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Abstract 

 

Accurate numerical simulation of infiltration in the vadose zone remains a challenge, 

especially when very sharp fronts are modeled. In this work, we use the Mixed Hybrid Finite 

Element (MHFE) method which allows a simultaneous approximation of both pressure head 

and velocity and can handle general irregular grids with highly heterogeneous permeability. 

However, for many problems dealing with unsaturated water flow, the MHFE solutions 

exhibit significant unphysical oscillations. To avoid this phenomenon, we develop an efficient 

mass-lumping scheme with the MHFE method for solving the mixed form of the Richards 

equation. 

In this work, the standard and the lumped MHFE formulations are detailed and the 

ability of the lumped formulation to reduce unphysical oscillations is demonstrated for one 

and two dimensional infiltration problems. Theoretical analysis based on the M-matrix 

property, which guarantees the discrete maximum principle, and practical test cases carried 

out in this study, underline the interest of using an acute triangulation to completely remove 

the unphysical oscillations. Indeed, contrary to the standard approach, the lumped formulation 

satisfies the M-matrix property without any constraint on the time step size to be used. 

 

 

Key words: Mixed finite element, unsaturated flow, the Richards equation, oscillations, 

mass-lumping. 
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Prediction of accurate fluid movement in porous media is an important issue for 

scientists and engineers who are interested in the management of water resources. 

Computational simulations have received much attention to achieve this predictive role. Even 

if its validity is still discussed the Richards equation (RE) is a valuable model to predict water 

movement and solute transport in variably saturated media (Simunek and Bradford, 2008). 

From a mathematical point of view, the RE can be a highly nonlinear parabolic 

equation under unsaturated conditions, or a partial differential equation (PDE) of elliptic type 

for a fluid-saturated incompressible porous media. Among the various numerical schemes that 

can be used to solve the RE, the Mixed Finite Element (MFE) method is well suited for the 

discretization of elliptic and parabolic PDEs on heterogeneous domains. Moreover, it is 

locally conservative, can handle general irregular grids and allows a simultaneous 

approximation of both pressure and velocity. 

Consequently, this method has been extensively employed during the last few years 

(Mosé et al., 1994; Bergamaschi et al., 1998; Younes et al., 1999; Ackerer et al., 1999; 

Chavent et al., 2003; Younes et al., 2006 among others). For practical applications, the lowest 

order mixed method of Raviart-Thomas (RT0) is frequently applied and is considered in this 

paper. RT0 uses a piecewise constant approximation for the pressure (Brezzi and Fortin, 

1991). The velocity space has three degrees of freedom for triangular elements and four for 

quadrangular elements. In their original form, the mixed methods require the resolution of 

algebraic equations that typically lead to indefinite systems (Chavent and Jaffré, 1986; Brezzi 

and Fortin, 1991). 

The most widely used approach to circumvent this mathematical difficulty is the 

hybridization technique (Roberts and Thomas, 1989). It consists in introducing pressure 

Lagrange multipliers at element edges. The Mixed Hybrid Finite Element (MHFE) method 

leads to a symmetric and positive definite matrix which generally does not satisfy the M-
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matrix property (Raviart and Thomas, 1977; Thomas, 1977; Wheeler and Peszynska, 2002). 

This property (which requires a non singular matrix with 0iim   and 0ijm  ) has nonetheless 

a nice physical impact, as the scheme in this case satisfies the discrete maximum principle, 

i.e. local maxima or minima will not appear in the numerical solution for a domain without 

local sources or sinks. Therefore, the resulting numerical state variable and its related fluxes 

are consistent with the physics. 

For elliptic problems, the matrix obtained with MHFE is an M-matrix in the case of a 

weakly acute triangulation (all angles are less than 2/ ) (Brezzi and Fortin, 1991). This 

condition on angles is no more sufficient for parabolic problems. A first approach to preserve 

the M-matrix property is to change the RT finite element space for the flux variable (Marini 

and Pietra, 1990). Another way commonly used in finite element methods is mass-lumping 

(Segerlind, 1984). In the literature, a mass-lumping procedure is used with the MHFE method 

by using suitable quadrature formula in order to diagonalize the elemental matrix. This works 

nicely on rectangular meshes, where numerical quadrature makes the mixed approximation 

equivalent to finite differences (FD) (Weiser and Wheeler, 1988; Chavent and Roberts, 1991; 

Arbogast et al., 1998). An extension of this lumping procedure to triangular grids has been 

carried out in specific studies (Baranger et al., 1994; Sacco and Saleri, 1997; Micheletti and 

Sacco, 1999; Micheletti et al., 2001). 

