numerical investigation to prevent the tow buckling defect during fab-
ric forming. Composites Part A: Applied Science and Manufacturing, 2019, 125, pp.105567.

10.1016/j.compositesa.2019.105567 . hal-02309890

HAL Id: hal-02309890
https://hal.science/hal-02309890
Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Experi-


https://hal.science/hal-02309890
https://hal.archives-ouvertes.fr

OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in: http://oatao.univ-toulouse.fr/24280

Official URL:
https://doi.org/10.1016/j.compositesa.2019.105567

To cite this version:

Salem, Mohamed Medhat and De Luycker, Emmanuel and
Fazzini, Marina and Ouagne, Pierre Experimental, analytical
and numerical investigation to prevent the tow buckling defect
during fabric forming. (2019) Composites Part A: Applied
Science and Manufacturing, 125. 1-13. ISSN 1359-835X

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr



mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://doi.org/10.1016/j.compositesa.2019.105567

Experimental, analytical and numerical investigation to prevent the tow

buckling defect during fabric forming™
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Laboratoire Génie de Production (LGP), Université de Toulouse, INP-ENIT, Tarbes, France
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We investigate the causes, kinematic and possible ways to prevent the tow-buckling defect during the complex
shape-forming of a dry woven reinforcement. Macro-scale compression leads to wrinkles; we focus on a meso-
scale phenomenon generated by a non-uniform axial compression of the tow due to in-plane bending. An ex-
perimental study is presented, followed by an efficient method to predict the onset of the tow-buckling defect.
This investigation is based on the combination of an experimentally validated analytical approach, with a macro-

scale simulation of the forming process for a single fabric layer. A particular focus is given to the resulting tow
curvatures that allows us to predict the zones of high tow buckling probability. The relatively simple numerical
approach based on Lagrange assumptions does not take into account tow slippage. However, for most cases,
where buckles appear before slippage, this approach alleviates the compulsory need for an expensive meso-scale

representation.

1. Introduction

Fiber reinforced structural composites offer great mechanical per-
formances because of their low density compared to regular structural
materials. Manufacturing such parts requires the use of a fibrous re-
inforcement. Among others, woven fabrics represent a large amount of
the chosen reinforcement due to their high drapability, good perme-
ability and good cohesion when subjected to multidirectional loading
and high manufacturing processability [1]. However, defects that may
jeopardize the mechanical integrity of the composites could appear,
prior to resin injection, during the complex shape forming of woven
reinforcements such as the resin transfer molding (RTM) process, as
identified by Potter et al. [2].

Some of these defects, such as the preform wrinkling, have been
extensively investigated in the literature. Several experimental in-
vestigations [3-5] and numerical investigations [6-8] led to the un-
derstanding of the mechanics behind the formation of the wrinkling
defect and the ways to prevent it (blank holders design, ply orienta-
tions, etc.).

Other defects mentioned by Potter et al. [2] remain to be fully un-
derstood, such as, tow sliding/unweaving as experienced in [4,9,10]
and studied in [11,12] or the tow buckling defect.

The tow buckling defect was defined by Ouagne et al. [10,13] as a

* Corresponding author.
E-mail address: emmanuel.de-luycker@enit.fr (E. De Luycker).

https://doi.org/10.1016/j.compositesa.2019.105567

tow deflection out of the plane of the reinforcement by a few milli-
meters combined with a rotation around its axis. Capelle et al. [14]
designed a special set of blank holders associated with a tetrahedral
punch to limit the appearance of tow buckles. Tephany et al. [15] and
Ouagne et al. [16] found from their preliminary study the causes that
could lead and influence the tow buckles appearance. The said causes
could be linked to the previously mentioned ways to prevent the
wrinkling defect. A device was designed to recreate the conditions of
the tow buckling defect and investigate the causes. They concluded,
that the most influencing parameters are the in-plane bending of the
tow, the reinforcement orientations and the applied loads in both warp
and weft directions of the reinforcement. However, some other geo-
metric and mechanical parameters were not investigated. Beakou [17]
and Matveev [18] described a comparable phenomenon on carbon tape
during the automatic layup process. They deducted that the lateral
buckles are a result of the dissymmetrical in-plane longitudinal com-
pression load generated in the tape via in-plane bending; they proposed
an analytical solution to predict its appearance.

