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Abstract 

Electrochemical study of fast catalytic reactions is limited by mass transport using the 

conventional electrochemical cell of Rotating disk electrode (RDE) [4]. To overcome this issue, it is 

important to find a new device with improved transport properties that is suitable for electrochemistry 

constrains.. We used numerical simulations of computational fluid dynamics to design a new 

electrochemical cell based on the so-called "jet flow" design for the kinetic studies of catalytic chemical 

reactions at the surface of an electrode. The new cell is characterized by a high, reliable and uniform mass 

transport over the electroactive part of its surface. We investigated the effects of the nozzle and the 

electrode diameters, the nozzle-electrode distance and the Reynolds number on the performance of the 

jet-electrode in the flow system. Through the optimization of the geometry of this jet electrode cell, we 

achieved a factor of 3 enhancement in transport compared to the Rotating disk electrode. We succeeded in 

constructing the designed electrode, characterized it using electrochemical techniques, and found 

excellent agreement between the transport properties deduced from the numerical simulations and those 

from the measurements. 

 

Keywords: Jet flow Cell, Numerical Simulation, Mass Transport, Uniformly Accessible 

Electrode, Rotating Disk Electrode, Electrochemical Kinetic Studies 

1. Introduction 

Hydrodynamic electrodes are designed to provide well defined and reproducible mass transport 

rates. Electrochemists use widely hydrodynamic electrodes to enhance the transport of the chemical 

species to the surface of electrodes, for analytical or kinetic purposes. Here, we specifically focus on the 
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application of hydrodynamic electrodes for the kinetic studies of enzymes immobilized on the surface of 

an electrode, a technique called Protein Film Voltammetry [1]. Rotating disk electrode is the mostly used 

hydrodynamic electrode for Protein Film Voltammetry, because of its simplicity, and also because it is a 

uniformly accessible electrode: the rate of transport is uniform across the electrode surface [2,3], even 

when taking into account the finite dimensions of actual electrodes [2]. Usually, the transport of the RDE 

is fast enough to prevent the depletion of the reactants in the vicinity of the electrode due to their 

consumption by the enzymatic reaction, which has allowed the mechanistic studies of many enzymes. 

However, some of us demonstrated recently that the transport afforded by the RDE is not fast enough for 

the study of some enzymes, called CO dehydrogenases, which catalyze the reversible oxidation of carbon 

monoxide [4]. Limitations by transport of the enzymatic substrate can obscure important features and 

complicate the quantitative analysis of the enzymatic response. This prompted us to look for another type 

of hydrodynamic electrode to build a new electrochemical cell with improved transport properties. 

Flow cells based on imposing a flow by injecting or pumping the electrochemical buffer towards 

a stationary electrode have proved their capabilities for achieving rapid and effective transport. In this 

article, we specifically focus on the jet type electrode. The advantage of jet flows lies in a high, localized 

mass (or heat) transfer rate due to thin hydrodynamic and diffusion boundary layers within the stagnation 

region [5]. From the engineering point of interest, most of the studies on the literature focus on the 

transfer properties of the jet, and the variation of the general flow fields of submerged jets with the 

influence of the nozzle geometry [6,7], the depth of the liquid penetrated by the jet [8], the distance 

between the inlet and the electrode and the confinement of the volume entered by the jet [9]. Jet 

electrodes have been used for electrochemical studies, but this setup has not gained great popularity 

[1,10], the RDE being by far the most commonly used hydrodynamic electrode [1,11,12]. However, the 

jet electrode have several advantages over the RDE: there is no rotating parts; the solution can be 

impelled through the jet by a pump or by gravity, the solution is flowed directly at the electrode, then the 

probability of having a dead zone is small [13]. 

The history of Jet electrode started from the middle of the 20
th
 century, first by Glauert in 1956 

[14], that describes the term wall jet and the general view of the type of this flow. Based on that, Matsuda 

and Yamada in 1972, proposed a current formula for a jet solution issued from a circular nozzle normal to 

a disk electrode [15,16]. Their theoretical prediction of current reveals the dependence on the flow rate, 

the bulk concentration, the electrode and the nozzle diameter [15]. In 1978 Chin and Tsang, have 

suggested a new type of jet flow cell called “wall tube”, in which the electrode surface is smaller than the 

nozzle, and proposed empirical current equation for this configuration [17]. Most of the studies focus on 

the geometrical properties and the volume flow rate ranges that fit with the desired application [18,19]. 
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Other studies propose analytical solutions by neglecting the radial diffusion in order to compare with the 

other classical hydrodynamics electrodes [20–23]. Unwin and coworkers  have tried to combine the 

advantages of the uniformly accessible electrode property  of the wall tube electrode and the enhanced 

mass transport capacity of the ultra-microelectrode (of radius ≤ 25 μm), to construct so-called microjet 

electrodes and optimize their properties [24]. The consecutive studies [25–29] showed the capacity of 

these electrode to achieve high mass transport of chemical species at high applied velocities, on condition 

that the electrode is centrally aligned with the inlet, and at short electrode-nozzle distances (in the order 