On the other hand, a new mass-lumping procedure, suitable for any shape of element, 

was developed in Younes et al. (2006) without any quadrature formulas. The basic idea of the 

method is (i) to calculate steady state fluxes using the standard MHFE method, and then (ii) to 

add the accumulation and sink/source terms directly on the edges where the MHFE method is 

seen as an edge/face centered finite volume method. This scheme was shown to be efficient to 

reduce unphysical oscillations for transient simulations of the saturated flow problem (Younes 

et al., 2006). 
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This article deals specifically with unsaturated flow and unphysical oscillations that 

can mainly appear ahead of sharp moisture fronts. Such numerical difficulties have been 

underlined for finite element (FE) (Milly, 1985; Celia et al., 1990; Pan et al., 1996; Ju et al., 

1997; Karthikeyan et al., 2001) and MHFE (Farthing et al., 2003; Belfort and Lehmann, 

2005) methods. Indeed, the nonlinear RE can be much more sensitive to unphysical 

oscillations and convergence problems may be encountered with the MHFE method. 

The primary goal of this work is to describe how the mass-lumping formulation 

proposed in Younes et al. (2006) can be efficiently extended to the mixed form of the RE. 

Then, our objective is to show how the lumped formulation can improve the monotonicity and 

the efficiency of the MHFE method for unsaturated flow problems on general triangular and 

quadrangular meshes. Finally, numerical simulations are performed for 1D and 2D infiltration 

problems to show the benefit of the lumped MHFE formulation compared to the standard one. 

 

 

VARIABLY SATURATED FLOW MODELING 

Water flow in variably saturated porous media can be described by the Jacob –

 Richards equation which combines the mass conservation equation (1a) and the Darcy – 

Buckingham’s law (1b) (Freeze, 1971; Narasimhan, 2004, 2006): 
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 [1] 

where H and h are respectively the piezometric and pressure head such as H h z  , z is the 

depth taken positive upward, Ss the specific storage coefficient,  w sS   is the relative 
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saturation of the aqueous phase,   the volumetric water content, 
s  the saturated water 

content, q  the water velocity, f the source-sink term and K the hydraulic conductivity. 

Generally, on unsaturated conditions, the porous media and the fluid are assumed to be 

incompressible ( 0sS  ). In this case, the Jacob-Richards equation reduces to the well known 

RE. In the rest of the paper, the equation [1] is referred to as RE. 

The domain   is a bounded polygonal open set of 2 , D  and N
 are partitions of the 

boundary   of   corresponding to Dirichlet and Neumann conditions, with either a fixed 

piezometric head He for Dirichlet boundaries or a fixed flux g for Neumann boundaries, and 

  the unit outward vector normal to the boundary  . 

Equation (1a) can be written in several forms with either the water content and/or the 

pressure head as main unknowns. According to the chosen form, some care and specific 

adaptations have to be taken into account to conserve mass or to simulate variably saturated 

flow (Celia et al., 1990; Rathfelder and Abriola, 1994; Mansell et al., 2002). 

The interdependencies of pressure head, hydraulic conductivity and water content are 

characterized using constitutive relations. According to recent studies (Vogel et al., 2001; 

Ippisch et al., 2006; Schaap and van Genuchten, 2006), the standard Mualem - van Genuchten 

model (Mualem, 1976; van Genuchten, 1980) has to be modified by adding an air entry value 

(he). The effective saturation is given by: 

 
 

1
1

1

         
  

m
n

r
e*

s r Ee

e

h ,  h h
SS

,                                                 h h

 


   [2] 

where 
s  and 

r  are the saturated and residual volumetric water contents, respectively,   a 

parameter related to the mean pore size, n  a parameter reflecting the uniformity of the pore-

size distribution and 1 1m n  .  

The saturation at the cut-off point 
eh  is: 
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The conductivity - saturation relationship becomes: 
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 [4] 

where 
eS  is given by equation [2] and 1n  . Ks is the saturated conductivity (usually 

assumed as a scalar but could be a tensor for the general case). 

Ippisch et al. (2006) show that the modified van Genuchten model is equivalent to the 

classical one for 2n  and 1eh . Away from saturated conditions both models behave 

similarly. 

 

 

NUMERICAL APPROACHES FOR SOLVING THE RICHARDS 

EQUATION 

The standard MHFE method 

In this work, the general mixed form of the RE is chosen because of many specificities 

to treat both water content and pressure head in the lumped MHFE formulation. 

Developments for the pressure head form of the RE can be easily deduced. 

Discretization of the RE 

The solution H  of the system [1] is approximated over an element E, by the following 

quantities: 

 EH  :  the mean value of H  over the element E ,  
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 E ,iTH   :  the mean value of H  over the edge 
iE ,  [5] 

 
E Eq X  :  the approximation of  q K h H    over E . 

where 
EX  is the lowest-order Raviart-Thomas space RT0 (Raviart and Thomas, 1977; Brezzi 

and Fortin, 1991; Chavent and Roberts, 1991) and Eq  writes: 

 
1

ne

E E ,i E ,i

i

q Q 


  [6] 

E ,iQ denotes the flux leaving E  through the i
th

 edge, taken positive outward and ne  the 

number of edges of E  ( 3ne   for a triangle and 4ne   for a quadrangle). 