This work sets itself as a follow-up of Tephany’s work [15] and a
more in-depth investigation of the effects of tensile loads, nature and
geometrical parameters of the tows on the tow buckling defect. Our aim
is to better understand the defect appearance and the possibilities to
prevent it. In conjunction with an experimental study, the analytical
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model proposed in [17,18] was modified so that to predict the ap-
pearance of tow buckling in the woven fabric reinforcements. This
paper is divided in two parts: the first one dealing with experimental
investigation and the second one presenting the analytical modeling
and the possibility to predict the tow buckling appearance during the
forming of a complex shape, such as a prismatic shape, using an iso- i -
geometrical simulation. The aim of our numerical work is in the same ¥ By
vein as the work of Iwata et al. [19]; predicting defects appearance. The ; = B .
chosen numerical approach is much simpler though with the known
limitations of macro-scale modeling which are unable to consider tow
slippage contrary to meso-scale modeling. An isogeometrical frame-
work is chosen for its capability to naturally evaluate the curvatures
along the tows during a simulation. The main advantage here is the
computational efficiency of the macro-scale description since no con-
tact is computed within the fabric. Only contacts between the fabric and
the tools are considered. It is therefore possible to perform such simu-
lations on a laptop computer and it permits investigating a possible
prediction of the tow buckling defect.

2. Experimental study

2.1. Materials and experimental setu;
P P Fig. 2. S-DIC setups with the buckling device.

For this study, the same device (Fig. 1) as the one described in

[19,20] was used and modified. The device permits to impose different via each of the jaws bolts. The lateral jaws can then follow an in-plane
initial tensile loads in warp and weft directions of a woven fabric as circular translation motion as illustrated by Fig. 1(b, d).

represented in Fig. 1(a, c). The loads can therefore be applied in the In addition to the two load sensors that allow tension measure-
fixed longitudinal tow network (direction 1, load 1) and in the trans- ments, the device is instrumented with two Stereo Digital Image
versal tows network submitted to in-plane bending (direction 2, load 2) Correlation systems (S-DIC), as shown in Fig. 2, associated with the
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Fig. 1. Principle of the tow-buckling device: (a) kinematic diagram of the initial state of the device, (b) kinematic diagram of the bent state of the device, (c) picture
of the device in the initial state, (d) picture of the buckles on the surface of the reinforcement. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. (a) Bending angle measurement, (b) Tow’s curvature radius measurement and representation of the unsupported length L and width b of the tow. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

software GOM ARAMIS®. The first set of S-DIC set retrieves global in-
formation at the scale of the whole device (Fig. 3(a)) and the second
one focuses on the formation of the tow buckles locally (Fig. 3(b)). The
in-plane bending state of the reinforcement is evaluated in two ways. A
global way via a so-called “bending angle of the device” defined in
Tephany [15], as presented in Figs. 1(b) and 3(a), assuming that an
originally straight tow rotates rigidly. A local way by extracting the
curvature radius, using ImageJ® software, from the fabric images of
Fig. 3(b).

In order to evaluate the buckling behavior of a tow within a fabric,
at each bending state, its most deflecting profile is extracted from the
3D reconstructed upper surface of the fabric (Fig. 4(a)). The different
states of the same profile are then compiled in Fig. 4(b). The red curve
in Fig. 4(b) represents the final state of the profile of the buckled tow at
a bending angle of ~40°.

In order to determine the causes for the tow buckling defect, pre-
viously stated parameters such as tensile loading and bending angle
were investigated more in depth alongside other fabric geometrical
parameters such as the tow free dimensions and the tows nature. The
tow free dimensions are the unsupported (free-floating) length and
width of the apparent portion of the tow that is expected to buckle as

z(mm)

(@)
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illustrated in Fig. 3(b). Several reinforcements, with similar tow widths
and/or unsupported lengths, were considered. Reinforcements such as
flax fabrics, manufactured specially in the frame of a previous project
by Groupe Depestele (France), and a carbon fabric (HexForce 48,600 U
1250) manufactured by Hexcel (France) and which characteristics are
listed in Table 1.

2.2. Experimental results

2.2.1. Effect of the tows dimensions and fabric construction

To determine the effect of the tow geometrical properties, re-
inforcements manufactured with the same tows but different weaves
were selected. This allows us to vary the tow unsupported length and
width independently from other parameters. The selected reinforce-
ments were made from desized-up flax tows and subjected to an initial
load 1 of 300N and a load 2 of 20 N. Each reinforcement is bent in its
plane up to a bending angle of ~40°. From the experiments, the tow
buckles height and tow rotation (Fig. 5) are extracted. The buckle
height is calculated by subtracting the maximal height of the initial
profile of the tow Hy™™ from the maximal height of the deflected
profile H™®. The tow rotation is calculated from the angle between the
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Fig. 4. (a) Reconstructed reinforcement surface by S-DIC (color corresponding to increasing height from blue to red), (b) Profile of a buckle for different bending
angles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Table 1
Characteristics of the different reinforcements used.