µm). However, these micro-jet electrodes are not practical for Protein Film Voltammetry, for several 

reasons. First, the enzymes are immobilized at the electrode surface [1], which, for most of the enzymes 

studied so far, is pyrolytic graphite “edge” [1,30], which are not available at the very small dimensions 

required for microjet electrodes (25 µm). Second, the high velocities used in the microjet to enhance the 

mass transport could negatively impact the stability of the enzyme layer on the electrode, since the 

increase in the velocity creates higher forces at the electrode (shear stress), which increases the washing 

effect on the enzymes. This is why we have chosen to work on jet electrodes with “macroscopic” 

dimensions comparable to those currently used for Protein Film Voltammetry. 

There are rare studies concerning the optimization of the geometries of jet electrodes aimed for 

analytical applications. Laevers [18], described a new reactor based on a jet electrode for the quantitative 

electrochemical study of the mechanisms of AC electrolytic graining of aluminum substrates. Recently, 

Abro et al.  [19] designed a new system with horizontal double impinging jet cells, and studied the flow 

modes for electrodeposition of composite/metal particle coating on the surfaces of two metal sheets. 

Ching and Tsang studied the variation of the transport-limited current with the flow rate (Reynolds 

number) and the chamber distance Z (distance between the inlet and electrode surface) [17]. Moreover, 

they highlighted the influence of Z on the occurrence of instabilities that introduce laminar turbulent 

transition. However, none of these designs was aimed in their optimization for a uniform transport over 

the electrode, whereas a uniform transport is necessary for the quantitative interpretation of Protein Film 

Voltammetry data. 

The complexity and the confusing variety in jet electrode configurations makes it hard to find a 

jet electrode suitable as a replacement of the RDE for the study of electron transfer and the mechanisms 

of the chemical processes. Furthermore, the designs of efficient jet flow cell are still rare, and the question 

of the uniformity of the transport is seldom addressed. We propose to overcome these limitations and 

design a new jet flow cell flow respecting these constraints, to be used in Protein Film Voltammetry 

experiments involving highly active enzymes [4]. In this paper, we start by simulating the response of the 

newly designed cell, showing the flow behavior at different flow rates, and we compare its performance 
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with that of other jet electrodes. The second part presents the geometry optimization by understanding the 

dependence of the behavior of the mass transport with the geometrical parameters of the jet electrode: the 

nozzle-electrode diameter ratio and nozzle-electrode distance; we quantify the uniformity of the transport 

(local transport) over the electrode with the variable geometrical parameters. In the third part, we actually 

construct the experimental set-up corresponding to our new design, and determine experimentally the 

transport properties of the cell, showing the excellent agreement between the numerical and experimental 

results. We finish this study by comparing the mass transport and its homogeneity over electrode surface 

with the new electrochemical flow cell over the actual electrochemical of RDE, showing that for 

reasonable flow conditions, we gain a threefold increase in the transport rate compared to the RDE.  

 

2. The convective- Diffusion Equations: Wall-Jet and Wall Tube 

Electrodes 

In jet electrodes, the solution is impinged from a circular inlet (nozzle) positioned directly above 

the electrode (Figure 1). The nozzle is generally circular, but is sometimes rectangular [14]. The fluid 

which reaches the surface can only come from the incoming jet and not from any recirculation within the 

cell; this ensures that fresh incoming solution reaches the electrode continuously. The hydrodynamics of 

the wall-jet electrode (WJE) are considerably more complex than those of the channel or the rotating disc 

electrodes. The jet electrodes are classified into two types. The first is formally referred to as a 'wall-tube' 

[17] , in which the electrode radius (R) is smaller than the radius of the jet (r / R > 1). The second 

configuration is called 'wall-jet'[16] and corresponds to a jet smaller than the electrode radius (r / R < 1). 

