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The aim of this study is to interactively assess reendothelialization of stents at an accuracy of down to a few microns by analyzing 

endovascular optical coherence tomography (OCT) sequences. Vessel wall and stent struts are automatically detected by using 

morphological, gradient and symmetry operators coupled with active contour models; alerts are issued to ask for user supervision over 

some extreme irregular geometries caused by thrombotic lesions or dissections. A complete distance map is then computed from sparse 

distances measured between wall and struts. Missing values are interpolated by thin-plate spline (TPS) functions. Accuracy and 

robustness are increased by taking into account the inhomogeneity of datapoints and integrating in the same framework orthogonalized 

forward selection of support points, optimal selection of regularization parameters by generalized cross-validation (GCV) and rejection 

of detection outliers. Validation is performed on simulated data, phantom acquisitions and 11 typical in vivo OCT sequences. The 

comparison against manual expert measurements demonstrates a bias of the order of OCT resolution (less than 10 microns) and a 

standard deviation of the order of the strut width (less than 150 microns).  

 
Index Terms— Biomedical image processing, coronary artery stenting, optical coherence tomography, neointimal coverage, thin plate 

spline.  

 

I. INTRODUCTION 

ORONARY endoprosthesis or coronary stents make 

percutaneous angioplasty safer and help extend the 

indications. The first generation of stents (BMS, bare-metal 

stents) in the 1990s marked a major step forward following the 

development of the antiplatelet treatment protocol. The 

association of aspirin and thienopyridine during the early 

months following stent implantation reduced the incidence of 

acute or subacute thrombosis, ushering in a new era in 

interventional cardiology. These BMS were nevertheless 

associated with a risk of restenosis by neointimal hyperplasia 

observed in the first 6 months after implantation, and giving 

recurrent angina in 10 to 20% of cases. Restenosis was even 

more frequent in diabetic patients, after using more than one 

stent, in long lesions or in small-diameter coronary arteries. 

Over the five last years, drug-eluting stents (DES) have been 

developed in response to the need to combat high in-stent 

restenosis rates in these patient subgroups, cutting the rates of 

recurrent angina and repeat revascularization in the first year by 

four. However, the drug used against the neointimal hyperplasia 

also impairs the normal healing processes of the injured arterial 

wall. The delay in arterial healing and the lack of complete stent 

coverage by reendothelialization may predispose patients to 

stent thrombosis. Thus, to avoid a catastrophic event that in the 

majority of cases will lead to sudden death or myocardial 

infarction, the dual antiplatelet treatment is continued after the 

first month. The optimal duration of dual antiplatelet treatment 

remained unknown. 

In clinical practice would benefit greatly if it was possible to 

observe neointimal coverage after stent implantation: (i) we 

could analyze the role of delay in arterial healing after a clinical 

event like stent thrombosis, (ii) we could compare different 

drug-eluting stents and pinpoint the optimal duration of dual 

antiplatelet treatment, and (iii) we could obtain an individual 

prognosis before withdrawing antiplatelet treatment because of 

bleeding or surgery. 

To date, neointimal stent coverage after implantation has 

only been assessed in animal models or using autopsy 

observations [1],[2].  

Optical coherence tomography (OCT) is an intravascular 

imaging technique that provides the high-image resolution 

(<20μm) capable of assessing stented arterial segments in vivo. 

OCT can accurately differentiate the most superficial layers of 

the arterial wall as well as the stent struts and the vascular tissue 

surrounding them [3]. OCT could become a reference tool for 

assessing appropriate healing of stented coronary segments and 

comparing various types of stents, and could therefore guide 

optimal antiplatelet therapy to prevent late stent thrombosis. 

Recent studies have confirmed the accuracy of OCT for 

quantifying neointimal hyperplasia and covered-strut rates with 

different stents [4]-[6]. Current methods of quantification are 

accurate and offer good inter- and intra-observer 

reproducibility, but they are still manual and the time-intensive 

image analysis step remains a major limitation. An automatic 

algorithm for detecting stent endothelialization from volumetric 

optical coherence has already been studied [7], but only on an 

in vitro model. The blood vessel mimic did not reproduce the 

artifacts and difficulties with human OCT acquisition (move off 

center or angulation of ImageWire, coronary artery and cardiac 

movements, suboptimal saline flush) or stent malapposition. A 

semi-automatic method was developed with good results, but 

only for quantification of lumen, stent and neointimal areas, 

without strut coverage assessment [8]. We proposed to develop 

an automatic and supervised lumen and strut detection 

algorithm making it possible to calculate prognostic OCT 
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parameters used in clinical practice. We compared the 

algorithm results to conventional measures of neointimal 

hyperplasia (Fig. 10) and strut coverage on simulated data, 

phantom data and 11 demonstrative examples of human 

coronary stent analyzed by OCT 6 months after implantation. 

II. MATERIALS AND METHODS 

A. Optical coherence tomography for endovascular 

imaging 

1) OCT image formation and acquisition protocol 

OCT is based on low-coherence interferometry. Broad band 

light sources are used instead of monochromatic laser diodes in 

order to shorten distance to interference locus to a few 

micrometers. The optical setup of the system typically consists 

of a Michelson-type interferometer. The light is split along the 

two arms of the interferometer: for the reference arm, light is 

reflected by a reference mirror, whereas for the sample arm, 

light is reflected by a rotating mirror and backscattered by the 

tissue of interest. The device actually used for percutaneous 

coronary interventions (PCI) exploits time-domain OCT 

(ImageWire M2, LightLab Imaging, Westford, MA, USA), 

which means that the reference arm is translated axially over 

time to explore the sample of interest in greater depth and detail. 

The core of the device is a micro-lens tip fused with a single-

mode optical fiber ensuring image transfer. Lateral scanning is 

done by pullback of the fiber tip into its guide. The image signal 

is obtained from the amplitude of the interference pattern 

envelope. 

