ON THE CHOW RING OF CERTAIN HYPERSURFACES IN A GRASSMANNIAN

Robert Laterveer

To cite this version:

Robert Laterveer. ON THE CHOW RING OF CERTAIN HYPERSURFACES IN A GRASSMANNIAN. Le Matematiche, Università degli Studi di Catania, 2019, 10.4418/2019.74.1.6 . hal-02307037

HAL Id: hal-02307037
https://hal.archives-ouvertes.fr/hal-02307037
Submitted on 7 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ON THE CHOW RING OF CERTAIN HYPERSURFACES IN A GRASSMANNIAN

ROBERT LATERVEER

ABSTRACT. This note is about Plücker hyperplane sections X of the Grassmannian $\text{Gr}(3, V_{10})$. Inspired by the analogy with cubic fourfolds, we prove that the only non–trivial Chow group of X is generated by Grassmannians of type $\text{Gr}(3, W_6)$ contained in X. We also prove that a certain subring of the Chow ring of X (containing all intersections of positive–codimensional subvarieties) injects into cohomology.

1. INTRODUCTION

Let \mathcal{L} be the Plücker polarization on the complex Grassmannian $\text{Gr}(3, V_{10})$, and let

$$X \in |\mathcal{L}|$$

be a smooth hypersurface in the linear system of \mathcal{L}. The Hodge diamond of the 20–dimensional variety X is

\[
\begin{array}{cccccccccccc}
1 & & & & & & & & & & & \\
2 & & & & & & & & & & & \\
3 & & & & & & & & & & & \\
* & & & & & & & & & & & \\
\vdots & & & & & & & & & & & \\
* & & & & & & & & & & & \\
0 & \ldots & \ldots & 0 & 1 & 30 & 1 & 0 & \ldots & \ldots & 0 \\
* & & & & & & & & & & & \\
\vdots & & & & & & & & & & & \\
* & & & & & & & & & & & \\
3 & & & & & & & & & & & \\
2 & & & & & & & & & & & \\
1 & & & & & & & & & & & \\
\end{array}
\]

(where $*$ indicates some unspecified number, and all empty entries are 0). This looks much like the Hodge diamond of a cubic fourfold. To further this analogy, Debarre and Voisin [?] have constructed, for a general such hypersurface X, a hyperkähler fourfold Y that is associated (via an Abel–Jacobi isomorphism) to X. Just as in the famous Beauville–Donagi construction starting from a cubic fourfold [?], the hyperkähler fourfolds Y form a 20–dimensional family, deformation equivalent to the Hilbert square of a $K3$ surface.

1991 Mathematics Subject Classification. Primary 14C15, 14C25, 14C30.

Key words and phrases. Algebraic cycles, Chow ring, motives, hyperkähler varieties, Beauville “splitting property”.
In this note we are interested in the Chow ring $A^i(X)_\mathbb{Q}$ of the hypersurface X. Using her celebrated method of spread of algebraic cycles in families, Voisin [?, Theorem 2.4] has already proven a form of the Bloch conjecture for X: one has vanishing

$$A^i_{\text{hom}}(X)_\mathbb{Q} = 0 \quad \forall \ i \neq 11$$

(where $A^i_{\text{hom}}(X)_\mathbb{Q}$ is defined as the kernel of the cycle class map to singular cohomology). This is the analogue of the well–known fact that the only non–trivial Chow group of a cubic fourfold is the Chow group of 1–cycles.

We complete Voisin’s result, by describing the only non–trivial Chow group of X:

Theorem (=theorem ??). Let L be the Plücker polarization on $\text{Gr}(3, V_{10})$. Let $X \in |L|$ be a smooth hypersurface for which the associated hyperkähler fourfold Y is smooth. Then $A^1_{\text{hom}}(X)_\mathbb{Q}$ is generated by Grassmannians $\text{Gr}(3, W_6) \subset X$ (where $W_6 \subset V_{10}$ is a six–dimensional vector space).

This is reminiscent of the famous result about the Chow ring of a $K3$ surface [?]. It is also an analogue of the fact that for a cubic fourfold $V \subset \mathbb{P}^5(\mathbb{C})$, the Chow group $A^2(V)_\mathbb{Q}$ is generated by lines [?]. Theorem ?? is readily proven using the spread method of [?]; as such, theorem ?? could naturally have been included in [?].