The greatest impact of these two types of configurations is on the diffusion boundary layer, δ, and the 

uniformity of the flux, J, at the electrode surface [3]. 
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Figure 1: A schematic presentation of the geometrical parameters of a jet electrode: r is the nozzle 

radius, R is the electrode radius, Z is the nozzle-electrode distance, Vf is the volume flow rate. The 

electroactive surface is represented in a darker shade of gray. 

The first formulation of hydrodynamics in the wall tube electrode (WTE) was attempted by 

Froessling using cylindrical coordinates [31]; then the power series were solved by Homann [31]. This 

was based on a model of a jet at a given volume flow rate (Vf) impinging from a nozzle and travelling 

across the solution filled chamber at distance Z, before striking the electrode. The electrode is placed 

normal to the direction of the jet and flowing the solution away radially. The radial diffusion is neglected 

compared to the diffusion flux at the electrode. 

Fick’s law relates the surface flux of "a", Ja, to the gradient of mass fraction of species “a” at the 

electrode (z at electrode= is z=0), where: 

1.        
  

  
 
   

 

Where D is the diffusion coefficient of the species, and ρ is the density of the species. 

Considering that only species a is electroactive, the mass flux is related to the electrical current by the 

following equation:  

2.           

 

In which I is the current, n is the number of electrons involved in the reaction, F is the faraday 

constant (96485 C.mol
-1

), A is the area of the electrode. 

Z

2R

2r

Vf

Electrode
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The transport can be described as the continuous flow of the chemical species in the solution 

toward the electrode surface area, up to a certain level from the electrode surface. The reactants 

movements are controlled by diffusion (Figure 1), and this is computed by measuring the mass flux at the 

electrode. To avoid the depletion of the chemical species at the electrode when performing Protein Film 

Voltammetry experiments, the flow should be sufficiently fast to decrease the size of the diffusion 

boundary layer and enhance the mass transport. The diffusion boundary layer thickness, δ, is related to the 

mass-transport-limited current (Ilim) thus:  

3.                  

The thickness of the boundary layer is dependent on the geometric parameters of the jet-

electrode, mainly: the ratio of inlet-electrode diameter and the inlet-electrode distance, and also the 

flowrates. These parameters make it difficult to derive an analytical solution applicable to any jet 

electrode.  

Ching and Tsang [17] proposed an empirical solution based on the experimental data. 

Equation 4 is the approximated solution of the current under laminar flow regime, for Re< 2000, 0.1 

< R/2r < 0.5 and 0.1< r/ Z<2.5.  

4.                        
      

      

However, later studies showed contributions of  five other parameter that are not included in this 

equation [25]: the thickness of the inlet walls [27], the presence and nature of vortices, the radial diffusion 

[25,26], the electrode-nozzle lateral position [26,32], and the inlet flow characteristics [25], which shows 

that equation 4 is only valid in very limited conditions. 

3. Numerical Simulation Method and Conditions 

To design a new geometry of enhanced and homogeneous mass transport device we modelized 

numerically many different electrochemical cells. In this paper, we present the optimization of the most 

promising cell, the wall tube with one inlet and two inclined outlets. All numerical simulations are 

performed with a finite volume method using the commercial software Starccm+ from CD adapco. We 

studied in a previous work the impact of the nozzle-electrode distance Z on mass transport [33] for 

presented geometries in the literature, even though their concerns are for other different applications [34]. 

We propose a geometry based on jet flow in microfluidic bath as shown in Figure 2. The jet flow shape 

consists of an inlet of a nozzle close to the electrode surface, the nozzle-electrode distance is symbolized 

by Z, the nozzle to electrode diameter ratio is 1, an electrode support of diameter L equals to 5 mm. The 
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flow exit is represented by two symmetric outlets at a short distance from the inlet f equals to 1.8 mm. 

Each outlet makes an angle of 26° with the inlet, each with a diameter ro equals to 1.3 mm. We chose 

these parameter considering literature sample [34,35], but also because of the machining limitations of the 

prototype Concerning the other dimensions, We discuss below the reason behind this selected 

configuration.  

Jet flow shape is presented in Figure 2.  Convection within the entire simulation domain is solved 

using the incompressible Navier-Stokes and continuity equations with the following boundary conditions:  

 Boundary 1 represents the inlet (nozzle) where the velocity is imposed, Boundary 2 the outlet 

section of the jet electrode. Boundary 3 is the electrode part. The boundary conditions are C=0 at Z=0 

(electrode surface) and C=1 corresponds to bulk solution for all other faces. A slip condition is applied at 

the upper free surface of the bath which remains flat.  