The OCT procedure is generally conducted 6 months after 

stenting, immediately following the control angiography. 

30UI/kg non-fractionated heparin is injected intra-arterially by 

a 6F catheter. A 0.014 inch guide is introduced into the vessel 

and positioned distally to the stent. A HeliosTM coaxial 

occlusion balloon catheter (OBC), (LightLab Imaging, 

Westford, MA, USA) is introduced along the guide across the 

vessel until the balloon marker is at the distal extremity of the 

stent. The guide is withdrawn and replaced by 1.4F optic fiber, 

connected up to the LightLab (LightLab Imaging, Westford, 

MA, USA) and inserted through the balloon until distal to the 

stent. The occlusion balloon is then withdrawn until proximal 

to the DES and inflated to between 0.4 and 0.7 atm. 

Physiological saline is then injected downstream of the OBC 

via its coaxial catheter. 30 mL is injected during each pullback.  

OCT gives a clear image once the medium is sufficiently 

transparent. Automatic light-source pull-back then begins (1 

mm/s, with 15 image/s acquisition). A 30 mm DICOM-format 

video recording is then made of the artery, including the stented 

segment. The balloon is deflated and the saline injection 

stopped. Several pull-backs may be required for analyses 

exceeding 30mm in length. 

The main advantage of OCT over other invasive imaging 

techniques such as intravascular ultrasound (IVUS) is 

resolution: axial and lateral values are decorrelated and equal to 

15-20 µm and 25-40 µm, respectively, under OCT compared to 

100-150 µm and 150-300 µm under IVUS. Another key 

advantage is the size of the imaging core, at 0.4 mm for OCT 

and 0.8 mm for IVUS.  

The main disadvantages of OCT are a poor penetration depth 

in nontransparent tissues; tissue visualization is kept limited to 

2-3 mm in depth for a global scanning area of 7 mm in diameter. 

The second severe limitation is the low pullback speed (1 mm/s) 

required by current time-domain OCT devices. Employing 

balloon occlusion catheters with saline flushes, making the 

vascular bed transparent, limits visualization to vessel segments 

shorter than 3.5 cm, as the maximum recommended inflation 

time is 35 seconds. Fourier-domain OCT devices will soon 

overcome this limitation by offering tenfold faster image 

acquisition speeds than existing probes [9].  

One practical advantage of the occlusive balloon is that it 

maintains the probe guide axially with regard to the vessel: 

therefore the movement of the probe can only be regarded as 

radial in the slice plane, and does not influence the relative 

distance between the stent and walls. 

2) Image features for stent inspection 

The reendothelialization study hinges on detecting two 

distinct features.  

 
Fig. 1. Schematic view of reendothelialization with the associated thrombosis and restenosis-related risk for the patient. Risk is acute when struts are naked and 

in direct contact with blood. The orange line shows the actual vessel wall position. Reendothelialization scores and corresponding color scale are given.  

  



 3 

First, the struts that return the metallic echoes of the stent in 

each slice. The echo location corresponds to the first interface 

between blood and metal. This means that there is a residual 

distance corresponding to the width of the wire, even if the stent 

is fitted well against the vessel wall (Fig. 10(a)). When the wall 

is contrasted enough, a shadow zone is visible behind every 

strut. This proves useful for detecting the strut itself, when strut 

contrast cannot differentiate against the mean speckle level in 

the wall tissue, which is often the case when 

reendothelialization happens (Fig. 10(b)). However, this 

shadow zone is a drawback when the mesh is uncovered or 

under-deployed, because it hides a part of the vessel wall (Fig. 

10(a) and 10(c)) that then needs to be extrapolated somehow. 

OCT experiences the same geometrical artifacts as IVUS [10]. 

Indeed, strut echo is magnified as distance to the probe rises. 

Furthermore, the echo is always oriented orthogonally to the 

direction of the incident beam, which means that it may not 

correspond to the orientation of the wall when the probe is off-

center. In two extreme cases, the struts can lie in the vascular 

bed: firstly, in the event of incomplete apposition, where the 

distance between echoes and wall is greater than wire width 

(Fig. 10(e)); secondly, in the event of branch jail. 

Second, the vessel wall boundary, contrast of which depends 

on distance and orientation in relation to the incident light 

beam, respectively due to radial attenuation and reflection. 

Concerning distortions, a vascular segment with a cylindrical 

shape may yield elliptical cross-sections depending on the 

orientation of the probe in relation to its axis [10]. Depending 

on the extent of reendothelialization, the wall edges may be 

irregular if the struts are not totally covered (Fig. 10(c)), or 

otherwise smooth (Fig. 10(b)). If reendothelialization keeps 

growing, vessel lumen area decreases, resulting in restenosis. 

Figure 10 summarizes the configurations likely to occur, with 

the exact location of the vessel boundary to be detected and the 

associated risk for the patient.  

Particular difficulty to detect the intimal interface may arise 

at endings of malaposition (Fig. 10(d) and 10(f)). Indeed, 

neointimal coverage acts as a 3D process that fills the space 

between the stent and the wall. It is inexistent in middle slices 

where the gap is too large (Fig. 10(e)), but may look as a 

detached layer in intermediate width values (Fig. 10(f)), where 

user intervention may be required as described below.  

 

 
Fig. 2. Typical images sampled from OCT sequences used for validation. Different configurations of stent position with regard to vessel wall and the 

corresponding scores are shown (white arrows) together with the results of wall segmentation (white line). Well-apposed stent (top): (a) phantom acquisition 
simulating uncoverage (the metallic echo is at a distance corresponding to the strut width from the wall); (b) homogeneous and deep coverage; and (c) 

inhomogeneous coverage. Malapposed stent (bottom): 3 slices of the same OCT sequence at malapposition endings (d) and (f) and middle slice (e). When 

automatic detection fails to find vessel wall (black line), an ellipse model is fitted to the red contour (dotted line) to detect shape irregularity and an alert is raised 
for manual correction (white line).  
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B. Image processing for wall and strut detection 

1) Processing overview 

Due to the characteristics of the wall and struts previously 

described, image segmentation is made of three independent 

processes: 

 the first part deals with the delineation of vessel bed edges. 