The basis function E ,i  (see Fig. 1 in the case of a triangular element E ) verifies (Brezzi and 

Fortin, 1991), 

 
j

j

E ,i E ij

E

.    [7] 

jE  being the unit outward vector normal to the edge jE  of the element E .  

The variational formulation of the flux law (1b) using [7] leads to: 

 
1 1

1

 



       
ne

E E E ,i E , j E ,i E E , j E ,i E E ,i

jE E E

K q Q K H H TH     [8] 

where 
EK  is the value of the parameter K  in the element E . 

We introduce now local matrix notations on the element E : 

 1

E ,ij E ,i E E , j

E

M K    [9] 

The matrix M  is symmetric and positive definite. 

Equation [8] can be written as  

  1 1

1 1

ne ne

E ,i E ,ij E E , j E ,i E E ,ij E , j

j j

Q M H TH H M TH 

 

      [10] 
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with 1

1

ne

E ,i E ,ij

j

M 



 . 

 

Using a fully implicit time discretization and the property [7] of the RT0 basis 

functions, the mass balance equation (1a) takes the following discretized form: 

 
1 1

1 1 1

1

 
  



  
   

  


n n n n ne
n n nE E E E

s w,E E ,i En n
i

H H
E S S Q E f

t t

 
 [11] 

where E  is the area of the element E , n the time level and  nt  the time step size between 

the new and the old time levels  1n n nt t t   . 

Due to the high non-linearities of the relationships between h K  , the water 

content is expanded using a first-order Taylor series with respect to the piezometric head 

(Celia et al., 1990): 

  1 1 1 1 1 1 1       n ,k n ,k n ,k n ,k n ,k

E E E E EC H H   [12] 

where 
EC  is the soil moisture capacity of the element E  and k  the iteration level. 

Substituting equations [10] and [12] in equation [11] gives the mean piezometric head 

over the element E: 

   1 1 1 1 1 1 1 1 1

1
1

1        




 
      

 

ne

n ,k n ,k n ,k n ,k n ,k n ,k n n ,k n n

E E ,i E ,i E E E E S ,E w,E E En ,k n
iE

E
H TH C H S S H E f

t
  


 [13] 

with  

 

 1 1 1 1

1 1

1

   

 



  




n ,k n ,k n ,k n ,k

E E S ,E w,E En

ne
n ,k n ,k

E E ,i

i

E
C S S

t
 

 

 [14] 

According to this linearization strategy, equation [10] becomes: 

 1 1 1 1 1 1

1

     



 
ne

n ,k n ,k n ,k n ,k

E ,i E ,ij E , j E ,i

j

Q N TH F  [15] 



 10 

with  

  
1 1

1
1 1

1

 


 


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n ,k n ,k

E ,i E , jn ,k n ,k

E ,ij E ,ijn ,k

E

N M
 


 [16] 

and  

  
1

1 1 1 1 1 1

1



     



 
     

 

n ,k

n ,k E ,i n n ,k n ,k n ,k n n ,k n

E ,i E E E E E S ,E w,E En ,k n

E

E
F E f C H S S H

t


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
 [17] 

Note that for general quadrangular elements, the local matrix [ EN ] cannot be 

evaluated easily and we resort to numerical integration. On the other hand, for triangular 

elements (see notations on Fig. 1), the matrix [
EN ] can be evaluated algebraically in the case 

of a scalar conductivity 
EK  (Younes et al., 2004), 

 

   

   
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2
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12 13

2
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1
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E

r
N K cot cot

E

r
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E

 
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 

 [18] 

in which ijr  is the edge vector from node i  toward node j , 

 
 
 

1 1 1

1

1 1 13

  



  



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E E E

K

K

 


 
 [19] 

and 

 

2 2 2
3

12 23 31

1

3

48 12
ij

j

r r r
B

E

 
   . [20] 

The equation [15] is used to form the final system to solve. The scalar unknowns 

correspond to the mean piezometric head on the cell edges (
1E,i ,..,neTH ) and the final system of 

equations is obtained using continuity properties between adjacent elements: 
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 For all interior edges, the continuity of the normal component of the velocity and edge 

piezometric head between the two adjacent cells E and E'  writes: 

 E ,i E', jTH TH  and 0E ,i E', jQ Q  ,  [21] 

 

 For a Dirichlet boundary edge 
iE  with a prescribed pressure bc

iTH , we have:  

 bc

E ,i iTH TH , [22] 

 For a Neumann boundary edge with a given flux N ,iQ ,  

 0E ,i N ,iQ Q  , [23] 

The resulting system matrix is symmetric and positive definite. 

M-matrix condition for the standard MHFE formulation 

If a matrix is of type M, then it has a nonnegative inverse, i.e. all the elements of the 

inverse matrix are nonnegative. This implies the validity of the discrete maximum principle 

and thus monotonicity of the discretization. The M-matrix property requires a non singular 

matrix with positive diagonal entries and nonpositive off-diagonal entries. 

