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We advance a novel method to estimate the carrier-flow dissipation εp in the presence of inertial
sub-kolmogorov particles at moderate Reλ. Its foundations rely on the unladen flow dissipation
calculation using the Rice theorem, and the density of zero crossings of the longitudinal velocity
fluctuation u′(x) coming from a LDA device. Our experimental results provide strong evidence, for
the first time, regarding the non-negligible effect that sub-kolmogorov particles have on the carrier
flow energy cascade at φv = O(10−5), and Reλ ∈ [200− 600].

Several experimental and numerical studies have aimed
at quantifying the impact of inertial particles on turbu-
lent kinetic energy (TKE), and turbulent kinetic energy
dissipation (ε) of particle-laden flows. Classical numeri-
cal studies have shown that the carrier-phase turbulence
remains almost unchanged if the discrete phase volume
fraction (φv) is very small, i.e., φv ≤ 10−6, and very small
particles are present (Dp < η) [1, 2]. Moreover, recent nu-
merical simulations [3–6] have further explored the conse-
quences of slightly larger concentrations (φv = O(10−5)),
and have reported enhancement or damping of ε. These
observations show the lack of consensus regarding how ε
from the carrier phase is affected by the presence of parti-
cles at similar φv. Considering that the former approach
(also known as 1-way coupling) has propelled the devel-
opment of several theoretical models to describe these
flows [7–10], a key improvement including the interac-
tion between the two phases (two-way coupling) would
be needed if the latter approach did not hold. Indeed,
the 1-way coupling hypothesis has not been strictly vali-
dated by experiments due to the inherent difficulty [2] to
measure the energy dissipation ε with traditional meth-
ods, e.g., classical optical techniques (LDA or PTV) at
moderate Reλ. A classical way to model the particle-fluid
interaction has been to consider them to behave as point
particles [11], and therefore, they follow the equation,

dVp

dt
= − 1

τp
[Vp − u(Xp, t)] (1)

with Vp the particle velocity and u(Xp, t) the car-
rier’s flow velocity evaluated at the particle’s location
Xp, and τp being the particle viscous response time
τp = ρpD

2
p/18νρ. The Eq.(1) is valid given that par-

ticle diameters are less than or equal to the Kolmogorov
length-scale (Dp ≤ η), i.e., sub-kolmogorov particles. The
Fourier transform of Eq.(1) yields,

V̂p =
Û

iωτp + 1
. (2)

Hence, the particle field velocity is a low-pass filtered
version of the carrier phase one, and being the filter a
function of the Stokes number (St = τp/τη, with τη =
(ν/ε)1/2 the Kolmogorov time scale of the flow) with a
cut-off frequency of fc = τ−1p /2π, or fcτη = (2πSt)−1.

Several authors [12–15] starting from Liepmann, have
proposed and extended a way to estimate the Taylor mi-
croscale (λ) in an unladen flow from the density of zero
crossings ns of the longitudinal velocity fluctuation com-
ponent u′(x) [13–15] where the temporal measurements
are translated into space by means of the Taylor hypoth-
esis. These zero crossings follow a powerlaw function
dependent on the ratio between the flow integral length-
scale (L), and the size of a low pass filter ηC (not to be
confused with the Kolmogorov length-scale η) applied to
the ‘raw’ signal. Interestingly, the relation ns = f(L/ηC)
reaches a plateau above the cut-off length η?C for which
ns ≈ constant, if ηC ≥ η?C . More precisely, this plateau
occurs when the product of ns compensated by the av-
erage zero crossings distance of the whole signal l̄ ap-
proaches one, i.e., ns l̄ ≈ 1, and it provides a criterion to
determine whether or not ns is well resolved. From these
observations, and via the Rice theorem, Liepmann [12]
proposed n−1s = Bλ with B being a constant that ac-
counts for intermittency. Recently, Vassilicos and collab-
orators [14, 16] have used the latter expression in com-
panion with ε = 15νu2/λ2, and being u = 〈u′2〉1/2, to
suggest a reliable method to estimate ε, and to ultimately
study the effects of the larger scales on the dissipation
constant Cε = Lε/u3.

