P. Jarvis, Targeting of nucleus-encoded proteins to chloroplasts in plants, New Phytol, vol.179, pp.257-285, 2008.

P. Jarvis and E. López-juez, Biogenesis and homeostasis of chloroplasts and other plastids, Nat. Rev. Mol. Cell. Biol, vol.14, pp.787-802, 2013.

D. W. Lee, J. Lee, and I. Hwang, Sorting of nuclear-encoded chloroplast membrane proteins, Curr. Opin. Plant Biol, vol.40, pp.1-7, 2017.

I. Sjuts, J. Soll, and B. Bölter, Import of soluble proteins into chloroplasts and potential regulatory mechanisms, Front. Plant Sci, vol.8, p.168, 2017.

. Medline,

D. Tsitsekian, G. Daras, A. Alatzas, D. Templalexis, P. Hatzopoulos et al., Comprehensive analysis of Lon proteases in plants highlights independent gene duplication events, J. Exp. Bot, vol.70, pp.2185-2197, 2019.

J. Puyaubert, L. Denis, A. , and C. , Dual targeting of Arabidopsis holocarboxylase synthetase1: a small upstream open reading frame regulates translation initiation and protein targeting, Plant Physiol, vol.146, pp.478-491, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00212122

G. Daras, S. Rigas, D. Tsitsekian, H. Zur, T. Tuller et al., Alternative transcription initiation and the AUG context configuration control dual-organellar targeting and functional competence of Arabidopsis Lon1 protease, Mol. Plant, vol.7, pp.989-1005, 2014.

S. Jokipii-lukkari, A. J. Kastaniotis, V. Parkash, R. Sundström, N. Leiva-eriksson et al., Dual targeted poplar ferredoxin NADP(?) oxidoreductase interacts with hemoglobin 1, Plant Sci, vol.247, pp.138-149, 2016.

C. Carrie and I. Small, A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts, Biochim. Biophys. Acta, vol.1833, pp.253-259, 2013.

M. Sharma, B. Bennewitz, and R. B. Klösgen, Rather rule than exception? How to evaluate the relevance of dual protein targeting to mitochondria and chloroplasts, Photosynth. Res, vol.138, pp.335-343, 2018.

Z. Lai, Y. Li, F. Wang, Y. Cheng, B. Fan et al., Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense, Plant Cell, vol.23, pp.3824-3841, 2011.

P. A. Nevarez, Y. Qiu, H. Inoue, C. Y. Yoo, P. N. Benfey et al., Mechanism of dual targeting of the phytochrome signaling component HEMERA/pTAC12 to plastids and the nucleus, Plant Physiol, vol.173, pp.1953-1966, 2017.

G. Curien, C. Giustini, J. L. Montillet, S. Mas-y-mas, D. Cobessi et al., The chloroplast membrane associated ceQORH putative quinone oxidoreductase reduces long-chain, stress-related oxidized lipids, Phytochemistry, vol.122, pp.45-55, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01256723

-. Mas, S. Curien, G. Giustini, C. Rolland, N. Ferrer et al., Crystal structure of the Chloroplastic Oxoene Reductase ceQORH from Arabidopsis thaliana, Front. Plant Sci, vol.8, p.329, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01494299

S. Miras, D. Salvi, M. Ferro, D. Grunwald, J. Garin et al., Non-canonical transit peptide for import into the chloroplast, J. Biol. Chem, vol.277, pp.47770-47778, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02680302

M. Ferro, D. Salvi, S. Brugière, S. Miras, S. Kowalski et al., Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana, Mol. Cell. Proteomics, vol.2, pp.325-345, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02671525

M. Ferro, S. Brugière, D. Salvi, D. Seigneurin-berny, M. Court et al., AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins, Mol. Cell. Proteomics, vol.9, pp.1063-1084, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00470319

I. Bouchnak, S. Brugière, L. Moyet, S. Le-gall, D. Salvi et al., Unraveling hidden components of the chloroplast envelope proteome: opportunities and limits of better MS sensitivity, Mol. Cell. Proteomics, vol.18, pp.1285-1306, 2019.