Weave Material Surface density Warp density Weft density Tow unsupported length (L) Tow unsupported width (1)
Twill 2 x 2 Sized-up flax 476 g/m? 380/m 385/m 6.1 mm 2.5mm
Twill 2 x 2 Desized-up flax 465 g/m2 380/m 430/m 5.7 mm 2.4 mm
Twill 2 x 2 Carbon fiber 600 g/m* 380/m 380/m 6.4 mm 2.6 mm
Plain (A) Desized-up flax 262 g/m2 380/m 210/m 6.5 mm 2.1 mm
Plain (B) Desized-up flax 517 g/m2 190/m 195/m 5.4 mm 4.5 mm
Plain (C) Desized-up flax 458 g/m2 380/m 385/m 2.8 mm 2.6 mm

chord of the initial profile and the chord of the buckled profile. The
influence of the unsupported dimensions on the tow buckles height and
tow rotation during buckling is presented in Fig. 6(a, b).

Fig. 6(a) shows that the maximal height and rotation of the tows
increase together with the unsupported length. This is explained by the
increase in the mobility of the buckling tow allowing it more room to
rise and rotate. It causes a higher perceivable buckle. Fig. 6(b) shows
that the increase of tow width still increases the maximal registered
height whereas the rotation level decreases. Each of the transversal
buckling tow is supported underneath it by a longitudinal fixed tow. As
the tow buckles upward, it does so by combining two motions, i.e.,
deflection and rotation. During the early rotation stages of the buckle,
the inner edge lifts and the outer edge has a tendency to sink until the
whole tow is fully deflected. The narrower the tow, the faster the whole
tow lifts completely from the supporting tow for lower bending angles.
Fig. 6(a, b) also show that a higher bending angle is required to fully lift
a larger buckling tow from its supporting tow. For the same final
bending angle, wider tows have less rotation with a slight increase in
height (60% rotation angle loss against 6% height increase for a 42%
larger tow) as illustrated in Fig. 7. Consequently, the tow buckles look
smaller.

2.2.2. Effect of the tow type

In order to study the effect of tow type on the buckling, three dif-
ferent reinforcements manufactured from three different tows but with
similar woven structures were chosen so that to keep similar dimen-
sions, i.e. sized-up flax, desized-up flax and carbon fiber all in 2 x 2
twill weaves. Each tow of the studied fabrics have different tensile,
bending and torsional rigidities that are expected to influence the
buckling mechanism. However it is difficult to experimentally decouple
each of those rigidities. Consequently, we studied the tow type as a
whole. The properties of the tows are presented in Table 2 with the
methods used to obtain them explained in the parameters identification
Section 3.2.

During the tests, each reinforcement is loaded in tension with 300 N
in load 1 and 20N in load 2. This load is spread over 20 tows. Each
reinforcement is bent in-plane up to an angle of ~40°. The tow maximal
height and the tow rotation are represented respectively in Fig. 8(a) and
(b). Fig. 8(a) shows that the buckles elevation is higher for the carbon

Tow initial position
m— TOWw buckled position

= Fixed longitudinal tow network

tows than the other considered tows. The elevation of the buckle also
begins from lower in-plane bending angles (~8°). One can also see that
the sized-up flax tows exhibit higher maximal tow elevation than the
desized-up ones.

A direct correlation between the increase of tow rigidities and the
buckle elevation is observed. It is also possible to observe that for the
three reinforcements considered, the appearance of the tow buckles
happens for lower in-plane bending angles when the tow rigidities in-
creases.

Fig. 8(b) also shows that the rotation of the buckle happens from
low in-plane bending angle and the tow rotation angle is much larger
for the most rigid carbon tows than the two flax tows. In the case of the
two flax tows, the tow rotation angle evolution is similar which is
probably due to the relatively low difference in their rigidities. This
correlates well with the observation of the maximum elevation of the
tow buckle.

2.2.3. Effect of the tows tension in direction 1: fixed tow network (load 1)

To study the effect of load 1 on the buckles, a series of tests has been
conducted on 5 samples of 2 x 2 twill weave fabrics manufactured from
sized-up flax and carbon tows respectively while imposing each time an
initial load in direction 1 between 20 N and 400 N spread over 20 tows.
The load in direction 2 is initially 20 N. Each sample is bent in-plane up
to an angle of ~40°. The results of the test series are given in Fig. 9(a)
for the sized-up flax fabric and (b) for the carbon reinforcement.