Depending on the amount of reendothelialization, those 

edges correspond to the interface of blood with metal 

and/or with endothelium. 

 in case of strong malapposition stemming from the 

presence of thrombus or wall dissection, the exact wall 

boundary is sometimes difficult to recover. Fortunately, the 

detected border is almost always irregular and an alert can 

be automatically sent to the user to control the detection 

result and correct it if necessary. 

 the last part deals with the strut segmentation. The radial 

shadow zones behind the struts are searched to infer 

whether a strut is present. Moreover, when the shadow 

zones are missing, the strut intensity is itself also 

considered for strut detection and localization. 

2) Wall detection 

Vessel bed edge segmentation is obtained in a three-step 

process as illustrated in Fig. 10. At step 1, an automatic 

threshold level is computed on the gray-scale histogram of the 

3D OCT image set using the Otsu method [12]. This threshold 

level is then applied to all cross-sectional OCT images in order 

to obtain a binary OCT image set. This binary image set is used 

at step 2 to find a rough approximation of the wall border. For 

this, each OCT section is run through a morphological 

segmentation process as presented in [11]: 

𝑀𝑖 = (𝐻(𝑇𝑖 ∘ 𝐾1)) ∙ 𝐾2, (1) 

where 𝑇𝑖  is the ith thresholded OCT slice image, 𝐻 is a hole-

filling function, and 𝐾1 , 𝐾2 are the structuring elements used by 

the function processing morphological opening and closing, 

respectively. The structuring elements 𝐾1, 𝐾2 are binary discs 

with a given radius of 𝑟1 = 2 and 𝑟2 = 9 respectively. The size 

of 𝐾1 and 𝐾2 was defined empirically, and the same value was 

used for the segmentation of all OCT image sequences. As 

shown in Fig. 10, the resulting morphological image 𝑀𝑖 is a 

clean binary image of the vessel wall, where noise speckle, 

struts and artifacts (such as the guide at the image center) have 

been removed. The wall border can be sampled by profile 

analysis from lines drawn from the image center to the border 

at different angular positions. The detected wall position, 

represented by black points on Fig. 10, is used to initialize an 

active contour near to the real edges of the vessel bed. At step 

3, the vessel bed edges are precisely segmented via a 

segmentation process based on the active contour model 

described in [11].  

This three-step automatic wall segmentation process was 

applied to all four OCT sequences and performed very well, 

regardless of the changing image quality, as shown on Fig. 10. 

Moreover, the active contour segmentation approach implicitly 

interpolates the local wall boundary gaps due to vessel 

branching, as well as the wall signal inhomogeneity shadow 

zone produced by struts localized between the OCT sources and 

the wall boundaries. 

3) Alert on wall irregularity 

In order to cut the time needed to run the qualitative clinical 

validation of the vessel wall segmentation results, we perform 

an automatic shape analysis of the vessel wall contours on every 

 
Fig. 4. Steps involved in the vessel bed edge segmentation phase. Step 1 is 
performed once for the 3D OCT image set. Steps 2 and 3 are applied 

successively in a slice-by-slice process.  

 
Fig. 3. (a) typical slice image as delivered by the OCT device, (b) polar reformation of the image in (a); the horizontal and vertical axes represent respectively 

the angular position between 0 and 360 degrees and the pixel position from image center (probe position) to image border.   
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OCT slice. As the vessel contour is normally expected to be 

circular or elliptic, an ellipse is fitted to the segmented vessel 

wall contours on each OCT image [13]. The discrepancy 

between the vessel wall contour and the fitted ellipse is 

computed and used to trigger an alert for user validation if 

required.  

The difference between the segmented vessel contour and the 

ellipse model is computed as the Mean Square Error (MSE), as 

follows: 

𝑒 = √
1

𝑛
∑(𝑑𝑖

⊥)2

𝑛

𝑖=1

, (2) 

where 𝑑𝑖
⊥ is the orthogonal distance from the ith point of the 

contour to the fitted ellipse. A simple alert threshold 𝑒 > 𝑇𝐴 was 

used to inform the user on which contours should be 

qualitatively validated and corrected if needed. Figures 10(d) 

and (f) give typical vessel wall shapes that trigger an alert. 

4) Strut detection 

The strut segmentation process presented in this section is 

performed in a slice-by-slice process. In order to simplify the 

strut segmentation algorithms, each OCT slice image is 

reformatted and interpolated in polar coordinates as shown in 

Fig. 10. Each point 𝑃(𝑥, 𝑦) in image (a) is transformed to a 

corresponding point 𝑃(𝜌, 𝜃) in image (b), where ρ represents 

the radial Euclidian distance from the pole, which is the center 

of image (a), and the  coordinate represents the 

counterclockwise angle from the 0° ray known as the positive 

x-axis.   

A strut in an OCT slice image does not have a unique and 

constant appearance. In the best case, it appears as a high-

contrast speckle of variable length (from one to 15 pixels) 

depending on the orientation of the OCT probe in relation to the 

stent. Figure 10 shows three typical appearances of a strut in a 

given OCT acquisition image (zoomed parts of the image on 

Fig. 10(b)). These three examples show that it is not simple to 

detect all struts, and that different characteristics must be taken 

in account to perform robust and precise detection. In cases (a) 

and (b), we show that as the contrast of the vessel wall is high, 

the strut produces a radial shadow zone that can be efficiently 

used to infer whether a strut is present. Figure 10 illustrates the 

method used to infer the presence of a strut based on the 

detection of the shadow zones. First, as shown on Fig. 10 

(middle image), the x-axis gradient component gx of the polar 

OCT slice image (top image) was computed in order to enhance 

the vertical lines produced by the borders of the shadow zone. 