S. Miras, D. Salvi, L. Piette, D. Seigneurin-berny, D. Grunwald et al., Toc159-and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts, J. Biol. Chem, vol.282, pp.29482-29492, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00181123

P. C. Bandaranayake, T. Filappova, A. Tomilov, N. B. Tomilova, D. Jamison-mcclung et al., A singleelectron reducing quinone oxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria, Plant Cell, vol.22, pp.1404-1419, 2010.

W. Chang, J. Soll, and B. Bölter, A new member of the psToc159 family contributes to distinct protein targeting pathways in pea chloroplasts, Front. Plant Sci, vol.5, p.239, 2014.

E. Dell'aglio, C. Giustini, D. Salvi, S. Brugière, F. Delpierre et al., Complementary biochemical approaches applied to the identification of plastidial calmodulin-binding proteins, Mol. Biosyst, vol.9, pp.1234-1248, 2013.

K. L. Yap, J. Kim, K. Truong, M. Sherman, T. Yuan et al., Calmodulin target database, J. Struct. Funct. Genomics, vol.1, pp.8-14, 2000.

S. W. Vetter and E. Leclerc, Novel aspects of calmodulin target recognition and activation, Eur. J. Biochem, vol.270, pp.404-414, 2003.

E. Mccormack, Y. C. Tsai, and J. Braam, Handling calcium signaling: Arabidopsis CaMs and CMLs, Trends Plant Sci, vol.10, pp.383-389, 2005.

L. Verde, V. Dominici, P. Astegno, A. Rodríguez-concepción, M. Yalovsky et al., Towards understanding plant calcium signaling through calmodulin-like proteins: a biochemical and structural perspective, E1331 Medline 27, vol.19, 1996.

N. A. Al-quraan, R. D. Locy, and N. K. Singh, Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress, Plant Physiol. Biochem, vol.48, pp.697-702, 2010.

F. Chigri, F. Friederike-hörmann, A. Stamp, D. K. Stammers, B. Bölter et al., Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.16051-16056, 2006.

H. Tidow and P. Nissen, Structural diversity of calmodulin binding to its target sites, FEBS J, vol.280, pp.5551-5565, 2013.

A. Nada and J. Soll, Inner envelope protein 32 is imported into chloroplasts by a novel pathway, J. Cell Sci, vol.117, pp.3975-3982, 2004.

B. Zybailov, H. Rutschow, G. Friso, A. Rudella, O. Emanuelsson et al., Sorting signals, N-terminal modifications and abundance of the chloroplast proteome, PLoS One, vol.3, 2008.

U. Armbruster, A. Hertle, E. Makarenko, J. Zühlke, M. Pribil et al., Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome?, Mol. Plant, vol.2, pp.1325-1335, 2009.

I. Bouchnak, L. Moyet, D. Salvi, M. Kuntz, R. et al., Preparation of chloroplast sub-compartments from Arabidopsis for the analysis of protein localization by immunoblotting or proteomics, J. Vis. Exp, p.58581, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02046463

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

N. H. Chua, Electrophoretic analysis of chloroplast proteins, Methods Enzymol, vol.69, pp.434-436, 1980.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

M. Walter, C. Chaban, K. Schütze, O. Batistic, K. Weckermann et al., Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation, Plant J, vol.40, pp.428-438, 2004.

M. Seigneurin-berny, N. Kuntz, and . Rolland,

L. Moyet, D. Salvi, I. Bouchnak, S. Miras, and L. Perrot, Daphné Calmodulin is involved in the dual subcellular location of two chloroplast proteins, vol.294, pp.17543-17554, 2019.

, J. Biol. Chem

, Access the most updated version of this article at doi