In the case of the standard MHFE formulation, each line i  of the global matrix 

represents the flux continuity between the two elements E  and E  sharing the edge i , i.e. the 

sum of the two fluxes 
E ,iQ  and E', jQ . Therefore, using [15], we can see that the global matrix 

is an M-matrix if both local matrices  EN  and '
  EN  are of type M. 

For one dimensional problems, it was shown in Belfort and Lehmann (2005) that 

 EN  is an M-matrix if the time size is larger than a critical value which depends mainly on 

soil moisture capacity and conductivity. For 2D rectangular meshes, the matrix  EN  can 

never be of type M (cf. Appendix). Finally, with triangular meshes, the matrix  EN  is an M-

matrix if the triangulation is acute and if the time step is also great enough (cf. Appendix). 



 12 

Note that criteria on the time step length may be difficult to respect in unsaturated conditions 

where conductivity, soil moisture capacity and saturation change at each iteration. 

 

The Lumped MHFE method 

Discretization of the RE 

With the lumped formulation of the MHFE method, the stationary and the 

accumulation parts of the flux are distinguished (see Younes et al., 2006 for details) and it is 

written as: 

 
  

    
  

E ,s E ,i E ,i

E ,i s wE ,i

EQ T TH
Q Q S S

ne ne t t


 [24] 

where E ,sQ  is the sink/source term over the element E  defined by E ,s

E

Q f dE   and 
E,iQ  is 

the flux corresponding to the stationary problem without sink/source terms. Notice that 
E,iQ  

is given by equation [10]; but due to stationary conditions, the mean piezometric head HE can 

be expressed only in terms of traces of piezometric heads 1E ,i ,..,neTH . The accumulation term of 

equation [24] is also expanded according to equation [12] with edge state variables. 

Furthermore, using a fully implicit time discretization, we obtain (see Younes et al., 

2006): 

 
11 1 1 1 1

1

ne
n ,kn ,k n ,k n ,k
E ,ijE ,i E , j E ,i

j

Q N TH F
    



   [25] 

where the local matrix EN 
   obtained with the lumped formulation is given by, 

  
1 1

11 1 1 1 1

1

n ,k n ,k
n ,k E ,i E , j n ,k n ,k n ,k
E ,ij E ,ij E ,i E ,i ijn ,k

E

N M TH
 

 


 
    


    [26] 

where 
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 1 1

1

 




ne

n ,k n ,k

E E ,i

i

  ,  [27] 

  1 1 1   


n ,k n ,k n ,k

E ,i E ,i S ,E w,E ,in

E
TC S S

ne t
  [28] 

and  

  1 1 1 1 1 1         


n ,k n n ,k n ,k n ,k n n ,k n

E ,i E E ,i E ,i E ,i E ,i S ,E w,E ,i E ,in

E E
F f T TC TH T S S TH

ne ne t
   [29] 

The global lumped MHFE system matrix is also obtained using continuity of fluxes 

and traces of piezometric head between adjacent elements. The obtained matrix is also 

symmetric and positive definite. 

M-matrix condition for the lumped MHFE formulation 

As previously, the global M-matrix property is verified if the local matrix EN 
   is of 

type M. 

In the case for one-dimensional problems, the lumped formulation leads always to a 

local matrix of type M (Belfort and Lehmann, 2005). For 2D rectangular elements, as with the 

standard formulation, the M-matrix property can never be obtained (cf. Appendix). 

Concerning triangular elements (see notations on Fig. 1), the local matrix [26] of the 

lumped formulation is given by: 

   

   

   

2

23
12 13

1

12
1 1 131

12 23 2

1

3
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0 0

2 2 0 0
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
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

 
  

 
 

 
              
 

   
  
 
 

E , E ,

n ,k

E ,
n ,k n ,k n ,k
E E E , E , E ,

n ,k

E ,

E , E ,

r
cot cot

E

r
N K cot cot

E

r
cot cot

E

 



  



 

 [30] 

Since 1n ,k

E ,i  are all positive, the local matrix EN 
   is always of type M for an acute 

triangulation. In this case and contrary to the standard MHFE scheme, the lumped formulation 
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allows to obtain a global M-matrix whatever the size of the time step (see Younes et al., 2006 

and Appendix). 

 

 

RESULTS AND DISCUSSION 

Two numerical models based upon the standard and the lumped formulations of 

MHFE are developed for the resolution of the RE. Both use a linearization technique based 

upon the fixed point method (Picard Iteration) and an absolute convergence criterion function 

of the piezometric head variations. The codes can obviously be improved, for instance with a 

Newton Raphson linearization technique (Bergamaschi and Putti, 1999), with high order 

temporal approximations (Farthing et al., 2003), adaptive time stepping (Kavetski et al., 2001) 

or grid refinement (Mansell et al., 2002) techniques. However, these sophisticated strategies 

have not been investigated since we mainly focus in this work, on unphysical oscillation 

problems. Note that all theses techniques can easily be implemented with the lumped 

formulation of MHFE.  