Secondly, we compute the cumulative of 𝑔𝑥 along the y-axis for 

each position 𝑥. The resulting curve illustrated in Fig. 10 

(bottom) is screened for all specific increasing monotonic 

signal transitions, starting at a local minima below zero and 

ending at a local maxima greater than zero. Fig. 10 illustrates a 

typical signature of signal transition in presence of a shadow 

zone. We define two metrics to detect a shadow zone. The first 

is the peak-to-peak amplitude of the transition signal 𝑓𝑎 in (3), 

and the second represents the symmetry between the absolute 

values of 𝐿𝑚𝑎𝑥  and 𝐿𝑚𝑖𝑛 , noted 𝑓𝑏 in (4): 

𝑓𝑎(𝑖) =  𝐿𝑚𝑎𝑥(𝑖) − 𝐿𝑚𝑖𝑛(𝑖), (3) 

𝑓𝑏(𝑖) =  𝐿𝑚𝑎𝑥(𝑖) − |𝐿𝑚𝑖𝑛(𝑖)|, (4) 

where i stands for the ith signal transition, 𝐿𝑚𝑎𝑥(𝑖) always >0  

and 𝐿𝑚𝑖𝑛(𝑖) always <0. 

A normalized metric of symmetry, 𝑆(𝑖) based on 𝑓𝑎(𝑖) and 

𝑓𝑏(𝑖) is used in (5), where 𝑆(𝑖) = 1 represents perfect 

symmetry and 𝑆(𝑖) = 0 is perfect asymmetry: 

𝑆(𝑖) = 1 − 𝑓𝑏(𝑖) 𝑓𝑎(𝑖)⁄ . (5) 

A shadow zone is then detected as 𝑓𝑎(𝑖) > 𝑇1 and 𝑆(𝑖) > 𝑇2, 

 
Fig. 5.6Typical strut appearances in OCT acquisition: (a) a shadow zone is 

visible but no strut echo; (b) both shadow zone and strut echo are visible; and 

(c) a strut echo is visible but no shadow zone.  

 
Fig. 6.5Automatic detection of radial shadow zones behind the struts. At the 

top, we show the polar-reformatted OCT slice image of Fig. 10(b). The middle 
and bottom images represent the signed enhanced gradient along the x-axis 

and the cumulative signed gradient along the y-axis, respectively. Vertical 

lines represent the shadow zone border detection, where the left borders 
correspond to local minima of the curve (dotted line) and the right borders 

correspond to local maxima of the curve (continuous line).  
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where 𝑇1 and 𝑇2 are threshold values set empirically with regard 

to the values of 𝑓𝑎(𝑖) and 𝑆(𝑖) generated by noise and artifacts, 

when no shadow zone exists.  

The final step is to detect the exact strut position. When a 

shadow zone is detected (Fig. 10(a) and 10(b)), we analyze gray 

level radial profiles sampled every quarter degree. A strong 

decrease in gray level should be present just after the strut when 

moving from the lumen wall to the image border. When strut 

signal is not visible (Fig. 10(a)), the strut is considered to lie at 

the beginning of the decreasing part. Multiple occurrences for 

several adjacent profiles inside the shadow zone are checked 

for, because the larger the detected features are, the higher the 

corresponding strut presence probability is, as narrow echoes 

are most likely to be artifacts.. 

In the case illustrated in Fig. 10(c), the strut appears without 

shadow zone because the vessel wall is not highlighted. Strong 

echoes with a characteristic gray level peak over 200 (on an 8-

bit scale) are generally characteristic for a strut and are sought 

for inside the vascular wall. Again detection consistency 

depends on strut length and probability selection threshold is 

even set higher than previously as artifacts are more likely to 

occur in the vessel wall due to speckle noise. 

Detection thresholds are initialized from the detection of the 

shadow zones. They are tuned in order to minimize false 

positive detections (outliers): false negative detections are 

naturally handled by the following interpolation scheme, and 

also outliers but only if they are minority. 

C. Robust interpolation of a distance map and 

implementation of a score map 

At this stage, the distance 𝑑𝑖 to the vessel wall is only known 

at locations (𝜃𝑖 , 𝑧𝑖) of the 𝑝 detected struts. Due to detection 

uncertainties, some of the struts are missed, while others are 

outliers, i.e. their locations are totally abnormal. These outliers 

are really problematic because they can be falsely interpreted as 

under-deployed struts. Thus, it has to be possible to interpolate 

missing information and reject outliers at the same time.  

In order to achieve isotropic sampling in the (𝜃, 𝑧) plane, axis 

𝜃 is scaled so that one unit corresponds to a circular arc equal 

to one unit in direction z. 

1) Approximation model 

A thin-plate spline (TPS) model was chosen in order to 

simulate the rigidity of the stent. Contrary to tensor product 

representations such as B-splines, TPS is adapted to datapoints 

that are not regularly sampled over a grid. Strut density depends 

on the mesh drawing and on the location of the probe inside the 

vessel lumen. Any tortuous vessel is likely to lie against the 

wall, and the further the struts are, the closer they will be from 

each other in the (𝜃, 𝑧) plane. 