The second result of this note concerns the ring structure of the Chow ring of X, given by the intersection product:

Theorem (=theorem ??). Let L be the Plücker polarization on $\text{Gr}(3, V_{10})$, and let $X \in |L|$ be a smooth hypersurface. Let $R^{11}(X) \subset A^{11}(X)_\mathbb{Q}$ be the subgroup containing intersections of two cycles of positive codimension, the Chern class $c_{11}(T_X)$ and the image of the restriction map $A^{11}(\text{Gr}(3, V_{10}))_\mathbb{Q} \to A^{11}(X)_\mathbb{Q}$. The cycle class map induces an injection

$$R^{11}(X) \hookrightarrow H^{22}(X, \mathbb{Q}).$$

This is reminiscent of the famous result about the Chow ring of a $K3$ surface [?]. It is also an analogue of the fact that for a cubic fourfold V, the subgroup $A^2(V)_\mathbb{Q} \cdot A^1(V)_\mathbb{Q} \subset A^3(V)_\mathbb{Q}$ is one–dimensional. Theorem ?? suggests that the hypersurfaces X might have a multiplicative Chow–Künneth decomposition, in the sense of Shen–Vial [?]. This seems difficult to establish, however (cf. remark ??).

Conventions. In this note, the word variety will refer to a reduced irreducible scheme of finite type over \mathbb{C}. For a smooth variety X, we will denote by $A^j(X)$ the Chow group of codimension j cycles on X with \mathbb{Q}–coefficients.

The notation $A^j_{\text{hom}}(X)$ will be used to indicate the subgroups of homologically trivial cycles.

For a morphism between smooth varieties $f : X \to Y$, we will write $\Gamma_f \in A^*(X \times Y)$ for the graph of f, and $\Gamma_f^t \in A^*(Y \times X)$ for the transpose correspondence.

We will write $H^*(X) = H^*(X, \mathbb{Q})$ for singular cohomology with \mathbb{Q}–coefficients.

2. Generators for A^{11}

Theorem 2.1. Let L be the Plücker polarization on $\text{Gr}(3, V_{10})$. Let $X \in |L|$ be a smooth hypersurface for which there is an associated smooth hyperkähler fourfold Y. Then $A^{11}_{\text{hom}}(X)$ is generated by the classes of Grassmannians $\text{Gr}(3, W_6) \subset X$ (where $W_6 \subset V_{10}$ is a six–dimensional vector space).
Proof. As mentioned in the introduction, Voisin [?, Theorem 2.4] has proven that
\[A^i_{\text{hom}}(X) = 0 \quad \forall i > 11. \]
Using the Bloch–Srinivas “decomposition of the diagonal” method [?] (cf. also [?, Chapter 3]), this readily implies that actually
\[A^i_{\text{hom}}(X) = 0 \quad \forall i \neq 11, \]
and so
\[\text{Niveau}(A^*(X)) \leq 2, \]
in the language of [?]. That is, the 20–dimensional variety \(X \) motivically looks like a surface, and so in particular the Hodge conjecture is true for \(X \) [?, Proposition 2.4].

Let
\[X \to B \]
denote the universal family of smooth hypersurfaces in the linear system \(|L|\). The base \(B \) is the Zariski open in \(\mathbb{P}(\wedge^3 V_{10}^*) \) parametrizing 3–forms \(\sigma \) such that the corresponding hyperplane section
\[X_\sigma \subset \text{Gr}(3, V_{10}) \subset \mathbb{P}(\wedge^3 V_{10}) \]
is smooth.

Let \(B' \subset B \) be the Zariski open such that the fibre \(X_\sigma \) has an associated hyperkähler fourfold \(Y_\sigma \), in the sense of [?]. That is, \(B' \) parametrizes 3–forms \(\sigma \) such that both \(X_\sigma \) and
\[Y_\sigma := \{ W_6 \in \text{Gr}(6, V_{10}) \text{ such that } \sigma|_{W_6} = 0 \} \subset \text{Gr}(6, V_{10}) \]
are smooth of the expected dimension.