 

Figure 2: Geometric scheme of the inlet (r) centered above the electrode of radius R with two 

symmetric outlets (ro) aligned at angle =26° with the inlet, the chamber, Z, represents the distance 

between the inlet and electrode surface 

The three-dimensional calculations were performed at a steady state flow regime, with a constant 

liquid density assuming a laminar flow with the following thermo-physical parameters; H2O at ambient 

temperature and pressure: density= 997.6 kg/m
3
, dynamic viscosity, µ= 8.8871x10

-4
 Pa.s and the diffusion 

coefficient of the chemical species used, D=1.25x10
-9

 m
2
/s, Schmidt number, Sc, =709.2.  

To measure the performance of this electrode, we assume that the reaction rate at the surface is 

infinite, we apply a zero concentration on the electrode: C = 0 at z = 0, at the entrance of the nozzle we 

apply C=1, and for all the other surfaces we apply a null flux.  

2Relectrode

f

L

Z

2rinlet
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The laminar flow state is imposed based on the Reynolds number computed for tubular jet flow 

inlet, Re < 2000 for V< 2m/s, where V is the average velocity(m/s) of the fluid flow injected in the inlet, 

D is the diameter of inlet (m) and   is the kinematic viscosity m
2
/s (equation 5). As the transition state 

from laminar flow to turbulent flow regime is greatly dependent on the cell configurations, it is unclear 

which is the critical Reynolds number in the Jet-electrode flow cell. 

5.         

Regarding the mesh conditions, the size of the mesh cells chosen tends to diminish while getting 

near the electrode surface (where the diffusion boundary layer is present), also with a fine mesh at the 

inlet of the chamber to ensure the good transition and avoid errors in the extracting data due to mesh 

defaults. Polyhedral mesh and prism layer models were used to achieve the discretization. 

4. Experimental Part 

We used a NaCl (from SIGMA Life Science) solution as an electrolyte at a concentration of 0.5 

mol/L and Mill-Q reagent water (Millipore Corp). Ferrocyanide solutions at a concentration of 1 mmol/L 

were prepared from potassium ferrocyanide (NORMAPUR from PROLABO) mixed with an electrolyte 

solution (NaCl) of 0.5 mol/L concentration.  

To verify the mass transport coefficient to the new jet flow electrode system, measurements were 

carried at the graphite electrodes (circular, 1mm diameter). These electrodes were positioned centrally 

downstream at the depth 370 μm from the nozzle surface by the use of calibrating spacer. The flow was 

imposed using a peristaltic pump (DRP-PPUMP from Metrohm) in a closed loop system that was made 

oxygen-free by bubbling argon into the main reservoir. All experiments were conducted at room 

temperature (approximately 298 ±1 K).   

5. Results and Discussions 

5.1.Flow Regime Description 

 

The 3D finite volume simulations were run at several velocities, to study the flow behavior at 

different Reynolds number. The diffusion process is controlled by the flow behavior. The flow around the 

electrode is completely conditioned by the geometry of the cell. 

 Figure 3 shows that the velocity field is well established in the inlet tube. It hits the electrode (the 

electroactive surface) and diffuses radially out from the electrode and then the flow exits symmetrically 
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from the two outlets. This explains our choice to place two outlets symmetrically aligned and inclined, to 

get a good homogeneity of flow in the cell chamber. The flow behavior is much more homogeneous than 

previous designs with only one outlet [33,34]. Considering the good performance of the two outlet cells, 

we do not present the three or four outlet devices simulations, which did not yield a significant 

improvement in terms of homogeneity (data not shown). 

We represent in Figure 3, the flow behavior at low Reynolds number (Re=20, velocity 0.02 m/s, 

volume flow rate (Vf) =1ml/min) (Figure 3-(a)) and at high Reynolds number (Re=800, average velocity, 

v=0.8 m/s) (Figure 3-(b)). The flow behavior is consistent at the different tested velocities. To investigate 

the impact of the nozzle to electrode diameter ratio, preserving the characteristic of the Wall-tube 

electrode of r/R≥ 1, we perform a comparable numerical simulation at same Re=400, where r/R=1 and 

r/R=2 with r=0.5mm, Z =0.37 mm (Z/r =0.74) and the velocity profiles are shown in  Figure 3-(c and d) 

respectively. In both cases the flow shows symmetric behavior. However, in the first case at low velocity, 

the flow is maximum toward the center of the electrode then turns to decrease slightly while moving 

along the electrode surface and getting away from the outlet. On contrary for the second case, the flow is 

lowest toward the center of the electrode and shows an extreme near the end part area of the electrode. 