TPS function f is defined so as to minimize the sum of 

squared errors to the data ESSE: 

𝐸𝑆𝑆𝐸 = ∑(𝑓(𝜃𝑖, 𝑧𝑖) − 𝑑𝑖)2

𝑝

𝑖=1

  (6) 

and to the bending energy Ef: 

𝐸𝑓 = ∬ (𝑓𝜃𝜃
2 − 2𝑓𝜃𝑧

2 + 𝑓𝑧𝑧
2 )𝑑𝜃𝑑𝑧

ℝ2
. (7) 

The solution [16] is made up of an affine part representing 

the behavior of f at infinity and a sum of the function 𝑈(𝑟) =

𝑟2𝑙𝑜𝑔 (𝑟), bounded and asymptotically flat, centered at the 

struts (𝜃𝑖 , 𝑧𝑖): 

𝑓(𝜃, 𝑧) = 𝑎1 + 𝑎𝜃𝜃 + 𝑎𝑧𝑧

+ ∑ 𝑤𝑖𝑈(‖(𝑖 , 𝑧𝑖) − (𝜃, 𝑧)‖)

𝑝

𝑖=1

, 
(8) 

where TPS weights 𝑤𝑖  are subject to: 

∑ 𝑤𝑖 =
𝑝
𝑖=1 ∑ 𝑤𝑖𝑥𝑖 =

𝑝
𝑖=1 ∑ 𝑤𝑖𝑦𝑖 =

𝑝
𝑖=1 0. These conditions, 

combined with the knowledge of the real-valued distance 𝑑𝑖 at 

locations (𝜃𝑖 , 𝑧𝑖), give the following linear system: 

Hw'=H [
a

w
] = [O PT

P K
] [

a

w
] = [

𝐨
d

] = 𝐲, (9) 

where 𝐾𝑖𝑗 =  𝑈(‖(𝑖 , 𝑧𝑖) − (𝜃, 𝑧)‖), the ith row of 𝑃 is 

(1 𝑥𝑖  𝑦𝑖), 𝐎 is a 3x3 null matrix, 𝐨 is a 3x1 null column vector, 

𝐰 and 𝐝 are column vectors formed from 𝑤𝑖  and 𝑑𝑖, 

respectively, and 𝐚 is the column vector containing elements 

𝑎1, 𝑎𝜃 and 𝑎𝑧 . 
The presence of noise and outliers makes it necessary to use 

approximation instead of exact interpolation. This is done by 

minimizing 𝐸𝑆𝑆𝐸 + 𝜆𝐸𝑓 (6-7), which equates to replacing 𝐊 by 

𝐊𝜆 in (9):  

𝐊 = 𝐊 + 𝜆I𝑝 , (10) 

where  is a regularization parameter that controls the 

bending of the TPS. Criteria used for its choice are detailed in 

paragraph 4 below. 

2) Optimal weights for spatial density compensation and 

distance adaptivity 

Due to heterogeneities in vessel wall contrast, distance 

information is liable to be lacking in some regions of the (𝜃, 𝑧) 

plane where struts are not detected. Therefore, a specific 

weighting process has been designed to take into account the 

spatial density of datapoints. A Voronoi diagram is built from 

all (𝜃𝑖 , 𝑧𝑖)  locations. It is decimated so that every cell has a 

significant surface higher than the squared dimensions of one 

strut. To do so, the smallest cells are iteratively deleted until the 

 
Fig. 7. Typical shadow zone signature in the cumulative signed gradient 

image.  
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minimal acceptable size is reached. The distance for the current 

deleted cell is divided between the neighboring cells with a ratio 

depending on the gain in area after deletion. Areas 𝑠𝑖 of polygon 

cells are used to compute final weights 𝜇𝑖 (11). 

The approximation must also take into account the fact that 

accuracy must be higher for small distances because they are 

associated with a much higher risk for the patient. Therefore, a 

monotonically decreasing function is applied to distance: 

𝜇𝑖 =
𝑠𝑖

1 + ⌊𝑑𝑖⌋
, (11) 

𝜇𝑖 values are used to weight squared errors in (7). The linear 

system (9) is only modified by dividing regularization 

parameter  located on the diagonal by weights 𝜇𝑖. Density 

compensation and distance adaptivity are abbreviated as DC 

and DA respectively in the following. 

3) Orthogonalized forward selection of support points 

Linear system contains the full design matrix 𝐊, i.e. so 

that all datapoints serve as support vector for the TPS model. 

However, the solution for TPS coefficients is in 𝑂(𝑝3), which 

is too prohibitive when 𝑝 gets large. A workaround solution 

consists in selecting a subset of 𝑚 samples from the initial data, 

and the full design matrix 𝐇 becomes Hm, i.e. a (𝑝 + 3) ×
(𝑚 + 3) matrix where the last 𝑚 columns of which correspond 

to the m support points [14].  

Methods inspired from machine learning such as forward 

selection [15] can be employed to select the centers of the radial 

basis functions. This consists in recursively adding the most 

significant centers to the affine terms. For simplification, the 

affine and radial basis parts are estimated separately: first the 

coefficients for the affine part are estimated in a least-square 

sense: 

𝐚 = (PTP)
-1

PTd. (12) 

Then, the estimation for the radial function weights is 

performed on the residuals r = d − Pa. This is equivalent to 

ridge regression [17], i.e. minimization of first order 

regularization energy 𝐸𝑟  equal to SSE plus  times w𝑚
T w𝑚; the 

weights 𝐰m associated to the 𝑚 support points are given by: 

𝐰𝑚 = (H𝑚
T H𝑚 + λH𝑚)

-1
H𝑚

T r. (13) 

The choice of the 𝑚 best centers represents a computational 

burden unless forward selection is used. This consists in picking 

the centers one after the other from among the remaining set 

until the decrease in a model selection criterion (MSC) is 

sufficiently low. At iteration 𝑚, the design matrix H𝑚−1 is 

augmented by h𝑚, the column of the full design matrix 

corresponding to the point that minimizes 𝐸𝑟 .  