We rely on the spread result of Voisin’s, in the following form:

Theorem 2.2 (Voisin [?]). Let \(\Gamma \in A^{20}(X \times_B X) \) be a relative correspondence with the property that
\[(\Gamma|_{X_\sigma \times X_\sigma})_* H^{11,9}(X_\sigma) = 0 \quad \text{for very general } \sigma \in B. \]
Then
\[(\Gamma|_{X_\sigma \times X_\sigma})_* A^{11}_{\text{hom}}(X_\sigma) = 0 \quad \text{for all } \sigma \in B. \]

(For basics on the formalism of relative correspondences, cf. [?, Section 8.1].) Since theorem ?? is not stated precisely in this form in [?], we briefly indicate the proof:

Proof. (of theorem ??) The assumption on \(\Gamma \) (plus the shape of the Hodge diamond of \(X_\sigma \), and the truth of the Hodge conjecture for \(X_\sigma \)) implies that for the very general \(\sigma \in B \) there exist 10–dimensional subvarieties \(V^i_\sigma, W^i_\sigma \) such that
\[\Gamma|_{X_\sigma \times X_\sigma} = \sum_{i=1}^s V^i_\sigma \times W^i_\sigma \quad \text{in } H^{40}(X_\sigma \times X_\sigma). \]
By Noether–Lefschetz, the subvarieties \(V^i_\sigma, W^i_\sigma \) are obtained by restriction from subvarieties of \(\text{Gr}(3, V_{10}) \), hence they exist universally. (Instead of evoking Noether–Lefschetz, one could also
apply Voisin’s Hilbert scheme argument [?, Proposition 3.7] to obtain that the \(V^i, W^i \) exist universally. That is, there exist 10–codimensional subvarieties \(\mathcal{V}^i, \mathcal{W}^i \subset \mathcal{X} \), and a cycle \(\delta \) supported on \(\bigcup \mathcal{V}^i \times_B \mathcal{W}^i \), such that

\[
(\Gamma - \delta)|_{X_\sigma \times X_\sigma} = 0 \quad \text{in } H^{40}(X_\sigma \times X_\sigma), \quad \text{for very general } \sigma \in B.
\]

We define

\[
R := \Gamma - \delta \in A^{20}(\mathcal{X} \times_B \mathcal{X}).
\]

For brevity, let us now write \(M := \text{Gr}(3, V_{10}) \). Since \(M \) has trivial Chow groups, we are in the set–up of \[?\]. As in loc. cit., we consider the blow–up \(\widetilde{\mathcal{X}} \) of \(\mathcal{X} \) along the relative diagonal \(\Delta_{\mathcal{X}} \). There is an open inclusion \(\mathcal{X} \times_B \mathcal{X} \subset I \). Hence, given \(\sigma \in A^* \mathcal{X} \), there exists a (non–canonical) cycle \(\bar{R} \in A^n(I) \) such that

\[
\bar{R}|_{\mathcal{X} \times_B \mathcal{X}} = f^* (R) \quad \text{in } A^n(\mathcal{X} \times_B \mathcal{X}).
\]

Hence, we have

\[
\bar{R}|_{X_\sigma \times X_\sigma} = (f^*(R))|_{X_\sigma \times X_\sigma} = (f_\sigma)^*(R)|_{X_\sigma \times X_\sigma} = 0 \quad \text{in } H^{40}(X_\sigma \times X_\sigma),
\]

for \(\sigma \in B \) very general, by assumption on \(R \). (Here, as one might guess, the notation

\[
f_\sigma : X_\sigma \times X_\sigma \to X_\sigma \times X_\sigma
\]

indicates the blow–up along the diagonal \(\Delta_{X_\sigma} \).)

We now apply [?, Proposition 1.6] to the cycle \(\bar{R} \). The result is that there exists a cycle \(\gamma \in A^{20}(\Delta_{\mathcal{X}} \times_B \mathcal{X}) \) such that there is a rational equivalence

\[
R|_{X_\sigma \times X_\sigma} = (f_\sigma)_*(\bar{R}|_{X_\sigma \times X_\sigma}) = \gamma|_{X_\sigma \times X_\sigma} \quad \text{in } A^{20}(X_\sigma \times X_\sigma) \quad \forall \sigma \in B.
\]

But the restriction of \(\gamma \) acts as zero on \(A^{11}_{\hom}(X_\sigma) \) (indeed, the action of \(\gamma|_{X_\sigma \times X_\sigma} \) on \(A^{11}_{\hom}(X_\sigma) \) factors over \(A^{12}_{\hom}(M) = 0 \), and so

\[
(R|_{X_\sigma \times X_\sigma})_* = 0 : A^{11}_{\hom}(X_\sigma) \to A^{11}_{\hom}(X_\sigma) \quad \forall \sigma \in B.
\]