This indicates the impact of accelerating the flow is evident to decrease the dead zone, while producing 

higher mass flux at the electrode surface. This is quantified below (Figure 4). The thin chamber, short 

electrode- inlet distance, shows its strength in providing a confined flow avoiding the formation of 

recirculation and vortex inside. The flow profile presented here demonstrates a well-defined flow moving 

radially as the fluid is moving out from the nozzle toward the outlets. The fluid velocity is initially low 

near the center of the electrode and increases as moving along the electrode, producing a true symmetric 

uniform radial flow. At higher velocities, the fluid speed shows highest velocities as the fluid leaves the 

nozzle opening to the chamber, creates a higher flow near the electrode surface which will be collated to 

the variation and the increase of the mass flux at this part of the electrode. The breakdown of the 

symmetric flow occurs near the outlet sections. Importantly, the distortion of the radial flow occurs 

sufficiently far away from the electrode that the flow at the electrode can still be considered symmetric. 

The uniform radial flow within a confined geometry of two symmetric inclined outlets supports the value 

of this design providing a confined flow, preventing the formation of recirculation and vortices. 
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Figure 3:The numerical simulations predict the hydrodynamic profile for the flow in the system of 

new designed flow cell. The velocity magnitude through the system is presented: (a) at volume flow rate 

1ml.min
-1

 corresponds to the average velocity 0.02 m/s, Re=20; (b) at higher flow rate of 37.6 ml.min
-1

 

corresponds to velocity of 0.8 m/s, Re=800; (c) at Re=400, and (d) at Re=400 for the case of bigger inlet 

r
’
=2r, nozzle to electrode diameter ratio (r/R) equals to 2. Inset: a zoom or the part of flow leaving the 

inlet directly toward the electrode surface. 

(a)

(b)(b)

(a)

1414

(c)

(d)(d)

(c)

1414

(d)(d)

(c)
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5.2.Uniformly accessible electrode 

 

We show in the previous section, the qualitative influence of the Re and of the nozzle to electrode 

radius ratio (Re, r / R) on the structure of the flow in vicinity of electrode. To go beyond the qualitative 

analysis of the behavior of the flow, we must quantitatively determine the transport properties of the 

electrodes. In particular, we want to check that the electrode is “Uniformly accessible”, which means that 

the mass flux of the electroactive species is uniform over the electrode surface [3].    

We plot the mass flux along the diameter of the electrode surface (Figure 4(a)). We choose to plot 

the flux along the diameter perpendicular to the outlet plane because it is the least homogeneous profile. 

Clearly, the results show a homogeneous symmetric distribution of the flux at the electrode surface, with 

at most 12% variation along the electrode diameter for r/ R=1. However, for r/ R=2, the electrode loses 

part of this uniformity, and the variation of the flux along the electrode raises to 18% as shown in Figure 

4(C). It is important to highlight the symmetric behavior of the flow reaching the electrode surface in the 

boundary layer presented by the homogeneous flux distribution at the electrode surface, this is related to 

the symmetric position of the outlets with the electrode.  

To understand more quantitatively the small variation of the flux distribution at the electrode, we 

plot the axial velocities along the electrode surface (Figure 4(B)). At low Reynolds, Re=20 the flux is 

high at the center and tends to decrease along the electrode radius. This is correlated to the higher axial 

velocity at the center and the decrease in this velocity at the middle position and at the end of the 

electrode radius. This behavior changes at higher Reynolds numbers, the axial velocity is lowest at the 

center and tends to increase along the electrode radius. This behavior creates a lowest flux at the center 

and then increases the flux toward the electrode radius. These variations reveal that the system at the 

lowest Reynolds numbers is still close to diffusive configuration, whereas at higher Reynolds numbers the 

flow is more constrained with this geometric configuration and generates higher flux at the electrode 

edges (Figure 3). 

The homogeneous flux reflects the homogeneity of diffusion boundary layer near the electrode 

and characterizes the electrode as a “uniformly accessible” as shown in 
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Figure . The flux field of the electrode surface at Re=800 is shown in 

 

Figure -a. It confirms the symmetric and homogenous distribution of the flux over the electrode. This is 

explained by the symmetric flow behavior represented by the velocity vector field shown in the 

zoom
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Figure -b, on a plane parallel to the electrode surface. An inset magnifies the vectors field to illustrate the 

symmetric and uniformity of the flow in the boundary layer.  