It has been proven by Chen et al. [5] that Gram-Schmidt 

orthogonalization of the design matrix H𝑚 in 𝐇̃𝑚, so that H𝑚 =

𝐇̃𝑚Um with U𝑚 an upper triangular, is likely to significantly 

speed up forward selection. Instead of choosing hm among the 

columns of 𝐇, its regularized version 𝐡̃𝑚 is chosen from 𝐇̃𝑚 

iteratively updated in the following way: 

𝐇̃𝑚 = 𝐇̃𝑚−1 −
𝐡̃𝑚𝐡̃𝑚

T 𝐇̃𝑚−1

𝐡̃𝑚
T 𝐡̃𝑚

 with 𝐇̃0 = 𝐇, (14) 

and minimization of 𝐸𝑟  means that 𝐡̃𝑗 must maximize the gap 

in energy between two selections: 

Δ𝐸𝑟𝑚(𝑗) =
(rT𝐡̃𝑗 )

2

λ + 𝐡̃𝑗
T𝐡̃𝑗

. (15) 

The transition matrix U𝑚 itself is updated by: 

 
Fig. 8. Results of depth map interpolation on simulated data corresponding to conditions #10 in Tab. 0: (a) ground truth map, (b) locations of struts used for 

interpolation and outliers (squares), (c) estimated map, (d) locations of estimated outliers (true in black and false in gray) and (e) difference with ground truth.  
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𝐔𝑚 = [
𝐔𝑚−1 (𝐇̃𝑚−1

T 𝐇̃𝑚−1)
−1

𝐇̃𝑚−1
T h𝑚

𝟎𝑚−1
T 1

], (16) 

with 𝐔̃0 = 1 and makes it possible to recover final weights: 

𝐰𝑚 = 𝐔𝑚
−1𝐰̃𝑚 (17) 

from regularized weights: 

𝐰̃𝑚 =
r𝐓𝐡̃𝑚 

λ + 𝐡̃𝑚
T 𝐡̃𝑚

, (18) 

simply by back-substitution. 

4) Optimal regularization parameter 

The MSC used as stopping criterion for the previous iterative 

algorithm is generalized cross-validation (GCV) [18],[19] as it 

is considered to avoid data overfit. In [17], it is expressed as: 

𝐺𝐶𝑉𝑚 =
rT𝐏𝑚

2 𝐫 

(trace(𝐏𝑚))
2

=
𝑝

(𝑝 − 𝛾𝑚)
(𝐫T𝐫

− ∑
(2λ + 𝐡̃𝑗

T𝐡̃𝑗)(rT𝐡̃𝑗)
2

(λ + 𝐡̃𝑗
T𝐡̃𝑗)

2

𝑚

j=1

), 

(19) 

where P𝑚 = 𝐈𝑝 − H̃𝑚(𝐇̃𝑚
T H̃𝑚 + 𝜆H̃𝑚)

-1
H̃𝑚

T  is the matrix 

projecting the data 𝐫 perpendicular to the space spanned by the 

model. 

Orr [17] has shown that the estimate of regularization 

parameter  can be inserted in the algorithm, and that its value 

can be refined at every iteration just after selection of the new 

center, by means of a re-estimation formula coming from the 

minimization of GCVm and the annulation of its derivative:  

 =
(∂trace(𝐏𝑚) ∂⁄ )(𝐫𝑇𝐏𝑚

2 𝐫 )

(trace(𝐏𝑚))
2

𝐰̃𝑚
T (𝐇̃𝑚

T H̃𝑚 + λH̃𝑚)
−1

w̃𝑚

. (20) 

The practical computation of (19) and (20) requires the 

following relationships: 

𝜕trace(𝐏𝑚)

∂
= ∑

𝐡̃𝑗
T𝐡̃𝑗

(λ + 𝐡̃𝑗
T𝐡̃𝑗)

2

𝑚

j=1

, (21) 

rT𝐏𝑚
2 𝐫 = 𝐫T𝐫 − ∑

(2λ + 𝐡̃𝑗
T𝐡̃𝑗)(rT𝐡̃𝑗)

2

(λ + 𝐡̃𝑗
T𝐡̃𝑗)

2

𝑚

j=1

, (22) 

trace(𝐏𝑚) = 𝑝 − ∑
𝐡̃𝑗

T𝐡̃𝑗

λ + 𝐡̃𝑗
T𝐡̃𝑗

𝑚

j=1

, (23) 

and 𝐰̃𝑚
T (𝐇̃𝑚

T H̃𝑚 + λH̃𝑚)
−1

w̃𝑚 = ∑
(𝐫T𝐡̃𝑗)

2

(λ + 𝐡̃𝑗
T𝐡̃𝑗)

3

𝑚

j=1

. (24) 

5) Robust regression and outlier rejection 

Both forward selection and GCV estimation are very 

sensitive to the presence of outliers in the data. Therefore, we 

have introduced an M-estimation stage [20] into the loop at 

iteration 𝑚, just after center selection, in order to compute a 

robust value for weight w̃𝑚. An iterative reweighted least-

square approach is used, starting from the initial residuals at 

iteration 𝑚:  

𝐫𝑚
(0)

= 𝐫𝑚−1 = 𝐫 − H̃𝑚−1w̃𝑚−1, (25) 

and the initial value 𝐰̃𝑚
(0)

 for the weight comes from the 

ordinary least square solution (18). 

The following iterations are performed until the change in 

weight value is not significant: 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Quantitative and qualitative comparisons of the supervised method 
versus gold standard (expected values for phantom or manual measurement 

for in vivo acquisitions): (a) Bland and Altman plot of the reendothelialization 

ratio in %. The bias mean is -1.14% and the 95% confidence interval is equal 
to ]-4.20;1.91[; (b) score bar chart for neointimal coverage. Only patients with 

coverage defect (scores 1 or 2) are presented; and (c) Bland and Altman plot 

of reendothelialization width in m. The bias mean is 5.3 m and the 95% 
confidence interval is equal to ]-189.9;200.5[. For the sake of clarity, one point 

out of 25 is drawn.  
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𝐰𝑚
(𝑘)

=
𝐡̃𝑚

T 𝛀(𝑘)𝐫𝑚−1

𝐡̃𝑚
T 𝛀(𝑘)𝐡𝑚

 (26) 

and 𝐫𝑚
(𝑘)

= 𝐫𝑚−1 − 𝐰̃𝑚
(𝑘)

𝐡̃𝑚, (27) 

where the diagonal matrix 𝛀(𝑘) is rebuilt at each iteration 

from the values of the first derivative of the Huber’s function 

M-estimator  at residuals 𝐫𝑚
(𝑘)

: 

𝛀𝑖,𝑖
(𝑘)

=
𝜌′(𝐫𝑚𝑖

(𝑘)
)

𝐫𝑚𝑖

(𝑘)
= {

1 if |𝐫𝑚𝑖

(𝑘)
| ≤ 1.345 std(𝐫𝑚

(𝑘)
)

1.345 std(𝐫𝑚
(𝑘)

) |𝐫𝑚𝑖

(𝑘)
| otherwise⁄ ,

 (28) 

where the standard deviation of residuals is robustly 

computed by the median absolute deviation. Robust regression 

will be referred to as RR in the following. 