As shown in both Fig. 9(a) and (b), the maximal height reached by
the tow evolves oppositely to the curvature radius of the tow. The lower
the final curvature radius (increase in the tow curvature) and the higher
the tow buckles. The final rotation angle, on the other hand seems to be
fairly constant and independent of the final curvature radius. When
considering the evolution of both elevation and tow rotation, Fig. 10
gives an idea on the kinematics involved during the bucking. On early
bending stages, the height is mainly due to the rotation of the tow; then,
as the tow continue to bend in its plane, the rotation seems to stabilize
while the elevation further increases. This in turns suggests that the
elevation at this point is mainly due to a global deflection of the tow
that can be seen in the different tows final profiles in Fig. 11. The reason
behind the parabolic trend of the curvature radius (Fig. 9(a, b)) can be
attributed to the combination of the in-plane bending imposed by the

. / Tow

elevation

Tow rotation angle

Fig. 5. Tow buckling illustration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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jaws alongside the tow sliding (up to 2.81 mm) as represented in Table 2
Fig. 12. Tows dimensional and mechanical properties with analytical and experimental
During the applied in-plane bending on the device, tow sliding may critical buckling radii.
take place as shown in Fig. 12 and this phenomenon may have con- Tow origin Twill Twill Twill PlainA  Plain C
sequences on the final curvature. The tow sliding as explained by La- 2% 2 2% 2 2% 2 desized desized
banieh et al. [16] depends on the contact pressure between the warp sized up  desized carbon up flax up flax
and the weft tows. As the load 1 increases, the tow sliding is inhibited flax up flax fiber
going from 2.8 mm at aload 1 of 20N to 1.1 mm at a load 1 of 400 N for Linear density (g/ ~ 0.614 0.494 0.813 0.488 0.478
the sized-up flax. This explains the three stages presented in Fig. 9(a, b), m)
which are described further below: E1 (N/mm?) 19,800 7900 132,700 7820 7645
L (mm) 6.11 5.66 6.42 6.46 2.83
. . . b (mm) 2.48 2.40 2.6 2.10 2.65
- For loaq 1 from 20N to 209 N: a lf)w pressure is applied on the h (mm) 04 0.4 0.38 o4 04
perpendicular tows cross-points. This allows the tows expected to o 2 2 2 2 2
buckle to slide, preventing them from achieving their potential full m 1 1 1 1 1
curvature. D11 (N'mm) 1.18 0.72 7.55 0.72 0.63
_ . . . - . D66 (N'mm) 0.44 0.17 - 0.17 0.17
AF . 200 N: an optimum is reacheq. The in-plane bending and tow Rer analytical (mm) 20829 1482.2 _ 19757 7177
sliding leads to the maximal possible curvature of the tows sub- Rer experimental 2955 1627 _ 1390 803
mitted to in-plane bending. (mm)
— Above 200 N: the pressure applied on the cross-points combined A (%) 7.63 8.90 - 8.22 10.62
with the friction phenomenon prevent the tow from sliding and from
curving leading to a decreased curvature compared to the optimum.
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Fig. 7. Final profile of buckled tows with different unsupported widths for a bending angle of 40°.
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When considering the influence of the increasing load 1 on the tow
buckling within the flax and carbon-based fabrics, similar behavior was
observed. It indicates that keeping low loads in direction 1 may delay
the appearance of the buckles and reduce their height since tow sliding
taking place (in a limited extent without the appearance of gaps). This
sliding tend to reduce the curvature of the tow submitted to in-plane
bending. These results confirm that a reduction of the blank-holder
pressure as performed by Capelle et al. [18] on the tows perpendicular
to the ones exhibiting the defect permits to delay the appearance of the
buckles. On the other hand, when the load in direction 1 is larger than
200 N for both the fabrics, the high contact pressures prevent the tow
sliding but also limits the in-plane bending of the tows. Rising the load
in direction 1 to high tension values may therefore limit the curvature
and consequently delay the appearance and reduce the height of the
buckles. However, a risk of gaps due to tow sliding may happen, and
such approach may be considered with a great care.

2.2.4. Effect of the tows tension in direction 2: tow network submitted to in-
plane bending (load 2)

As for load 1, the study was done on sized-up flax with only the
initial load 2 as a variable for each of the samples going from 20N to
400 N. The results are summarized in Fig. 13.

As observed with load 1, the maximal height registered evolves
oppositely to the curvature radius of the tow while the rotation angle is
similar for all loads. The decrease of the curvature is explained by an
increase in load 2 that adds more slide to the tows and prevents them
from curving or buckling. Increasing the load in direction 2 should
therefore favor a reduction of the buckles size.

3. Analytical analysis

In order to be able to predict the buckling onset during the forming
of a woven structure, an analytical model is set up. This approach was
previously used in the literature by Beakou et al. [17] and Matveev
et al. [18] in order to address the problem of tape buckling during the
automated fiber placement following a curved path. The following
work is inspired by their analytical framework.