For any given \(\sigma \in B \), one can construct the subvarieties \(\mathcal{V}^i, \mathcal{W}^i \subset \mathcal{X} \) in the above argument in such a way that they are in general position with respect to the fibre \(X_\sigma \). This implies that the restriction

\[
\delta|_{X_\sigma \times X_\sigma} \in A^{20}(X_\sigma \times X_\sigma)
\]
is a completely decomposed cycle, i.e. a cycle supported on a union of subvarieties $V_j^\sigma \times W_j^\sigma \subset X_\sigma \times X_\sigma$ with $\text{codim}(V_j^\sigma) + \text{codim}(W_j^\sigma) = 20$. But completely decomposed cycles do not act on $A^*_\text{hom}(\) [?]) and so

\[
(\Gamma|_{X_\sigma \times X_\sigma})_* = ((R + \delta)|_{X_\sigma \times X_\sigma})_* = 0:\ A^{11}_\text{hom}(X_\sigma) \to A^{11}_\text{hom}(X_\sigma) \forall \sigma \in B.
\]

This ends the proof of theorem ??.

Let us now pick up the thread of the proof of theorem ?? As in [?, Section 2], for any 3–form $\sigma \in B'$ let

\[
G_\sigma := \left\{ (W_3, W_6) \in \text{Gr}(3, V_{10}) \times \text{Gr}(6, V_{10}) \mid W_3 \subset W_6, \sigma|_{W_6} = 0 \right\}
\]

denote the incidence variety, with projections

\[
G_\sigma \overset{p_\sigma}{\longrightarrow} X_\sigma \\
\downarrow_{q_\sigma} \\
Y_\sigma.
\]

The fibres of q_σ are 9–dimensional Grassmannians $\text{Gr}(3, W_6)$.

Let $Y \to B'$ denote the universal family of Debarre–Voisin fourfolds (i.e., $Y \subset \text{Gr}(6, V_{10}) \times B'$ is the subvariety of pairs (W_6, σ) such that $\sigma|_{W_6} = 0$), and let $G \to B'$ be the relative version of G_σ, with projections

\[
G \overset{p}{\longrightarrow} X \\
\downarrow q \\
Y.
\]

We will also rely on the following Abel–Jacobi type result:

Lemma 2.3. Let $\sigma \in B'$ be very general. Then there is an isomorphism

\[(q_\sigma)_*(p_\sigma)^* : H^{20}(X_\sigma, \mathbb{Q})_{\text{van}} \cong H^2(Y_\sigma, \mathbb{Q})_{\text{van}}.\]

The inverse isomorphism is given by

\[
H^2(Y_\sigma, \mathbb{Q})_{\text{van}} \xrightarrow{\mu g^2} H^6(Y_\sigma, \mathbb{Q})_{\text{van}} \xrightarrow{(p_\sigma)_*(q_\sigma)^*} H^{20}(X_\sigma, \mathbb{Q})_{\text{van}}.
\]

(Here $\mu \in \mathbb{Q}$ is a non–zero number, $g \in A^1(Y_\sigma$ is the Plücker polarization, and the vanishing cohomology $H^{20}(X_\sigma, \mathbb{Q})_{\text{van}}$ and $H^*(Y_\sigma, \mathbb{Q})_{\text{van}}$ is defined with respect to the inclusion of X_σ and Y_σ in $\text{Gr}(3, V_{10})$ resp. in $\text{Gr}(6, V_{10})$.)

Proof. The first part (i.e. the fact that $(q_\sigma)_*(p_\sigma)^*$ is an isomorphism on the vanishing cohomology) is [?, Theorem 2.2 and Corollary 2.7]. For the second part, we observe that the dual map (with respect to cup product)

\[(p_\sigma)_*(q_\sigma)^* : H^6(Y_\sigma, \mathbb{Q})_{\text{van}} \to H^{20}(X_\sigma, \mathbb{Q})_{\text{van}}
\]

is also an isomorphism. In particular, using hard Lefschetz, this means that the composition