In the numerical codes, the hydraulic conductivity KE of the element E  is updated at 

each iteration using the arithmetic mean (Belfort and Lehmann, 2005): 

  1 11  
ne

n ,k n ,k

E E E ,i

i

K K Th
ne

 [31] 

in which 1n ,k

E ,iTh  is the mean pressure head over the edge Ei, given by 

 1 1  n ,k n ,k

E ,i E ,i E ,iTh TH z  [32] 

Numerical experiments are performed with both codes to simulate infiltration of water 

in unsaturated porous medium (Celia et al., 1990). Parameters describing the soil are reported 

in Table 1. Since only unsaturated conditions are present in the domain, the air entry value 

and the storage coefficient have no significant effects and are fixed to zero. Furthermore, to 
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show the effect of the time step length on the unphysical oscillations, a fixed time strategy is 

adopted. 

We simulate both 1D and 2D infiltration problems. Different spatial discretizations are 

studied in 2D (general quadrangular elements, general triangulation, Delaunay triangulation, 

acute triangulation). Parameters, initial and boundary conditions for both 1D and 2D problems 

are given in Table 1. 

One-dimensional infiltration under a constant head boundary condition 

The one dimensional infiltration problem is solved using a fixed time step of 1t  s 

and different spatial discretizations ( z  varying from 1 cm to 6 cm). 

A reference solution, which coincides with the quasi-analytical solution developed by 

Philip (1957), is evaluated numerically using small time step and nodal spacing (0.1s and 0.1 

cm). 

The wetting fronts after 6 hours of infiltration obtained with the standard and the 

lumped formulations are compared to the reference solution in Fig. 2. To obtain a good visual 

comparison of the MHFE schemes, results are given only for the upper 40 cm of the soil 

profile. Figure 2 shows clearly that the standard MHFE solution produces important 

unphysical oscillations. These undesired oscillations are eliminated with the lumped 

formulation of MHFE. 

The computational efficiency of the proposed mass-lumping technique is verified by 

means of comparisons. Figure 3 represents the global error as a function of the global CPU 

time with mesh refinement (different z ). The global error GErr  is defined by  

      
0 0

z L z L

cal ref ref

z z

GErr Th z Th z dz Th z dz

 

 

    [33] 

where Thcal is the edge value of pressure head (Eq. [32])calculated with a formulation of the 

MHFE method, and Thref is the reference pressure head obtained with a very fine grid system. 
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The results of Fig. 3 show that the lumped formulation is more efficient than the 

standard MHFE formulation. Indeed, in general, the lumped formulation requires 2.5 less 

CPU time than the standard one to achieve a fixed accuracy.  

A 2D infiltration into initially dry soil  

For this problem, we consider the infiltration of water into a  50 100cm cm  

rectangular domain. Boundary conditions are described in Table 1. All sides of the flow 

region were considered to be impervious, except for a strip of 20 cm length at the surface 

where ponded infiltration with 25 cm piezometric head was imposed. At the bottom, a 

prescribed piezometric head is fixed to a value of -1000 cm (see Fig. 4). The simulations are 

performed during one day. Four different spatial discretizations are used in this example: a 

general quadrangular mesh of 1250 cells (2575 edges), a general triangular mesh of 2500 cells 

(3825 edges), a Delaunay triangulation of 1716 cells (2632 edges) and an acute triangulation 

of 2048 cells (3136 edges). The general quadrangular mesh is depicted in Fig. 4. Simulations 

are carried out using either a small time step of 5s or a large time step of 200s and with both 

the standard and the lumped formulations of the MHFE method. 

The expected numerical solution should be bounded. In this problem, the values of the 

piezometric head solution ,E iTH  at element edges should be between 25 cm (the upper 

Dirichlet boundary condition) and -1000 cm (the lower Dirichlet boundary condition). 

Because of the violation of the discrete maximum principle, the obtained numerical solution 

gives values less than -1000 cm. To quantify how badly the solution violates the maximum 

principle, we compute the minimal negative values of the solutions (Hmin) as well as the 

relative sizes in % of the area where the maximum principle is violated, 

 
 1000ETH cm

errg
   

 
 

 [34] 
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Results of Table 2 show that strong unphysical oscillations appear with the standard 

MHFE method even with the large time steps  200t s  . Indeed the minimal values reach -

1313.78 cm with quadrangles and about 12 % of the area can be concerned with unphysical 

oscillations. Similar unphysical results are obtained with the standard MHFE formulation for 

all kind of triangulations. If we reduce the time step size, the unphysical oscillations become 

more important and the nonlinear problem may not converge. Indeed, results with the 

standard formulation using a small time step of 5 s cannot be obtained since convergence 

problems are encountered with all meshes. 