 

zoom
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Figure 4:
 
Comparison of the flux behavior at low and high velocities of the (a) axial velocities 

with the compatibility of (b) the mass flux profiles at the electrode: A) at low velocity, B) at high velocity, 

and C) for the case of diameter of the inlet is 2 times bigger (r/R=2). 
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 Figure : a) Mass flux at electrode surface, and b) Velocity vectors at a plane parallel the electrode at 

distance of  mm with zoom on electrode area. This numerical result corresponds for the rT/R=1, 

Z/rT=0.74, Re=800. 

     To compare the homogeneity of the flux over the electrode surface at different Reynolds 

numbers, we plot the dimensionless flux φ: (j/j*, in which j* is the average surface flux), along the radius 

of the electrode at different Reynolds numbers (Figure 5). The lowest variation is reached for Re=400. It 

can be called the critical Reynolds number for the best uniformity of the flux. The ratio ranges between 

0.94-1.06, which shows the uniformity of the transport achieved with this design.  

    At this critical Reynolds number, we plot the ratio of the flux for a bigger nozzle diameter (2 

times bigger, r/R=2) at same boundary conditions. This ratio ranges between 0.87 and 1.05, which 

indicates a loss of uniformity of the flux. Thus, extending the nozzle diameter to a bigger size than the 

electrode leads in our configuration to a less homogenous transport. The positive impact of the peripheral 

part of the jet have seen on the previous configuration is, with a bigger nozzle, out of the electrode active 

part (Figure 3-d). It seems that, to get the fastest and most homogeneous transport to the electrode the 

nozzle radius should be equal to the electrode radius (r/R = 1). 
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Figure 5:The evolution of the normalized flux, φ, (the ratio between the mass flux, j, and the 

average flux j*) at the electrode surface with the variation of the velocity inside the cell represented by 

the Reynolds number Re. 

. 

5.3.The impact of the jet electrode-nozzle distance on the efficiency and the 

homogeneity of the mass transport at different Reynolds number  

 

The main advantage of the Rotating Disk Electrode is that the mass flow at electrode can be 

controlled very precisely with the rotation velocity. It is very important to determine the factors governing 

this mass flow in our cell and so to predict the flow behavior with Reynolds number under laminar 

conditions. We ran simulations in the range of 20 ≤Re ≤800 and determined the parameters of transport 

from the simulations. The increase in the velocity of the flow leads to an increase in the flux towards the 

electrode surface. 

One of the parameters that plays an essential role on the structure of the flow around the electrode 

and then in the efficiency of the setup is the nozzle-electrode distance. The increase in the distance plays 

part in the laminar-turbulence transition, that is barely described in the literature [19,36]. Figure 6-A 

shows the variation of the mass Flux at different ratios of nozzle-electrode distance ‘Z’ to the ‘r’, with the 

variation of the Reynolds number. The Ratio of Z/r ranges from 0.3 to 3. The increase in the velocity 
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results an increase in the flux at the different nozzle-electrode no distance. In this graph we also add the 

empirical equation [3] (equation 4) that resembles the expression of the flux of a RDE [12,37,38].  

Our numerical results (Figure 6 -A) show a tendency in good agreement with that of equation 4 of 

Chin and Tsang [3,17] with the Z/r=0.4 case. We observe a difference for the lowest Reynolds. Previous 

studies have already shown differences with the Chin and Tsang model [3]. They explained this 

difference by the fluid properties [25], or very specific geometries [26,39].  

For all Reynolds numbers, the configuration with closest nozzle to electrode distance shows the 

best mass flux (Figure 6 A). Furthermore, all the configuration of Z/r ratio follow the same variation of 

Mass flux with the Reynolds number thus with the inlet volume flow rate. This means that regardless of 

the ratio we use in our device, we can expect to control the mass flux with the volume flow rate. 

In Figure 6 B, at different ratios of Z/r, we plot the variation of the mass transport coefficient 

(m=D/δ), which is proportional to the flux, in other words the heterogeneity, at the Reynolds number 800. 

From this graph, we can distinguish between two regions that meet at the critical Z/r =0.74. In the first 

region (Z/r < 0.74), where the mass transport is large the heterogeneity is the highest, it reaches 37% at 

Z/r =0.3.  