3.1. Analytical model

Fibrous materials exhibit complex behavior; due to the possibility
for fibers to slide; cross sections during bending do not necessarily re-
mains perpendicular to the neutral fiber. The Kirchhoff-Love plate
theory (and corresponding Euler-Bernoulli beam theory) are most of the
time not representing well the behavior of fabrics, interlocks, and virgin
fiber bundles. The bending rigidity doesn’t relate to the tension one.
This is illustrated by the difference of bending behavior between a
phone book with the pages glued together (tension/compression is
generated) and without glue (bending of each page taken separately
plus friction). In this part of the work, fibers inside a flat tow, in small
strain (only the onset of buckling is considered) possess cohesion, due
to the entanglement of fibers and due to sizing (for desized-up flax, we
assume that a small amount of sizing remains). With this assumption,
we consider that fibers don’t slide inside a tow and that Kirchhoff plate
theory is valid; a link can then be made between the kinematic (the
curvature) and the load (axial compression P) as illustrated Fig. 14.

If the tow is considered as a thin homogenous orthotropic plate
[17,18], simply supported at its outer edges and clamped on its radial
edges by the neighboring tows, the differential equation for plate
bending, in Eq. (1), can be solved by using the Rayleigh-Ritz approach
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[20]:
V2w =P (@)

where w is the plate deflection, which, alongside its first derivative w’,
are null on the clamped edges of the tow, represented in Fig. 15, (w
(x=0)=w(x=L)=0 and w(x =0) =w'(x =L) =0). The outer
edge is supposed to be simply supported and only its deflection w is null
(w(y = 0) = 0). Under those assumptions, the deflection w can be de-
scribed as a linear combination of the n first modes and approximated,
in Eq. (2), based on the boundary conditions and the compressive load
formulated previously in Eq. (1). A closed-form solution in a Rayleigh-
Ritz approach can be considered:

wx,y) = i ci(l - %)m(l - cos(Zﬂinx))

i=1

(2)

where m is the buckling mode. Only the first one (m = 1) will be taken

into account because it corresponds to the most critical buckling mode.
P the compressive load, caused by the in-plane bending of the tow is
given by Eq. (3):

FO) = P"(l - %) ®3)

where P, is the minimal buckling load applied at the inner edge, as
represented in Fig. 14, of the bent plate and a is the load non-uniformity
coefficient also represented in Fig. 14. The Rayleigh-Ritz approach
dictates that the total energy I1, represented in Eq. (4), should be
minimized by differentiating it with respect to the deflection’s ampli-
tude, c;, as shown in Eq. (5):

mw) = U(w) — Q(w) @
am _ o
de; (5)

where U(w) is the elastic strain energy of the plate which is defined in
Eq. (6) and Q(w) is the work of the compressive load as defined in Eq.
@):

L b 2 2
1 d’w d*w d*w \( d>w
Uw) = Eff(Dll(W) +D22(W) +2D12(W)(W)
0o 0

(6)

1.t ay\( dw?
Q(w) = EPO {{ (1 - 7)(@) dydx -

where L is the length of the plate, b the width of the plate and Dxx are
the bending stiffness of the plate. Replacing w for (n = 1) and in Egs.
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Fig. 11. Final sized up flax tow profiles under an in-plane bending angle of ~40°.
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Fig. 12. Tow Sliding during the tow in-plane bending.

(2), (6) and (7) and then minimizing /7 with respect to c;, the critical
buckling compressive load, Pcr is obtained as given by Eq. (8):

per— L (24D11m27z2 90D221*  160D66 40D12)

6—a ? b*m?n? b? b? ©))

During bending, taking into consideration small deformations and
the intra-tow cohesion of fibers, the edge of the tow is assumed to bend
following the curvature of a radius R at an angle 6 according to
Kirchhoff’s plate theory, represented in Fig. 14. The length of the inner
side of the tow caused by the bending is found to be equal to O(R-b/a)
and the deformation of the tow is equal to b/(aR). The load in the inner
edge, Py, generated by in-plane bending of the tow can be written
[21,22] as:

Elhb
Py=——
7 TaR Q)

In the case where the minimal Pcr (that is calculated for a re-
inforcement values of L: tow unsupported length, h: tow thickness and
b: unsupported tow width) is equal to P,, we are able to connect the
critical load to the geometrical bending parameters of the tow and in
particular to find the critical buckling radius Rcr as:

Rer = E1(6 — a)bh
24D11m27% 90D221% 160D66 _ 40D12
2 b*m272 b2 b2 (10)

Assimilating the tow to a thin orthotropic plate means that the
bending (D11, D22), shear (D12, D21) and torsional (D66) stiffnesses

Fig. 13. Evolution of the tow maximal height, rotation and curvature radius during the buckling of sized-up flax as a function of load 2.
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Fig. 14. Tow representation as an orthotropic plate with compressive load P representation for different values of the non-uniformity coefficient a.

that can be recovered from the laminate plate theory, where, the
bending stiffness matrix for a single layer [21,22] is:

M, D21 D22 0 |iky

Yy
M, 0 0 D66 k; a1

M, [Dll D12 0 ] kx
where D11 and D22 are respectively the bending stiffness in the long-
itudinal and transversal directions, representing the required torque
(M, in longitudinal and M, in transversal direction) necessary to gen-
erate a unit curvature (K, and K,). D11 and D22 can therefore be
considered as the flexural rigidity (B, and B,) in a direction normalized
by the perpendicular dimension (respectively width: b and length: L).