Results obtained with the lumped formulation are given in tables 3 and 4. Results with 

the large time step of 200 s show that the mass-lumping formulation allows a high reduction 

of the unphysical oscillations as compared to the standard approach. For the quadrangular 

mesh, the minimal value reaches -1022.90 cm and less than 3% of the area contain undesired 

oscillations. In the case of a general or a Delaunay triangulation less than 0.2% of the area is 

affected. The lumped formulation eliminates all unphysical oscillations when combined with 

an acute triangulation (Table 3). 

Contrary to the standard formulation, the decrease of the time step size does not 

reduce the ability of the lumped formulation to solve the nonlinear problem. Results with the 

four discretizations are given in Table 4, when a small time step of 5 s is used. As with large 

time steps, the unphysical oscillations with the lumped formulation remain significant for 

quadrangles (minimal value -1028 cm). For triangular meshes, the unphysical oscillations are 

eliminated from the solution with the acute triangulation, but still exist for the general and 

Delanay triangulations (Table 4). 

Recall that, Mazzia (2008) has recently shown that for the elliptic case with constant 

coefficients, the standard MHFE is monotonic for Delaunay-type meshes with the property 

that no circumcenters of boundary elements with Dirichlet conditions lie outside the domain. 
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Indeed, if we consider an interior edge i  shared by two elements E and F (see Fig. 5), the 

Delaunay criterion can be written: 

 for an interior edge i , 

 0 E,i F ,icot cot  , [35] 

 for a Dirichlet boundary edge j , 

  0G, jcot , [36] 

With the lumped formulation, the accumulation terms (terms with time derivative) are 

added only on the diagonal part. Therefore, the system matrix of the lumped formulation for 

the parabolic case should have the same behavior than the system matrix of the standard 

formulation for the elliptic case. The Delaunay criterion [35] - [36] is hence expected to be 

valid for transient simulations with the lumped MHFE formulation.  

However, results of Tables 3 and 4 show that this criterion is not sufficient to avoid 

unphysical oscillations for the infiltration problem treated here. This occurs because the 

cotangent of the angles in the lumped formulation are always multiplied by conductivities 

(Eq. [30]). Therefore, the previous criteria are valid only in the homogeneous case. For 

heterogeneous porous media, [35] - [36] should be weighted by conductivities which lead to 

the following equations: 

 0 E E,i F F ,iK cot K cot  , [37] 

 
EK 0G G, jK cot . [38] 

In the case of unsaturated flow, 
EK  and 

FK  are nonlinear functions of the pressure 

head. According to the piezometric heads distribution and the flow process, the conductivity 

field can vary over several orders of magnitude. This situation is typically encountered for 

infiltration problems in dry soils. Therefore, even if [35] - [36] are verified, criteria [37] - [38] 

may not be fulfilled and the maximum principle is violated. On the other hand, for an acute 
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triangulation, [37] and [38] are always verified. In this case, the M-matrix property remains 

satisfied which guarantees the respect of the discrete maximum principle. This is shown 

numerically in Tables 3 and 4 where the results with the lumped MHFE formulation do not 

contain any unphysical oscillation. 

For this 2D test case, the efficiency of the lumped formulation is demonstrated in 

Table 5 when simulations are achieved with a large time step of 200 s. The total 

computational time required can be compared for both methods. Results of this table show 

that the standard formulation requires between 15 % and 30 % more CPU time than the 

lumped one to perform the whole simulation. This increase in time is due to the increased 

effort required to iterate to reach a solution. Thus, because the monotonicity of the system is 

improved with the lumped formulation, the scheme is more efficient than the standard one. 

A technique for improving the monotonicity with quadrangular elements 

Results of Tables 3 and 4 show that in contrast to triangles, the unphysical oscillations 

with the lumped formulation remain significant with quadrangles (minimal value -1028 cm). 

Indeed it was shown in Younes et al. (2006) that the lumped formulation of MHFE can never 

give an M-Matrix even for an homogeneous problem with rectangular discretization. 

To improve the monoticity of the lumped MHFE formulation for a general 

quadrangular mesh, we suggest in this part to change the local matrix of the quadrangles. The 

basic idea of this technique is to consider each quadrangular element E as an aggregation of 

two triangles A and B (Fig. 6). 

Using equation [25] for each triangle, the fluxes 
A,iQ  and 

B,iQ  are only function of the 

edge piezometric heads A, jTH  and B, jTH . The continuity of the interior flux and the 

piezometric head between triangles A and B (see Fig. 6 for the notations and the numbering) 

is written: 
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3 3
1 1 1 1 1 1

3 33 3 3 3

1 1

1 1 1

3 3

0     

 

  

     

 

 n n n n n n
A, j B, jA, B, A, j A, B, j B,

j j

n n n

int A, B,

Q Q N TH F N TH F

TH TH TH

 [39] 