From Eq.(2), if the cut-off frequency fc is large enough
to resolve the dissipation scales, ns should be recovered
regardless particles size distribution. Thus, it is possi-
ble to deduce the value of λ from a set of particles ve-
locities. However, in order to the latter argument to
hold there should be sufficient particles to sample the
fluid flow (see figure2a for criteria). These two obser-
vations give credence to extend the mentioned approach
to particle laden flows considering that the cut-off wave
number 2π/ηC , after which Vassilicos and collaborators
[14, 15] found a plateau in the density of zero crossings
ns, was at least one order of magnitude larger than the
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Kolmogorov length-scale, i.e., a low-pass filtered particle
velocity record could still be able to resolve the value of
λ.

In this Letter, we apply the method described above
to provide the first measurements of two-way coupling
between the particles and the carrier flow for active-
grid-generated turbulence in a wind tunnel at Reλ ∈
[200 − 600] and at liquid fractions ranging from φv ∈
[0.5− 4.4]× 10−5. We describe the method to estimate ε
for particle laden flows from records taken by a Phase
Doppler Interferometer (PDI) device [17] (a LDA like
instrument) by means of extending the single phase ap-
proach proposed by Vassilicos and collaborators. We also
compute Lp from the re-sampled unidimensional spec-
trum via L = limκ→0 F11(κ)π/u2 [18], which complies
with our low-pass filtering argument (see Eq.(2)) [18].
First, we briefly comment on the experimental setup.
Secondly, we succinctly review the signal post-processing.
Next, we expose a criterion to discard spurious or poorly
sampled signals. Finally, we use our results to show two
important consequences of the mechanical coupling be-
tween the two phases on this system: first we show that
the particles Stokes number is significantly modified com-
pared to the ‘1-way’ coupling approach, as τη is strongly
affected by the presence of particles. This has important
consequences in terms of scalings, for both preferential
concentration and settling velocity modification [3, 5, 19].
Then, we show that the particles presence leads to modifi-
cations to the dissipation constant Cε (defined via the re-
lation ε = Cεu

3/L). Our results suggest that Cε evolves
with Reλ, and φv in a non trivial manner that may sug-
gest changes on the nature of the energy cascade.

The experiment was conducted in the Lespinard wind
tunnel, a close-circuit wind tunnel with 75×75 cm2

square-cross section, and 4m long at LEGI laboratory.
High levels of turbulence were generated by means of an
active grid [20]. Just downstream of it, a rack of spray
nozzles produced polydisperse inertial water droplets
[21]. This wind tunnel has been extensively used to
study particle-turbulence interaction under homogeneous
isotropic turbulent (HIT) conditions (more experimental
details are described in [22–24]). The measuring station
was located three meters (3m) downstream the active
grid, and at the center line of the wind tunnel, where
HIT and the classical scalings from K41 theory have been
recovered [15]. At this position we set a PDI device (Ar-
tium Technologies PDI-200), with an experimental setup,
which was almost identical as the one described in Sum-
bekova [21], with the only difference being two circular
holes of ten centimeters (10cm) on each window. The
latter was aimed to counteract the water accumulation
on the walls (the holes were smaller as possible to reduce
the perturbation to the fluid flow), which had an im-
pact on the droplets detection, a problem encountered
by Sumbekova [21]. The unladen flow was measured
by hot-wire anemometry (HWA) (for details, see [15]),

and its characteristics are summarized in Table I. We
tried to mimic as closely as possible the horizontal speed
U∞ of the unladen flow, and to vary the volume frac-
tion φv as much as possible within our experimental lim-
its (see Table I). Each realization consisted of roughly
500×103 samples with individual records spanning 105

sample points. These records are unevenly sampled due
to the very nature of LDV measurements, we treated the
records, and resampled them to an average acquisition
frequency as explained below.