B

D11 ==
b (12)
B

D22 ="
L 13)

For a dry tow with minimalistic interactions in the transverse di-
rection between the constituting fibers (mainly introduced by the false
twisting during yarn manufacturing) compared to the interactions
alongside the fibers in the longitudinal direction. The cohesion in the
transversal direction is expected to be much smaller than in the long-
itudinal direction. This results, for the bending, in B,> B, and with
L > b we can safely assume that D11 > D22 and therefore, D22 can be
neglected. Furthermore, to the knowledge of the authors, no

experimental procedures exists to this day to characterize the trans-
versal bending behavior of a tow and this assumption can not be con-
cluded upon.

D12 and D21 are equal and represent the bending coupling, which,
by Poisson action effect, is the cause of an anticlastic deformation
(saddle effect). Considering that the tow is fairly narrow [23] and the
beveled sides of the tow [24], it is safe to assume that their effect has a
negligible influence on the buckling compared to the other stiffnesses.
D66, the twisting bending stiffness or torsional stiffness is the torque
required to generate a twist K,:

(14)

With G12 being the shear modulus. The critical buckling radius, Rcr,
from Eq. (10) can then be written as follows:
. E1(6 — a)b3hI?
a(160D66L? + 24D117%b*m?) (15)

This critical buckling radius is expected to correspond to the radius
at which the tow buckling appears, but several parameters need to be
experimentally evaluated.

3.2. Parameters identification

In order to calculate the critical buckling radius, the following
parameters EI, a, D11 and D66 need to be identified. The following

Fig. 15. Boundary condition representation on the buckling portion of the tow.
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Fig. 16. (a) Peirce test on flax tow (b) Schematic representation of Peirce’s cantilever test.

sections are dedicated to the experimental identification of the para-
meters.

3.2.1. Tensile modulus E1 identification

The tensile modulus E1, was determined using a tensile test on each
of the considered tows. The slope of the linear part of the stress-strain
curve was calculated and reported in Table 2.

3.2.2. Bending stiffness D11 identification

To identify the bending stiffness, D11, in Eq. (12), we must de-
termine the bending rigidity, B,. It is possible to do so experimentally
using the Peirce cantilever test [25] where the tow is bent under its own
mass as described in Fig. 14. The bending rigidity B, can calculated
using Eq. (16):

L3Mlgcos(§)
*7  8tan(0) (16)

where L is the bent length of the tow, M; is the linear density, g is the
gravity and 6 is defined in Fig. 16(b). This means that Eq. (12) can be
written with all the parameters that are constant or measurable as
shown in Eq. (16):

L3M,gcos(§)

D1l = ———=
8tan(0)b a7

Following the experimental investigation, the results are presented
in Table 2 for four different tows taken from different woven fabrics.

3.2.3. Torsional stiffness D66 identification

To evaluate D66 from Eq. (14), it is necessary to evaluate the in-
plane shear modulus, G12, which is calculated from a torsion test that
can be performed on an ARES rheometer as shown in Fig. 17(a) and
where the torsional rigidity is given by Eq. (18) [26]:
E = G12Jt
P (18)
where T is the torque, L is the length of tow subjected to rotation, ¢ is
the torsional angle, J, is the polar moment of inertia (similar to second
moment of the area for bending) that for a rectangular surface is given
by Eq. (19):

4
5= bh3(l - 0.212(1 _n 4))
3 b 12b 19)

T L/¢@ can be obtained from a torsion test by averaging the 0 to 2x
and 0 to — 2z slopes of the torque T as a function of the unit angle ¢/L
curve as represented in Fig. 17(b). The tow is subjected to an initial
tensile loading up to 100 N. Finally, D66 from Egs. (14) and (18) can be
written as:

(b)

T LW
o Jt 6 (20)

D66 =

The experimental results for the bending stiffness D66 are also re-
ported in Table 2.