Since this interior piezometric head does not appear in our initial quadrangular discretization, 

the basic idea consists in simplifying the system related to the local triangulation by keeping 

only the piezometric head at the exterior edges, i.e. those of the quadrangular element E. To 

this aim, Eq. [39] provides an expression of the interior piezometric head, 

 
2 2

1 1 1 1 1
3 33 3

1 133 33

1    

 

 
    

  
 n n n n n

A, j B, jint A, j A, B, j B,

j jA, B,

TH N TH F N TH F
N N

 [40] 

Fluxes at exterior edges of the triangles are simplified by inserting Eq. [40] in Eq. [25]. This 

approach gives the expression of the fluxes 
E ,iQ  across edges of a quadrangular element E 

with a modified matrix EN  and a modified vector FE. For instance, the flux across the first 

edge of the element E  becomes: 

13 31 31 13 13 321 1 1 1
11 121 1 2 3

33 33 33 33 33 33

32 13 131 1

4 3

33 33 33 33

   

 

     
         
            

 
   
   

B, B, A, B, B, B,n n n n
B, B,E , E , E , E ,

A, B, A, B, A, B,

A, B, B,n n

E , A, B

A, B, A, B,

N N N N N N
Q N TH TH N TH

N N N N N N

N N N
TH F F

N N N N
 1 1

3 1

 n n

, B,F

 [41] 

Using this formulation, it can be shown that the final system corresponds to an M-

matrix if the fictitious triangulation is acute (angles of the triangles A  and B  are less than 

2/ ).  

This sub-discretization has the following advantages: 

 The procedure can be applied only for some elements and not necessarily for the 

whole mesh. This is interesting for non-convex meshes which cannot be handled by 

the standard MHFE method. For example, the non-convex quadrangular element can 

be divided in two interior triangles (A, B) by dividing the greatest angle by 2. 
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 The parameters can change inside each quadrangle, which allows a better description 

of the spatial variability of the parameters without increasing the CPU time. 

 The elemental matrix can be evaluated analytically without any quadrature formula 

even for distorted quadrangles. 

 

 The developed approach has the same cost than the standard approach. In both 

formulations, the final system is solved for Lagrange multipliers at quadrangular 

edges. 

 The monotonicity of the discretization is improved in order to avoid unphysical 

oscillations. 

 The developed procedure is simple to implement (only the local matrix is changed). 

 

Table 6 illustrates how the modified local matrix can improve the solutions of the 

lumped MHFE method for quadrangular meshes. Results demonstrate that the nonphysical 

oscillations are strongly reduced with the proposed technique since the minimal value 

decreases from -1028.01 cm to -1003.28 cm. The area affected by oscillations decreases also 

from 2.86% to 0.24%. 

In this example, the unphysical oscillations are strongly reduced but not completely 

removed because the fictitious triangulation is not acute. In the case where the fictitious 

triangulation is acute, the maximum principle should be verified and oscillations can be 

completely removed with the proposed technique. 
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SUMMARY AND CONCLUSIONS 

A lumped formulation of the MHFE method was developed for the resolution of the 

RE. Both standard and lumped formulations of MHFE were used to simulate infiltration 

problems in 1D and 2D with different time step sizes and different spatial discretizations. 

The results of the infiltration problems may exhibit strong unphysical oscillations 

ahead of sharp moisture fronts. These oscillations are due to the violation of the maximum 

principle. 

The numerical simulations show that:  

1. For 1D infiltration problem, the lumped formulation allows to completely 

eliminate the unphysical oscillations that can appear with the standard approach; 

2. For a general quadrangular mesh as well as for all kind of triangulations, strong 

unphysical oscillations appear in the solution obtained with the standard MHFE 

formulation. These oscillations increase with small time steps. In this case, 

convergence problems are encountered and the solution cannot be obtained; 

3. The lumped formulation allows to strongly reduce these unphysical oscillations 

and results can be obtained even with small time steps. Contrarily to the standard 

formulation, in the case of acute triangulation, the lumped formulation gives an M-

matrix which guarantees the maximum principle. Therefore, the unphysical 

oscillations are completely removed in this case; 

4. The lumped formulation reduces the CPU time from 10 % to 22 % as compared to 

the standard formulation; 

5. A sub-discretization technique has been proposed to improve the monotonicity of 

the solution for quadrangular meshes. Each quadrangle is considered as an 

aggregation of two triangles and a new local matrix for the quadrangle, based on 
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the local matrices of the triangles, is defined. This technique reduces the 

oscillation without decreasing the computational efficiency of the scheme. 

Finally, we would like to underline that the improvements in the MHFE scheme through the 

mass-lumping technique depicted in this paper can be incorporated easily in multidimensional 

codes dealing with variably saturated flow. 
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APPENDIX 

Local matrix [NE] for 2D rectangular element E : 

MHFE 

(cf. Equation [16]) 

2 2

2 2

2

2 2

2 2

1 1 2 0 0

1 1 2 0 0
3

1 1 2 2 11 1 0 0
1

12 1 21 1 0 01 1
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   
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LMHFE 

(cf. Equation [26]) 

2 2

12 2

2
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3

4
2 2

1 1 2 0 0
0 0 0
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0 0 03
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Conditions to satisfy M-matrix criterion for triangular elements: 
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Table 1. Description of parameters and simulation conditions. 