The possibility of estimating the energy spectrum from
LDV measurements was early recognized [26], and several
methods are available to account for the bias regarding
the non-uniform sampled signal recorded by LDV [27].
These methods mainly aim at computing the autocorrela-
tion function (ACF), which via the Wierner-Kinchin the-
orem, and the Fourier transform yields the energy spec-
trum. Our approach even though related to these ideas
relies on a different argument. We have re-sampled the
horizontal velocity particle records using a Piecewise Cu-
bic Hermite Interpolating Polynomial (PCHIP) [28], at
frequency equal to the average acquisition frequency, i.e.,
〈fp〉 =[#events]/[signal length] (see Table I). The
longitudinal spectrum for the droplets signals is shown
in Figure 1a, most of the data sets exhibit a powerlaw
close to -5/3 over almost two decades. In general, 〈fp〉
is not large enough to properly resolve the Kolmogorov
length-scale η. The latter however does not invalidate
our approach, as we are still able to resolve the density
of zero crossings [14, 16, 29], and thereby λp from the
longitudinal velocity fluctuation u′p, given that the sig-
nals resolution via Taylor hypothesis satisfies the criteria
U∞/〈fp〉 = ηpC ≥ η?C (sufficient particles to sample the
flow), and that fcτη = (2πSt)−1 > 10−2 (enough reso-
lution to capture the carrier phase temporal fluctuations
responsible for λ at our Reλ values, see Table I). The lat-

ter is supported by the exact relation, λ/η = 151/4Re
1/2
λ

[18] (see Table I), and the Taylor hypothesis.
The figure 1b shows the normalized zero crossings den-

sity ns l̄, where l̄ has been independently obtained by av-
eraging distances between consecutive zero-crossings of
the unfiltered signal [14]. In order to apply the afore-
mentioned criterion to our data, Vassilicos and collab-
orators [14, 29] have reported that the parameter A =
ηC/η = O(10) for large Reλ, which quantifies the filter
cut-off length ηC (defined as the intersection between a
2/3 power law fitted to the data, and the horizontal line
ns l̄ ≈ 1, see figure 1b) to the Kolmogorov length-scale.
The latter value of A has been also recovered at our fa-
cility using unladen flow measurements [15].

The figure 2a illustrates an expected result; if the av-
erage frequency of events is too small, we are unable to
properly resolve λp, which is defined as the equivalent
Taylor length-scale from the particles record. Taking all
the records for which A < 40 (it has been shown that A
is a function of Reλ [14]) the multi-phase flow dissipation
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TABLE I: Parameters of the unladen phase (measured by HWA) at the measuring station 3m downstream the
active grid. L was computed following [25]. The notation p refers to particle values measured by the PDI device.
φv ≈ QW /QA. Where QW , and QA are the volumetric flux of water, and air respectively. Dp is the droplet

diameter.〈fp〉 is the average droplet acquisition frequency.

Reλ U∞[ms−1] 〈fp〉[kHz] u/U∞ up/u φv × 10−5 Dp[µm] L[m] ε[m2s−3] λ[m] η [µm]

232 2 [0.35,1.32,1.37] 0.1273 [0.93, 0.95,1.21] [0.9, 3.0, 4.4] [10-200] 0.0570 0.0777 0.0136 457

321 3 [0.39,0.96,1.86,1.85] 0.1343 [0.98, 1.01, 0.99, 1.04] [0.6, 1.0, 2.0, 3.0] [10-200] 0.0721 0.2577 0.0119 338

404 4 [0.42,1.08,1.94,2.33] 0.1405 [0.98, 1.01, 1.04, 1.05] [0.4, 0.7, 1.5, 2.2] [10-200] 0.0845 0.6058 0.0108 273

503 5 [0.39,1.23,2.23,2.64] 0.1476 [0.97, 1.02, 1.02, 1.05] [0.4, 0.6, 1.2, 1.8] [10-200] 0.0980 1.1667 0.0102 231

601 6 [1.33,2.21,2.96,3.74] 0.1541 [0.99, 1.01, 1.00, 1.02] [0.5, 1.0, 1.5, 2.0] [10-200] 0.1110 2.1116 0.0098 200

648 7 [1.41,2.38,3.17,4.47] 0.1578 [1.01, 1.01, 1.01, 1.02] [0.4, 0.8, 1.3, 1.7] [10-200] 0.1158 3.3862 0.0090 178
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FIG. 1: a)Longitudinal energy density spectra Fp11. The darker the color the larger the mean velocity U∞.
b)Normalized zero crossings density ns l̄ against the normalized filter size L/ηC . The thicker the line the larger the

liquid fraction φv (see Table I).

could be estimated via the expressions n−1s |η?pC
= Bλp,

where we took B = 1.2π as the one found for the un-
laden flow [15], and εp = 15νu2p/λ

2
p, with up = 〈u′2p 〉1/2.