3.2.4. Non-uniformity coefficient a identification

The non-uniformity coefficient was obtained from observation on
the tow using digital image correlation using the GOM ARAMIS® soft-
ware on images such as the one presented in Fig. 18. Zones circled in
red are areas representative of tensile loading while zones circled in
blue represent compression loading areas. Both areas seem to be fairly
equal. The hypothesis of pure bending can be assumed and thus a = 2
was chosen according to the representation given in Fig. 16.

3.3. Calculation of the critical buckling radius

The theoretical critical radii were then calculated and compared to
the experimental critical radii (tow in plane bending at which buckles
appear) in Table 2. As there is no clear definition in the literature for
what constitutes the threshold of the buckle’s onset, we opted to de-
termine the experimental critical radii by the first sudden increase in
the derivative of the tow elevation dz with respect to the bending radius
R (e.g. dotted line in Fig. 19 for plain weave C), represented in Fig. 19.
The aforementioned Figure should be read from highest curvature ra-
dius to the lowest (right to left).

The difference between the experimental and the calculated critical
radii are given in Table 2. One can observe that the differences are
relatively low with an average error of 8.8%. The fact that the critical
radii obtained from the experimental and the analytical approaches are
close indicate that the analytical approach permits to predict with a
relatively good accuracy (and a global tendency to underestimate) the
critical bending radius at which the tow buckles are expected to appear.
The observed differences can be due to simplification hypothesis such
as the homogeneity assumption of the tow and uncertainties in the
radius measurement.

As the analytical model globally permits to predict well the in-plane
curvature radius at which the tow buckles are expected to appear, this
method could be coupled to a simulation of the textile forming capable
to predict the curvature of the tows with a good accuracy. An example
of the use of such a combined approach is described in the next section
of this work.

4. Modelling of the defect appearance in a macroscopic simulation

Once the critical bending radius is determined experimentally or
analytically, this result can be of great interest in a macroscopic si-
mulation of the forming process of dry fabrics. Important effort has
been paid in the past 20years in order to predict the mechanical
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Fig. 17. (a) Torsion test of ARES rheometer®. (b) Torque as a function of unit angle obtained by a torsion test.

[%] response of fabrics during forming at macroscopic scale using numerical
simulations. The reached maturity allows now to confidently predict
the shear angles via the determination of yarn local orientations. It’s
then straightforward to use those yarns orientation to evaluate, with a
high level of confidence, the curvature of the yarns within a fabric
structure during forming. Comparing the local in-plane curvature of the
tow (determined during the macroscopic simulation of the textile
forming) to the critical one, we can evaluate locally the risk for tow
buckling to occur. Several numerical works have been completed in this
direction. Gatouillat et al. [15] proposed a fully meso-scale approach
using shell elements in order to predict the tow sliding defects and in
-3 [19], Iwata et al. investigated macro-scale and meso-scale numerical
-4 simulations to predict the buckling of the tows. They finally proposed
-5 the use of a hybrid meso/macro-scale approach. The meso/macro-scale
simulation takes advantage of macro-scale simulation to determine
shear and tensions which in turn are used at meso-scale as boundary
conditions in order to predict buckling and tow displacements; meso-
scale simulation is only performed in areas where defect are expected to
take place. Local curvature is classically evaluated in numerical

Fig. 18. Digital image correlation of the in-plane deformations of a tow bent in
its plane before appearance of tow buckling. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)

R{mm)

—— twill 2x2 sized-up flax —8— twill 2x2 desized-up flax
—&— plain weave A desized-up flax —@—plain weave C desized-up flax

Fig. 19. Tow elevation evolution as a function of the bending radius. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)



simulations using neighboring elements [6,27] in order to take into
account the bending behavior during a fabric forming. This behavior is
proven to be highly influent on the wrinkle’s shapes and sizes.

Meso-scale and meso/macro-scale, while being accurate in the
prediction of the defect, still require intensive computation resources.
Thus, in this work, the use of a macro-scale simulation within an iso-
geometrical framework [28] is proposed.

Considering a set of rational degree p NURBS shape functions Ry .
Let us denote § = 8(£1,£2,£3), the coordinates in the 3 dimensional
parametric space of a considered point; its position vector M at a given
time t can be obtained considering the control points positions ga(t)
and the value of the NURBS shape functions at § as shown in Eq. (21).

ME D= Rap( g, 1)

The main advantage of using such a framework comes from the
improved continuity of the kinematic approximation that can be built
in order to be G? everywhere in the domain (even at the frontier be-
tween two elements) in order to make the curvature continuous. The
mechanical behavior of the fabric is taken into account considering the
tensile and in-plane shear contributions of the network separately by
computing respectively the corresponding B matrix, By and By, in the
same manner as developed in [29,30]. A full description of the con-
stitutive model is beyond the scope of this paper.