Variables Values 

Characteristics 

θr (-) 0.102 

θs (-) 0.368 

  (cm
-1

) 0.033 

n (-) 2 

Ks (cm.s
-1

) 3

9.22 10


  

Dimensions 
z (cm) [0,100] 

x (cm) 

(2D) 

[0,50] 

Initial conditions  H (t = 0) = -1000 cm 

Boundary 

conditions 

upper TH (z = 100, t) = 25 cm (1D) 

   

   -1

, 100 25 cm    0,20

, 100 0 cm.s     20,50

TH x z x

Q x z x

   

   
 (2D) 

lower TH (x, z = 0,t) = -1000 cm (1D and 2D) 

lateral (2D) Q = 0 cm.s
-1
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Table 2. Standard MHFE results with a large time step of 200 s. 

 Quadrangles General_triangles Delaunay_triangles Acute_triangles 

Time (s) err_g Hmin err_g Hmin err_g Hmin err_g Hmin 

1600 9.34% -1313.78 2.91% -1171.42 2.96% -1186.42 5.68% -1273.77 

7600 10.20% -1246.62 3.72% -1123.92 3.90% -1100.46 8.69% -1207.30 

25000 11.90% -1195.94 5.08% -1116.42 4.75% -1079.93 11.00% -1168.23 

36000 11.79% -1151.03 4.79% -1121.63 5.09% -1000.11 11.00% -1156.38 

86400 10.82% -1173.43 4.28% -1114.14 5.06% -1064.50 10.50% -1110.57 
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Table 3. Lumped MHFE results with a large time step of 200 s. 

 Quadrangles General_triangles Delaunay_triangles Acute_triangles 

Time (s) err_g Hmin err_g Hmin err_g Hmin err_g Hmin 

1600 1.34% -1009.12 0.06% -1000.039 0.02% -1009.90 0.00% -1000.00 

7600 2.14% -1007.58 0.04% -1000.42 0.03% -1000.02 0.00% -1000.00 

25000 2.83% -1022.90 0.00% -1000.00 0.09% -1000.01 0.00% -1000.00 

36000 2.68% -1022.35 0.10% -1001.42 0.03% -1000.11 0.00% -1000.00 

86400 1.98% -1005.71 0.17% -1003.08 0.00% -1000.00 0.00% -1000.00 
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Table 4. Lumped MHFE results with a small time step of 5 s. 

 Quadrangles General_triangles Delaunay_triangles Acute_triangles 

Time (s) err_g Hmin err_g Hmin err_g Hmin err_g Hmin 

1600 1.11% -1011.16 0.04% -1000.032 1.49E-04 -1009.70 0.00% -1000.00 

7600 2.02% -1007.02 0.04% -1000.33 2.61E-04 -1000.01 0.00% -1000.00 

25000 2.86% -1028.01 0.03% -1000.02 9.06E-04 -1000.02 0.00% -1000.00 

36000 2.64% -1024.43 0.10% -1001.78 0.03% -1000.11 0.00% -1000.00 

86400 1.90% -1005.72 0.17% -1003.28 0.00% -1000.00 0.00% -1000.00 
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Table 5. Total CPU time (s) with the standard and the lumped MHFE formulations. 

 Quadrangles General_triangles Delaunay_triangles Acute_triangles 

MHFE 108.28 152 99.79 124.35 

Lumped MHFE 89.33 131 79.43 96.25 
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Table 6. Results with the lumped MHFE and a small time step of 5 s. 

 

Quadrangles with  

Standard local matrix  

Quadrangles with  

the modified local matrix 

Time (s) err_g Hmin err_g Hmin 

1600 1.11% -1011.16 0.07% -1000.03 

7600 2.02% -1007.02 0.09% -1000.33 

25000 2.86% -1028.01 0.03% -1000.02 

36000 2.64% -1024.43 0.15% -1001.78 

86400 1.90% -1005.72 0.24% -1003.28 
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Fig. 1. Vectorial basis functions with RT0 on triangles. 
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Fig. 2. Illustration of infiltration front for the upper 40 cm of the soil with Δz = 2.5 cm. 
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Fig. 3. Global error versus CPU time for various MHFE formulations and nodal 

spacing. 
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Fig. 4. Illustration of the 2D test case. 
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Fig. 5. Illustration of Delaunay criterion. 
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Fig. 6. Subdivision of a quadrangular cell E  into 2 triangular elements A and B. 

 

 

1E ,Q  

2E,Q  

4E,Q  

A 

B 

1E,TH  

2E ,TH  

3E,TH  

4E ,TH  

2A,
TH  

1A,
TH  

3A,
TH  

1B ,
TH  

2B ,
TH  

3B ,
TH  

3E,Q  