Figure 2b illustrates St/St0 = (εp/ε)
1/2. This estimate

is remarkably accurate considering the rather simple al-
gorithm followed. Moreover, the results confirm that at
fixed concentration φv ≈ 2× 10−5 (see the largest mark-
ers, and inset in figure 2b), the flow becomes less dis-
sipative [6] at increasing Reλ. On the contrary, for in-
creasing concentration values φv at fixed Reλ; ε could
be dampened or enhanced [3, 5] by the particles pres-
ence. These observations therefore invalidate any ap-
proach that does not include the effects of ‘two-way’ cou-
pling on the carrier flow turbulence at similar concentra-
tions values φv = O(10−5). Furthermore, Poelma et al.
[30] proposed the parameter ΦSt = 6π−1φv(η/Dp)

3St
to quantify εp/ε, and reporting that for ΦSt > 0.003
this ratio was larger than one (being this relationship
linear). If we take the Sauter diameter (D23 ≈ 60µm;
St32 ∈ [1 − 5]) as representative of our droplets distri-

bution [23], we recover values of ΦSt ∈ [0.001 − 0.035],
which is in agreement with the results reported in figure
2b, despite the fact that these authors did their exper-
iments at Reλ ≈ 30, and φv = O(10−3). The previous
observations are crucial considering that ε has a strong
role enhancing the particle settling velocity in particle
laden flows [8, 19, 31, 32].

Next, we investigate if the energy cascade is being af-
fected by the presence of droplets. Considering that anal-
ogous Kolmogorov K41 scalings ε = Cεu

3/L (with Cε
constant for fixed boundary conditions) [33] are applica-
ble to our particle laden flow, i.e., εp = Cpεu

3
p/Lp. The

integral length-scale for our particle laden datasets was
computed by L = limκ→0 F11(κ)π/u2 [18]. Being the
most reasonable method to compute this quantity, given
that our records do not possess the characteristics re-
quired to apply alternative procedures [25, 34]. Hence,
an expected discrepancy with a factor close to two was
found with respect to the unladen datasets [15], which
ultimately does not change the functionality of ε.
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FIG. 2: Several parameters plotted against the unladen Reλ. In all figures, the larger the marker size, the larger the
concentration, and the darker its color the larger the Reλ (see Table I). Figures b-d cover the datasets from figure
2a with the condition A < 40, φv ∈ [1.2− 4.4]× 10−5a) A = ηpC/η. Our values of A are in good agreement with
previously reported unladen flows values [14, 15, 29], i.e., A = O(10) ≈ 7.8 + 9.1Log10Reλ [14]. b) Stokes number
modification St/St0 = (εp/ε)

1/2. In the inset, (M) represents the results of Dejoan and Monchaux [5] for VT /u = 1
(in their notation VT is the particle terminal velocity), and (�) illustrate the results of Bosse et al.[3]. c) Ratio of
integral length-scales Lp/L, a factor close to 2 with respect to the unladen flow[15] is due to the method [25] to

estimate Lp. d) Cpε = εpLp/u
3
p. The inset shows Cpε vs φv.

After applying the latter method to the spectra found
in figure 1a (which is unaffected by the low-pass filtering
effect of the particles c.f. Eq.(2)), the value of Cpε can
be estimated. Figure 2d reveals that at large Reλ (com-
puted from unladen phase), Cpε reaches a ‘plateau’ as ex-
pected [33], there is, however, a transition region where
Cpε is inversely proportional to Re−1λ , i.e., Cpε = f(Re−1λ ).
This behavior was previously reported by Valente and
Vassilicos [33, 35] studying the unladen cascade in grid
experiments at similar Reλ. Our results suggest for the
first time that the carrier phase cascade might be al-
tered by the presence of particle at similar low concen-
trations φv. A conjecture that if proven correct criti-
cally undermines ‘1-way’ coupling approach, widely used

in theoretical models and numerical simulations [36] at
Reλ = O(100). The inset in figure 2d further illustrates
the entanglement between Reλ, and φv. That given, our
results might be biased by the very nature of our ap-
proximation via Eq.(2), as the particle do not completely
sample the whole carrier flow velocity field: this error
however seems to be small at the light of the data here
presented.
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