In the second region, where Z/r > 0.74, the best uniformity of the mass transport is reached. But 

the mass transport has lower value and become constant after Z/r = 0.74. This result show similarities 

with the study of the impact of impinging jet for thermal application, which concludes that the highest 

heat transfer coefficient at a determined ratio of Z/r [6]Thus, as a good compromise between uniformity 

and mass transport, we choose to optimize our system at Z/r =0.74. 
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Figure 6: Variation of Mass flux with the Reynolds number for different nozzle-electrode distance ’Z’, 

which ranges from 0.2 mm to 1.5mm, presented as the ratio of Z by the nozzle radius r, (Z/r), and B) 

represents the plot of the variation of the mass transport coefficient and the % of the uniformity with the 

variation of the ratio of Z/r at Reynolds number 800. 

 

6. Experimental Investigations of the Performance of the New 

Designed Cell 

We built the designed cell by assembling two parts. The bottom part was machined using 

traditional workshop techniques, and hosts the three electrodes as shown in Figure 7. The working 

electrode is encased in an epoxy shell. The reference is an Ag/AgCl wire, and the counter electrode is a 

platinum wire. To make it easier to change the geometry of the cell, the top part, which includes the inlet 

and the outlets was printed using stereolithography (Figure 7 A and B); this allows for easy changes in the 

configuration of the flow (position of the inlet/outlets, nozzle to electrode distance, etc), because all one 

needs to change the parameters is to print a new upper part. The two cells are assembled using screws, 

and waterproofed using a large toric joint (Figure 7 C and D).   
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Figure 7: The design of new jet cell : (a) is the view along the upper part of the cell to show the hole, (B) 

is the view along the upper part of the cell that includes the inlet and two symmetric outlets, (C) is the 

view of the two assembly parts of the cell along the side that shows the part of the reference electrode 

(RE) and counter electrode (CE), and (D) is the view of the tow assembly parts of the cell the working 

electrode (WE) and the screw that fix it. 

We first proceeded to measure the diffusion coefficient of Fe(CN6)
3-

/ Fe(CN6)
4-

  redox couple 

with this setup. We chose to determine the diffusion coefficient using cyclic voltammetry in the absence 

of flow in order to be under the same conditions as for the experiments under flow. We performed 

diffusive cyclic voltammetry experiments at the electrode in the absence of flow at several scan rates 

between 10 mV/s and 100 mV/s. The resulting curves are shown in the Figure 8-A. They display the 

usual behavior of a quasi-reversible redox couple with a reduction peak on the scan towards low 

potentials followed by a re-oxidation peak on the reverse scan. The curves have similar shapes at all scan 
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rates. The linear dependence of the peak current as a function of the square root of the scan rate (Figure 8-

B) shows that, in the absence of flow, the cell behaves exactly like a traditional stationary electrode. 

 

 

Figure 8: (A) Cyclic voltammograms of the (1mM) Fe(CN6)
3-

/ Fe(CN6)
4 
in an electrolyte of 0.5 M NaCl at 

a range of scan rates (10mV/s t0 100 mV/s), and  (B) Peak current  as a function of scan rate, with the 

linear relationship (dotted line). The experiments were conducted at room temperature. 

For a quasi-reversible couple, we expect the peak currents to be related to the scan rate by the 

following equation [37], where A (cm
2
), D (cm

2
/s), C (mol/cm

3
) and   (V/s). 

6.                       

Using (equation 6) on the data of Figure 8-B, we calculated a diffusion coefficient for the redox 

couple Fe(CN6)
3-

/ Fe(CN6)
4-

, of D=5.6 ×10
-6

 cm
2
/s which is compatible with the values available in the 

literature [40,41] 

We then proceeded to determine the mass transport coefficient m for different values of 

the flow rate. Figure 9 A shows the cyclic voltammograms for the reduction of 1 mM of 

Fe(CN6)
3-

 in 0.5 M of NaCl at 50 mV.s
-1

 under flow conditions, for various flow rates. The 

voltammograms are typical of steady-state hydrodynamic electrodes, and show a plateau current 

at low potentials, whose magnitude increases with the flow rate. . The oscillations visible in the 

plateau currents in figure 10 arise from fluctuations in the flow induced by the use of a peristaltic 
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pump, as is attested by the fact that the frequency of the oscillations is proportional to the pump 

rotation rate. These fluctuations do not affect the measure of the average current (corresponding 

to the average flow measured by the flowmeter). 

