C. Léger and P. Bertrand, Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies, Chem. Rev, vol.108, pp.2379-2438, 2008.

M. Fadel, J. Daurelle, J. Vicente, and V. Fourmond, Impact of alignment defects of rotating disk electrode on transport properties, Electrochim. Acta, vol.269, pp.534-543, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01790797

W. J. Albery and S. Bruckenstein, Uniformly accessible electrodes, J. Electroanal. Chem. Interfacial Electrochem, vol.144, pp.105-112, 1983.

M. Merrouch, J. Hadj-saïd, C. Léger, S. Dementin, and V. Fourmond, Reliable estimation of the kinetic parameters of redox enzymes by taking into account mass transport towards rotating electrodes in protein film voltammetry experiments, Electrochim. Acta, vol.245, pp.1059-1064, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614234

M. Chen, R. Chalupa, A. C. West, and V. Modi, High Schmidt mass transfer in a laminar impinging slot jet flow, Int. J. Heat Mass Transf, vol.43, pp.3907-3915, 2000.

S. Garimella, Nozzle-geometry effects in liquid jet impingement heat transfer, Int. J. Heat Mass Transf, vol.39, pp.2915-2923, 1996.

M. R. Samuels and D. M. Wetzel, Velocity profiles in the exit region of a submerged laminar jet, Chem. Eng. J, vol.4, pp.41-45, 1972.

J. Kuang, C. Hsu, and H. Qiu, Experiments on Vertical Turbulent Plane Jets in Water of Finite Depth, J. Eng. Mech, vol.127, 2001.

S. V. Garimella and V. P. Schroeder, Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement, J. Electron. Packag, vol.123, p.165, 2001.

K. Stulik and V. Pacakova, Electroanalytical Measurements in Flowing Liquids, 1987.

V. Fourmond and C. Léger, Biophotoelectrochemistry From Bioelectrochemistry to Biophotovoltaics, p.41, 2016.

V. Levich, Physicochemical hydrodynamics, 1962.

W. J. Albery, C. M. Brett, and T. Theory, J Electroanal Chem, vol.148, pp.201-210, 1983.

M. B. Glauert, The wall jet, J. Fluid Mech, vol.1, p.625, 1956.

H. Matsuda and J. Yamada, Limiting diffusion currents in hydrodynamic voltammetry: I. Fixed disk and ring electrodes in laminar uniform flow, J. Electroanal. Chem. Interfacial Electrochem, vol.30, pp.261-270, 1971.

J. Yamada and H. Matsuda, Limiting diffusion currents in hydrodynamic voltammetry: III. Wall jet electrodes, J. Electroanal. Chem. Interfacial Electrochem, vol.44, pp.189-198, 1973.

D. Chin and C. J. Tsang, Mass transfer to an impingning electrode, Electrochem. Soc, vol.125, p.1461, 1978.

P. Laevers, A. Hubin, H. Terryn, and J. Vereecken, A wall-jet electrode reactor and its application to the study of electrode reaction mechanisms Part I : Design and construction, J. Appl. Electrochem, vol.25, p.1017, 1995.

D. M. Abro, P. Dable, F. Cortez-salazar, V. Amstutz, E. K. Kwa-koffi et al., Design and Characterization of a Horizontal Double Impinging Jet Cell : Determination of Flow Modes at the Surface of a Flat Electrode, J. Mater. Sci. Chem. Eng, pp.18-28, 2016.

R. G. Compton, A. C. Fisher, M. H. Latham, R. G. Wellington, C. M. Brett et al., Wall jet electrodes: the importance of radial diffusion, J. Appl. Electrochem, vol.23, pp.98-102, 1993.

R. G. Compton, A. C. Fisher, and G. P. Tyley, Nonuniform Accessibility and the Use of Hydrodynamic Electrodes for Mechanistic Studies -a Comparison of Wall-Jet and Rotating-Disk Electrodes, J. Appl. Electrochem, vol.21, pp.295-300, 1991.

I. Streeter and R. G. Compton, Steady state voltammetry at non-uniformly accessible electrodes: a study of Tafel plots for microdisc and tubular flow electrodes in the reversible and irreversible limits of electron transfer, Phys. Chem. Chem. Phys, vol.9, pp.862-70, 2007.