III. RESULTS AND DISCUSSION 

A. Evaluation of depth map interpolation 

To evaluate the benefits of the different stages of the map 

interpolation, they are evaluated on simulated data with 

irregularly-spaced points inferred from true locations of 𝑝 = 

1600 struts (Fig. 10(a)). The depth function is arbitrarily chosen 

as the sum of a ramp over z of amplitude 255 and a sinusoidal 

function, also of amplitude 255, for both  and 𝑧. In some 

simulation conditions, centered additive white Gaussian noise 

of standard deviation  is added to the theoretical model for the 

depth, and a given value is randomly added to or subtracted 

from the theoretical function for a given percentage  of the 

points to create outliers (Fig. 10(b)).  

Figure 10(c) shows the result of the interpolation that is 

visually what is expected. Table 0 gives the mean errors to the 

ground truth on average for either the whole domain or for the 

struts only. It can be seen that, as expected, errors are globally 

lower at the struts compared to the whole domain, as the 

selection criterion is only based on measured values at the 

struts. Error on the domain obviously depends on the exact 

function profile and on the global density of measurement 

points, and is not generally correlated to the error at the struts.  

However, the error values in table 0 show that every 

correction (DC, DA, GCV, RR) decreases the final error. Tests 

are performed without noise for DC and DA and without 

outliers (except for RR).  

Simulations 1 to 4 prove that error is decreased by applying 

DA and DC alone, but the result is only slightly bettered when 

both corrections are cumulated. However, the difference lies in 

the distribution of errors, as precision is expected to be higher 

for small values. 

Simulations 5 to 7 show the benefit of using the GCV 

criterion to select regularization parameter: for the same 

amount of additive Gaussian noise =10, simulation 5 gives an 

example of over-fitting (=0), whereas simulation 6 

corresponds to over-smoothing (=0.1). Automatic selection 

gives a very low error value (simulation 7). The next simulation 

condition 8 show that changes in noise conditions =5 lead to 

a lower estimated regularization value . 

Simulations 9 and 10 illustrate the influence of outlier level 

on the final result. Simulation 9 shows how both center 

selection and regularization estimation are sensitive to the 

presence of outliers. The proposed robust correction takes 

outliers into account, and the final error of simulation 10 is 

comparable to the value obtained without outliers (0.28 against 

0.10). Figure 10 shows the difference (Fig. 10(e)) between the 

 
Fig. 10. Reendothelialization score maps for real acquisition data described in Tab. 0: (a) sequence #0, (b) sequence #1, (c) sequence #3 and (d) sequence #6. 
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estimated distance map (Fig. 10(c)) and the expected map (Fig. 

10(a)), in microns. Figure 10(b) gives the location of the struts 

used for interpolation: note that almost all theoretical outliers 

are rejected and only a few false detections occur in the corner 

of the plane (𝜃, 𝑧), where the model is less constrained by the 

data. 

B. Validation of reendothelialization measurement 

The parameters are analyzed in cross-sections taken every 

millimeter from the DICOM recordings obtained conformably 

to procedure described in paragraph II.A.1. Lumen Area (LA, 

in mm²) and Stent Area (SA, in mm²) were measured on each 

image to calculate the percentage of NeoIntimal Hyperplasia 

Area as NIHA = 100(SA-LA)/SA. Neointimal hyperplasia 

thickness was measured manually for each strut using the 

offline software delivered with the OCT console (LightLab 

Imaging, Westford, MA, USA).  

For validation, 11 characteristic OCT exams were chosen, 

with coverage ranging from homogeneous low and high to 

inhomogeneous. Moreover a phantom acquisition consisting in 

a stent deployed into a 3 mm diameter urinary catheter (Fig. 

10(a)) was used. The first row of Fig. 10 shows images with 

well-apposed stent (scores 0 or 1), whereas the second row 

gives different configurations that may occur over the length of 

a malapposition. The struts visible in each image were 

classified into 4 categories: (1) well-apposed to the vessel wall 

with apparent neointimal coverage (Fig. 10(b) and 10(c)); (2) 

well-apposed but without coverage (absence of any visible 

structure between lumen and vessel on OCT confirmed by a 

strong echo at the strut) (Fig. 10(a) and 10(c)), and (3) 

malapposed without coverage (malapposition being defined as 

a distance higher than the width of the strut, i.e. 150 µm 

between the wall and the light echo) (Fig. 10(d), 10(e), 10(f)).  

Table 0 summarizes the conditions of the comparison to the 

gold standard and to the manual measurement, performed on 

3588 individual struts. The simple automatic quality control on 

vessel shape was applied to all the OCT sequences analyzed in 

this paper. Table 0 gives the number of alerts automatically 

detected for each OCT image sequence. The Alert Threshold 𝑇𝐴 

value was set by the phantom analysis that can be considered as 

a perfect cylindrical vessel bed. Shape irregularities almost 

always occur at the endings of the malapposition area where the 

neointimal layer seems detached from the wall (Fig. 1(d) and 

1(f)). But the expert intervention is not always necessary as 

deformable models can perform well with non concave shapes 

(Fig. 1(d)): on average, they only interact with 4 or 5% of the 

slices in malapposition cases.  