 

Figure 9: Experimental determination of the transport properties of the new electrochemical cell: A) 

Cyclic voltammetry for the reduction of Fe(CN6)
3-

(1 mM) in an electrolyte solution of 0.5 M NaCl at a 

graphite electrode of diameter 1 mm at 50 mV.s
-1

. The experiments are conducted at volume flow rate of 

range (1 ml/min to 37 ml/min) using peristaltic pump at performed at room temperature, under degassed 

system with argon. B)  Comparison of the mass transport coefficient (m=I/nFA) extracted from the cyclic 
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voltammetry experiments of reduction of Fe(CN6)
3-

with the numerical simulation results, D=5.6 × 10
-6

 

m
2
.s

-1
.  

 

Figure 9 B shows the mass transport coefficient calculated from the numerical simulations (in 

black line) versus the experimental mass transport coefficient extracted from the experimental limiting 

current from Figure 9 A (the maximum current), in open squares for the Fe(CN6)
3-

/ Fe(CN6)
4- 

redox 

couple. The mass transport coefficient is calculated based on the relation between the mass transport 

coefficient, m, and the limiting current, I, according to equation 7. 

7.         

Where A is the electrode area (of radius 500µm), F is the Faraday constant, and C is the 

concentration of the solution used (1 mMolar). 

As can be seen in Figure 9 B, there is an excellent agreement between the experimentally 

measured mass transport coefficients (determined from the limiting current) and those predicted from the 

numerical simulation, up to Vf values of 25 ml/min. It is important to note that under highest volume flow 

rate conditions the cell did not leak, which is the main disturbances and can be an obstacle during the 

experimental work. The experimental data fully support the numerical simulations. Note that the two parts 

of the jet cell can easily reconnected without the need for re-calibration of cell dimensions after cell 

assembly, and easily reconnect the electrode to be polished and cleaned up. This cell design should be 

compatible with most types of electrode materials [42]. 

7. Enhancement of the transport: Comparison with the “RDE” 

cell 

The recent study of the highly active enzymes  that catalyzes the reversible reduction of carbon 

dioxide (Carbon-monoxide dehydrogenase), shows  limitations in transport when adsorbed onto a rotating 

disk electrode [1,4,11]. This is a hindrance for the quantitative analysis of kinetic data [4], and greatly 

complexifies the study of this enzyme using RDE. We plot in Figure 10, the mass transport of our newly 

designed cell as a function of the Reynolds number, together with the one of the RDE at 5000 r.p.m 

(Figure 10). This rotation rate is the maximum practically applicable rotation used during the 

experiments, since higher rotation rate, vibrations and instabilities in the solution bath compromises the 

experiments. Figure 10 shows a significant enhancement of the transport in the new designed over that of 

the RDE, since the mass transport rate is 3 times higher at a Reynolds number of 800 (of Vf =37.5 

ml/min), which is easily achievable experimentally. With this new cell design, it is enough to run the 
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system at 3.7 ml.min
-1, 

Re=80, to get the same mass transport rate at a high rotation (5000 r.p.m) of RDE. 

Furthermore, compared to other geometries cell we get a good enhancement in transport without 

exceeding 800 Reynolds, which guarantee the laminar flow regime in the cell without disturbances and 

instabilities. We could enhance the mass transport by raising the velocity higher, but this may lead to a 

washing of enzymes. We have no knowledge of this washing effect which is not treated in literature. This 

concern will be investigated experimentally with the prototype based on the enzyme characteristics. 

 

Figure 10: Comparison of the transport in the two different geometries: horizontal line corresponds to 

RDE at maximum reliable rotation rate 5000 rpm corresponds to Re=3500, the closed circle symbol 

corresponds to the numerical results of the new designed jet cell. 

 

8. Conclusions 

The goal of this study was to overcome the mass transport limitations of the RDE by a new 

design of flow jet-electrode and determine its range of use. This study consisted in the design and 

hydrodynamic characterization of the electrochemical jet cell. We investigated the impact of the nozzle-

electrode distance, the ratio of nozzle to electrode diameter and the Reynolds number on the performance 

of this jet -cell. We optimized the parameters and we find that the ratio of r/R=1 with a Z/ r <2, are best to 

achieve the highest and homogeneous mass transport toward the electrode with a reasonable range of 

Reynolds numbers. This design of wall-tube jet flow cell could be used to replace the classical RDE by 

improving the mass transport by more than three times and preserving the homogeneity of the flux at the 
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electroactive part of the electrode. The properties of this optimized cell will make it possible to study 

rapid kinetic reactions of highly active catalysts We have now to optimize and adapt the facilities of our 

cell, pump; flow meter, valves, etc. to introduce and use them in a glove box in order to study the 

enzymes as CO dehydrogenase.. 
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