Skip to Main content Skip to Navigation
New interface
Conference papers

Selecting Relevant Association Rules From Imperfect Data

Abstract : Association Rule Mining (ARM) in the context of imperfect data, e.g., imprecise data, missing data, has received little attention so far despite the prevalence of such data in a wide range of real-world applications. In this work, we present a ARM approach that can be used to handle imprecise data and derive imprecise rules. Based on the belief functions framework and Multiple Criteria Decision Analysis, the proposed approach relies on a selection procedure for identifying the most relevant rules while considering information characterizing their interest-ingness. The several measures of interestingness defined for comparing the rules as well as the selection procedure, are presented. We also show how a priori knowledge about attribute values defined into domain tax-onomies can be used to reduce the search space and the complexity of the mining process, in addition to help identifying relevant rules for the domain of interest. Our appoach is illustrated using a concrete simplified case study related to humanitarian projects analysis.
Document type :
Conference papers
Complete list of metadata

Cited literature [27 references]  Display  Hide  Download
Contributor : Cécile L'Héritier Connect in order to contact the contributor
Submitted on : Monday, February 24, 2020 - 5:21:29 PM
Last modification on : Friday, August 26, 2022 - 1:56:07 PM
Long-term archiving on: : Monday, May 25, 2020 - 6:17:15 PM


Files produced by the author(s)



Cécile L 'Héritier, Sébastien Harispe, Abdelhak Imoussaten, Gilles Dusserre, Benoit Roig. Selecting Relevant Association Rules From Imperfect Data. 13th international conference on Scalable Uncertainty Management (SUM 2019), Dec 2019, Compiègne, France. ⟨10.1007/978-3-030-35514-2_9⟩. ⟨hal-02309641⟩



Record views


Files downloads