N. Rees and R. Compton, Hydrodynamic microelectrode voltammetry, Russ. J. Electrochem, vol.44, pp.368-389, 2008.

J. Macpherson, S. Marcar, and P. R. Unwin, Microjet Electrode: A Hydrodynamic Ultramicroelectrode with High Mass-Transfer Rates, vol.66, pp.2175-2179, 1994.

N. V. Rees, O. V. Klymenko, B. Coles, and R. G. Compton, Hydrodynamics and Mass Transport in Wall-Tube and Microjet Electrodes: An Experimental Evaluation of Current Theory, J. Phys. Chem. B, vol.107, pp.13649-13660, 2003.

J. L. Melville, B. A. Coles, R. G. Compton, N. Simjee, J. V. Macpherson et al., Hydrodynamics and mass transport in wall tube and microjet electrodes. Simulation and experiment for micrometer-scale electrodes, J. Phys. Chem. B, vol.107, pp.379-386, 2003.

J. L. Melville, N. Simjee, P. R. Unwin, B. A. Coles, and R. G. Compton, Hydrodynamics and mass transport in wall tube and microjet electrodes: Effect of vortex formation and cell geometry on limiting currents, J. Phys. Chem. B, vol.106, pp.10424-10431, 2002.

J. Macpherson, M. A. Beeston, and P. R. Unwin, Imaging Local Mass-transfer Rates within an Impinging Jet and Studies of Fast Heterogeneous Electron-transfer Kinetics using the Microjet Electrode, J. CHEM. SOC. FARADAY TRANS, vol.91, pp.899-904, 1995.

E. Bitziou, N. C. Rudd, M. A. Edwards, and P. R. Unwin, Visualization and modeling of the hydrodynamics of an impinging microjet, Anal. Chem, vol.78, pp.1435-1443, 2006.

C. E. Banks and R. G. Compton, New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite, Analyst, vol.131, pp.15-21, 2006.

D. H. Schlichting and K. Gersten, Boundary-layer theory, Eur. J. Mech. -B/Fluids, vol.20, p.817, 1979.

J. V. Macpherson, M. A. Beeston, P. R. Unwin, N. P. Hughes, and D. Littlewood, Imaging the Action of Fluid Flow Blocking Agents on Dentinal Surfaces Using a Scanning Electrochemical Microscope, vol.11, pp.3959-3963, 1995.

M. Fadel, J. Daurelle, and V. Fourmond, Enhancing Mass Transport in Jet Electrode to Study Highly Active Enzymes, Congrés Fr. Mech, pp.1-10, 2017.

M. E. Snowden, Electroanalytical Applications of Carbon Electrodes using Novel Hydrodynamic Flow Devices, 2010.

N. Kulyk, S. Cherevko, M. Auinger, C. Laska, and K. J. Mayrhofer, Numerical Simulation of an Electrochemical Flow Cell with V-Shape Channel Geometry, vol.162, pp.860-866, 2015.

C. F. Ma, Y. Zhuang, S. C. Lee, and T. Gomi, Impingement heat transfer and recovery effect with submerged jets of large Prandtl number liquid-II. Initially laminar confined slot jets, Int. J. Heat Mass Transf, vol.40, pp.1491-1500, 1997.

A. J. Bard and L. R. Faulkner, electrochemical methods fundemental and applications, 2001.

R. G. Compton and C. E. Banks, Understanding Voltammetry, 2011.

J. Melville, N. Simjee, P. R. Unwin, B. A. Coles, and R. G. Compton, Hydrodynamics and Mass Transport in Wall Tube and Microjet Electrodes . 1 . Finite Element Simulations, J. Phys. Chem. B, pp.2690-2698, 2002.

W. Bellagha-chenchah, C. Sella, and L. Thouin, Understanding Mass Transport at Channel Microband Electrodes: Influence of Confined Space under Stagnant Conditions, Electrochim. Acta, vol.202, pp.122-130, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02371264

C. Amatore, S. Szunerits, and L. Thouin, Mapping concentration profiles within the diffusion layer of an electrode Part II. Potentiometric measurements with an ultramicroelectrode, Electrochem. Commun, vol.2, pp.248-253, 2000.

M. E. Snowden, P. H. King, J. A. Covington, J. V. Macpherson, and P. R. Unwin, Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping, Anal. Chem, vol.82, pp.3124-3131, 2010.