\[
H^2(Y_\sigma, \mathbb{Q})_{\text{van}} \xrightarrow{g^2} H^6(Y_\sigma, \mathbb{Q})_{\text{van}} \xrightarrow{(p_\sigma)_*(q_\sigma)^*} H^{20}(X_\sigma, \mathbb{Q})_{\text{van}} \xrightarrow{(q_\sigma)_*(p_\sigma)^*} H^2(Y_\sigma, \mathbb{Q})_{\text{van}}
\]
is non–zero. Hence, the assignment

\[< \alpha, \beta >_{\Gamma} := < \alpha, (q_\sigma)_*(p_\sigma)^* (q_\sigma)^* (g^2 \cdot \beta) >_{Y_\sigma} \]

defines a polarization on \(H^2(Y_\sigma, \mathbb{Q})_{\text{van}} \). Here, \(< \alpha, \beta >_{Y_\sigma} \) is the Beauville–Bogomolov form. However, as explained in [\ref{2}], for very general \(\sigma \) the Hodge structure on \(H^2(Y_\sigma, \mathbb{Q})_{\text{van}} \) is simple, and admits a unique polarization up to a coefficient. That is, there exists a non–zero number \(\mu \in \mathbb{Q} \) such that

\[< \alpha, \beta >_{\Gamma} = \mu < \alpha, \beta >_{Y_\sigma} . \]

The Beauville–Bogomolov form being non–degenerate, this proves that

\[(q_\sigma)_*(p_\sigma)^* (q_\sigma)^* (g^2 \cdot \beta) = \mu \beta \quad \forall \beta \in H^2(Y_\sigma, \mathbb{Q})_{\text{van}} . \]

Reasoning likewise starting from \(H^{20}(X_\sigma, \mathbb{Q})_{\text{van}} \), we find that the other composition is also the identity. \(\square \)

Let us define the relative correspondence

\[\Gamma := \mu \Delta_X - \Gamma_p \circ \iota \Gamma_q \circ \Gamma_g \circ \iota \Gamma_p \in A^{20}(\mathcal{X} \times_{B'} \mathcal{X}) , \]

where \(\Gamma_{g^2} \in A^{6}(\mathcal{Y} \times_{B'} \mathcal{Y}) \) is the correspondence acting fibrewise as intersection with two Plücker hyperplanes. Lemma ?? implies that

\[(\Gamma|_{X_\sigma \times X_\sigma})_* H^{20}(X_\sigma, \mathbb{Q})_{\text{van}} = 0 \quad \text{for very general } \sigma \in B' . \]

That is, the relative correspondence \(\Gamma \) satisfies the assumption of theorem ??, Thanks to theorem ??, we thus conclude that

\[(\Gamma|_{X_\sigma \times X_\sigma})_* A^{11}_{\text{hom}}(X_\sigma) = 0 \quad \forall \sigma \in B . \]

Unraveling the definition of \(\Gamma \), this means in particular that there is a surjection

\[(p_\sigma)_*(q_\sigma)^* : A^{4}_{\text{hom}}(Y_\sigma) \twoheadrightarrow A^{11}_{\text{hom}}(X_\sigma) \quad \forall \sigma \in B' . \]

As we have seen, for any point \(y \in Y_\sigma \) the fibre \((q_\sigma)^{-1}(y)\) is a 9–dimensional Grassmannian \(\text{Gr}(3, W_6) \) such that the 3–form \(\sigma \) vanishes on \(W_6 \). Such a Grassmannian is contained in the hypersurface \(X_\sigma \), and so

\[(p_\sigma)_*(q_\sigma)^*(y) = \text{Gr}(3, W_6) \quad \text{in } A^{11}(X_\sigma) \quad \forall y \in Y_\sigma . \]

The theorem is proven. \(\square \)

Remark 2.4. The above argument actually shows that

\[
A^{11}_{\text{hom}}(X_\sigma) \xrightarrow{(q_\sigma)_*(p_\sigma)^*} A^4_{\text{hom}}(Y_\sigma) \xrightarrow{g^2} A^4_{\text{hom}}(Y_\sigma) \xrightarrow{(p_\sigma)_*(q_\sigma)^*} A^{11}_{\text{hom}}(X_\sigma)
\]

is a non–zero multiple of the identity, for any \(\sigma \in B' \). This is very much reminiscent of cubic fourfolds and their Fano varieties of lines [\ref{3}], [\ref{4}]. Inspired by this analogy, it is tempting to ask the following: can one somehow prove that

\[
\text{Im}(A^{11}(X_\sigma) \twoheadrightarrow A^4(Y_\sigma))
\]

is the same as the subgroup of 0–cycles supported on a uniruled divisor?
3. AN INJECTIVITY RESULT