The detection rate reported in Table 0 range from 35.42% to 

73.39% in vivo and up to 84.44% in vitro. 35.42% could be 

considered as a poor detection rate, but in fact it corresponds to 

a mean density of 13 struts per square mm, high enough to 

describe the whole depth surface, given it is smooth due to the 

stent stiffness and to the regularity of the neointimal coverage 

process.  

Globally there is many fewer slices requiring expert 

evaluation than slices with coverage defects (score 1 or 2). For 

instance, for sequence #1, there is a 4.3% alert rate for about 

40% of uncovered struts. 

Concerning area indices, estimation has a tendency to 

underestimate both lumen and stent areas. This is a systematic 

error that may be due to a default in distance scale in the console 

itself. The error is not that important since it is compensated in 

the final NIHA ratio (Fig. 10(a)), for which supervised 

estimation was in good agreement with manual measurement 

(bias equal to -1.14%). Both areas are found overestimated in 

the phantom case (7.72 against 7.07 for LA and 6.26 against 

5.73 for SA) since gold standard values are computed from the 

nominal diameter of the urinary catheter. This does account for 

deformation caused by stent stiffness. However, again, area 

values are compensated in the ratio, giving very high agreement 

(0.23% in absolute difference). 

For qualitative results (Fig. 10), distribution between score 

classes is comparable to a few percent-points between 

supervised and manual measurements (Fig. 10(b)). Score class 

2 is sometimes underestimated to the benefit of score class 1, 

but it is not serious because both require the expert cardiologist 

to be warned. Again, the main discrepancy between 

measurement and expectation occurs for the phantom, but this 

is explained simply by the fact that the distance measured 

TABLE I 

Results of distance map interpolation for simulated data. Different simulation conditions are considered (Gaussian noise standard deviation  and percentage 

of outliers, ). The regularization parameter  is an input except when the GCV criterion is used (simulations 7 to 10). The discrepancies between estimated 

and expected distances are given as averages for every strut location or globally for the whole map domain. 

 
TABLE II 

Characteristics of the OCT sequences used for validation: percentage of shape irregularity alerts; detection rate is computed from the actual number of struts 

counted by the expert; and the number of struts used for comparisons between the supervised method and the gold standard (phantom) or manual 

measurements (vessel) is given. 

 
 

 

 
 

 

Simulation # 1 2 3 4 5 6 7 8 9 10

Corrections none DA DC DC + DA DC + DA DC + DA DC + DA + GCV DC + DA + GCV DC + DA + GCV DC + DA + GCV + RR

Conditions  =0,  =0  =0,  =0  =0,  =0  =0,  =0  =10,  =0  =10,  =0  =10,  =0  =5,  =0  =10,  =1  =10,  =1

Parameters  =1.0e-4  =1.0e-4  =1.0e-4  =1.0e-4  =0  =0.1  =7.6e-4  =6.0e-4  =4.3e-3  =5.6e-3

Mean error / strut 2.65 0.87 0.52 0.50 0.51 -0.95 0.10 0.079 0.91 0.28

Mean error / domain 3.68 0.98 -0.53 -0.51 -0.65 0.33 -0.61 -0.49 -1.32 -0.60

Sequence # 0 1 2 3 4 5 6 7 8 9 10 11

Number of frames 183 210 412 396 346 403 282 242 406 196 317 195

Irregularity alerts (%) 0 4,3 19 7,3 0 0 1,1 2 0 0 5 0

Number of compared struts 223 102 387 374 248 325 292 198 278 205 140 190

Strut detection rate (%) 84,44 35,42 73,39 62,24 54,84 36,15 34,30 42,17 41,65 36,59 53,57 49,47
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between the wall and the light echo is at a few microns higher 

or lower than the limit between score 1 and 2, i.e. 150 µm. 

Therefore, the score map oscillates between red and black (Fig. 

10(a)). 

Concerning quantitative results, Fig. 10(c) shows that there 

is almost no bias between the two methods: supervised method 

over-estimates at about 5 m, i.e. less than 20 m, which is the 

resolution of OCT. It is interesting to note that standard 

deviation depends mostly on the magnitude of the coverage, 

being higher for sequence #6 for instance (SD=109.5 m) 

which has higher coverage than sequence #1 (SD=49.99 m) 

with similar detection rates. Furthermore, standard deviation 

predictably increases with coverage inhomogeneity: SD is of 

the same order of magnitude for homogenous sequence #6 and 

inhomogeneous sequence #3, whereas double the number of 

struts are detected in the latter. 

For now, the segmentation software prototype has been 

written in interface description language (IDL), so execution 

time is not yet optimized. Segmentation tasks were performed 

on a Pentium 4 3.4GHz CPU with 1 GB of RAM. Computation 

time was 0.8 s per slice for lumen and strut detection. If user 

interaction is required, semi-automatic correction takes about 5 

to 20 seconds per slice (the user initializes the contour that 

converges to the boundary as an Active Model). This means that 

the whole segmentation process may take up to one quarter-

hour for highly irregular OCT sequences, compared to the full 

manual process that takes the same time for only one slice. This 

duration must be compared to the full manual expert 

segmentation that lasts several hours per OCT sequence. 

The score map prototype has been developed in C++ and runs 

on an architecture similar to the previous one. Computation of 

a map from distances measured at p = 1600 struts takes less than 

2 minutes. 

IV. CONCLUSION 

We have developed a processing chain that gives an accurate 

and robust continuous map of distance between the stent and 

the vessel wall. It has been converted into a color score for 

visualization convenience. Extra work is in progress to design 

a friendly real-time interface that enables to locate suspected 

zones of non coverage or malapposition in the initial OCT data 

and in 3D on the exact segment geometry. Ameliorations in 

vessel wall detection are also required in order to minimize user 

interaction. 
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