Tangent vectors t;j (defied Eq. (22)) are aligned with the material
directions of the elements which are chosen to be similar to the fibrous
network.

oM ORa, .
ti=—= tq, (=12
9, A 9§ (22)
Normal vectors nj are defined Eq. (23).

62M azRA,p .
R TE 2 g (7Y

(23)

Using t; and mj, it is possible to evaluate the curvature of each tow
according to Eq. (24):
It A mll
;113 24

P =

C; is the total curvature along the i direction (i = 1,2), computed
from the tangent vector t; and the normal vector ni which are both
obtained from first and second derivatives of the position vector M with
respect to parameter coordinate &;.

In the tow buckling problem, the in-plane bending, seems from
previous investigation, to have the most influence for flat tows; the
bending along warp and weft directions are computed following tan-
gent ant normal vectors according to first (warp) and second (weft)
directions. We define a unit vector ni2 normal to (t1,t2) plane:

_ HLAL
= ———
g A Ll (25)

The planar component of those normal vectors p;?! (associated to the
in-plane curvature) is evaluated:

nf'=n; — ny (nim) (26)
Finally, the planar curvature C#' along the i direction is:

o Nt APl
! I 1P 27)

Fig. 20(a) shows that zones of low curvatures can be predicted on
the forming simulation of a prismatic shape. The highest in-plane cur-
vatures can be observed on the center and the edges of the triangular
face of the prism. The curvatures detected in the red zones of Fig. 20(a)
are higher than the curvature level from which tow buckles are ex-
pected to appear on the three flax and the carbon fabric tested in this
work. These zones do correspond to the buckles locations observed in

Fig. 20(b) for a very different interlock fabric [13].

The zones where tow buckles are expected to appear mainly depend
on the shape that induces local curvatures of the tows. However, the
magnitude of the tow buckle elevation and the curvature at which the
tow buckle may arrive depends on the reinforcement characteristics
such as the tow geometry, the tow rigidity and the level of tension of
the tows within the shape. The procedure developed in this work
therefore permits to indicate according to the fabric characteristics and
tension levels in the tows, the zones where tow buckles may take place.
It is therefore possible to predict the appearance of tow buckles for a
given reinforcement when the constituting tows are experimentally
characterized.

5. Summary and conclusions

In this research work, we focus on the local buckling (at mesoscopic
scale) of flat tows. Subjected to in-plane bending, a longitudinal com-
pression is responsible in some configurations for a local buckling. This
defect, leading to poor parts quality, was investigated experimentally
and analytically.

Experimentally, a dedicated device capable of imposing tensions
and an in-plane bending, combined with stereo digital image correla-
tion was used to evaluate the impact of loading, the impact of the tow
behavior and the impact of fabric geometry on the onset and kinematic
of the buckle growth.

— We found first that an increased stiffness (in tension and in bending)
tends to speedup the buckle phenomenon and to increase the high
and rotation of the buckles.

— Also, fabrics with high unsupported length are more sensitive to the
buckle defect (2 x 2 twill exhibits more buckles than plain weave
for comparable tow width and yarn densities).

- Finally, the experimental study conclusion was that the main driving
parameter for the buckling phenomenon was the curvature radius
and that tensions impact the buckles through the curvature radius.

Those tendencies were confirmed analytically using a Rayleigh-Ritz
approach considering the unsupported portion of a tow in a fabric as an
orthotropic plate subjected to bending.

— This approach successfully provide the critical curvature radius for a
given fabric constituted of tows of a given nature once the me-
chanical characteristics of the tows were measured together with the
geometrical properties of the fabric.

Results from either the experimental or the analytical approaches
can be of valuable interest in a macroscopic simulation of the forming
process of a dry fabric. Critical curvature radius can be compared to a
simulated one in order to predict the likelihood and location of local
buckling defects in a complex part.

— We chose to illustrate this result using an Isogeometrical framework
among others for its capability to capture naturally the curvature.

— No additional development is needed and only a post processing is
required to gather information regarding the buckle onset in a
forming process.

This approach is, of course, very simplified since no tow sliding can
be taken into account because of the Lagrange description used for the
kinematic. Nevertheless, in classical fabric forming, the sliding defect
corresponds to quite extreme scenarios and obtaining a tow buckling
criterion in a simulation represents a real gain at low cost. Of course,
when tensions in the tows reach certain levels and that tow sliding
occurs, meso-scale [11] or smarter multi-scale approaches [19] should
be favored.
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Fig. 20. (a) In-plane curvature radii along x (left) and y (right) fiber networks directions (logscale) during a prismatic fabric forming. (b) Location of buckles during
the deep drawing of a carbon interlock fabric on a prismatic shape [13] the initial direction of the fabric is aligned along the edges. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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