Theorem 3.1. Let \mathcal{L} be the Plücker polarization on $\text{Gr}(3, V_{10})$, and let $X \in |\mathcal{L}|$ be a smooth hypersurface. Let $R^{11}(X) \subset A^{11}(X)_G$ be the subgroup containing intersections of two cycles of positive codimension, the Chern class $c_{11}(T_X)$ and the image of the restriction map $A^{11}(\text{Gr}(3, V_{10})) \to A^{11}(X)$. The cycle class map induces an injection
\[R^{11}(X) \hookrightarrow H^{22}(X, \mathbb{Q}) . \]

In order to prove theorem ??, we first establish a “generalized Franchetta conjecture” type of statement (for more on the generalized Franchetta conjecture, cf. [?], [?], [?]):

Theorem 3.2. Let $X \to B$ denote the universal family of Plücker hyperplanes in $\text{Gr}(3, V_{10})$ (as in section ??). Let $\Psi \in A^{11}(\tilde{X})$ be such that
\[\Psi|_{\tilde{X}} = 0 \quad \text{in } H^{22}(X, \mathbb{Q}) \quad \forall \sigma \in B . \]

Then
\[\Psi|_{\tilde{X}} = 0 \quad \text{in } A^{11}(X, \mathbb{Q}) \quad \forall \sigma \in B . \]

Proof. This is a two–step argument:

Claim 3.3. There is equality
\[\text{Im} \left(A^{11}(\tilde{X}) \to A^{11}(X, \mathbb{Q}) \right) = \text{Im} \left(A^{11}(\text{Gr}(3, V_{10})) \to A^{11}(X, \mathbb{Q}) \right) \quad \forall \sigma \in B . \]

Claim 3.4. Restriction of the cycle class map induces an injection
\[\text{Im} \left(A^{11}(\text{Gr}(3, V_{10})) \to A^{11}(X, \mathbb{Q}) \right) \hookrightarrow H^{22}(X, \mathbb{Q}) \quad \forall \sigma \in B . \]

Clearly, the combination of these two claims proves theorem ??.

Let us prove claim ??.

Claim 3.3. There is equality
\[\text{Im} \left(A^{11}(\tilde{X}) \to A^{11}(X, \mathbb{Q}) \right) = \text{Im} \left(A^{11}(\text{Gr}(3, V_{10})) \to A^{11}(X, \mathbb{Q}) \right) \quad \forall \sigma \in B . \]

Claim 3.4. Restriction of the cycle class map induces an injection
\[\text{Im} \left(A^{11}(\text{Gr}(3, V_{10})) \to A^{11}(X, \mathbb{Q}) \right) \hookrightarrow H^{22}(X, \mathbb{Q}) \quad \forall \sigma \in B . \]

Clearly, the combination of these two claims proves theorem ??.

To prove claim ??, let $\bar{B} := \mathbb{P}H^0(\text{Gr}(3, V_{10}), \mathcal{L})$ and let
\[\tilde{X} \xrightarrow{\pi} \text{Gr}(3, V_{10}) \]
\[\downarrow \phi \]
\[\bar{B} \]
denote the universal hyperplane (including the singular hyperplanes). The morphism π is a projective bundle, and so any $\Psi \in A^{11}(\tilde{X})$ can be written
\[\Psi = \sum \pi^*(a_\ell) \cdot \phi^*(h^\ell) \quad \text{in } A^{11}(\tilde{X}) , \]
where $a_\ell \in A^{11-\ell}(\text{Gr}(3, V_{10}))$ and $h := c_1(\mathcal{O}_{\bar{B}}(1)) \in A^1(\bar{B})$. For any $\sigma \in B$, the restriction of $\phi^*(h)$ to the fibre X_σ vanishes, and so
\[\Psi|_{X_\sigma} = a_0|_{X_\sigma} \quad \text{in } A^{11}(X, \mathbb{Q}) , \]
which establishes claim ??.

Let us prove claim ??.

For any given $\sigma \in B$, let $\iota_\sigma : X_\sigma \to \text{Gr}(3, V_{10})$ denote the inclusion morphism. We know that
\[\iota_\sigma^* : A^j(\text{Gr}(3, V_{10})) \to A^{j+1}(\text{Gr}(3, V_{10})) \]
equals multiplication by the ample class $c_1(\mathcal{L}) \in A^1(\text{Gr}(3,V_{10}))$. Now let

$$b \in A^{11}(\text{Gr}(3,V_{10}))$$

be such that the restriction $\iota^*(b) \in A^{11}(X_\sigma)$ is homologically trivial. Then we have that also

$$b \cdot c_1(\mathcal{L}) = \iota_* \iota^*(b) = 0 \quad \text{in } H^{24}(\text{Gr}(3,V_{10})) = A^{12}(\text{Gr}(3,V_{10})).$$

To conclude that $b = 0$, it suffices to show that

$$\cdot c_1(\mathcal{L}) : A^{11}(\text{Gr}(3,V_{10})) \to A^{12}(\text{Gr}(3,V_{10}))$$

is injective (and hence, by hard Lefschetz, an isomorphism). By hard Lefschetz, this is equivalent to showing that

$$\cdot c_1(\mathcal{L}) : A^9(\text{Gr}(3,V_{10})) \to A^{10}(\text{Gr}(3,V_{10}))$$

is surjective (hence an isomorphism).

According to [?, Theorem 5.26], the Chow ring of the Grassmannian is of the form

$$A^*(\text{Gr}(3,V_{10})) = \mathbb{Q}[c_1,c_2,c_3]/I,$$

where $c_j \in A^j(\text{Gr}(3,V_{10}))$ are Chern classes of the universal subbundle, and I is a certain complete intersection ideal generated by 3 relations in degree 8, 9, 10. Writing out the relations in I, we find that

$$A^{10}(\text{Gr}(3,V_{10})) = \mathbb{Q}[c_1^{10}, c_1^5c_2, c_1^6c_2^2, c_1^4c_2^3, c_1^7c_3, c_1c_2^2c_3, c_1^3c_2c_3, c_1c_2^2c_3, c_1^4c_2^2, c_1^2c_2^2c_3^2]$$

is 10–dimensional (the classes $c_1^2c_2^3$, c_2^5 are eliminated thanks to the relation in degree 8 containing c_2^5; the class $c_1c_2^3$ is eliminated thanks to the relation in degree 9; the class $c_2^3c_3^2$ is eliminated thanks to the relation in degree 10). We observe that the inclusion

$$c_1 \cdot A^9(\text{Gr}(3,V_{10})) \subset A^{10}(\text{Gr}(3,V_{10}))$$

is an equality. This proves claim ??.

It remains to prove theorem ??:

Proof. (of theorem ??) Clearly, the Chern class is universally defined: for any $\sigma \in B$, we have

$$c_{11}(T_{X_\sigma}) = c_{11}(T_{X/B})|_{X_\sigma}.$$

Also, the image

$$\text{Im}(A^{11}(\text{Gr}(3,V_{10})) \to A^{11}(X_\sigma))$$

consists of universally defined cycles. (For a given $a \in A^{11}(\text{Gr}(3,V_{10}))$, the relative cycle

$$(a \times B)|_X \in A^{11}(\mathcal{X})$$

do the job.)

Likewise, for any $j < 10$ the fact that $A^j_{\text{hom}}(X_\sigma) = 0$, combined with weak Lefschetz in cohomology, implies that

$$A^j(X_\sigma) = \text{Im}(A^j(\text{Gr}(3,V_{10})) \to A^j(X_\sigma)),$$

and so $A^j(X_\sigma)$ consists of universally defined cycles for $j < 10$. In particular, all intersections

$$A^j(X_\sigma) \cdot A^{11-j}(X_\sigma) \subset A^{11}(X_\sigma), \quad 1 < j < 10$$

...
consist of universally defined cycles.

It remains to make sense of intersections

\[A^{10}(X_\sigma) \cdot A^1(X_\sigma) \subset A^{11}(X_\sigma). \]

To this end, we note that \(A^1(X_\sigma) \) is 1–dimensional, generated by the restriction \(g \) of the Plücker line bundle \(\mathcal{L} \). Let \(\iota : X_\sigma \to \text{Gr}(3, V_{10}) \) denote the inclusion. The normal bundle formula implies that

\[a \cdot g = \iota^* \iota_*(a) \quad \text{in} \quad A^{11}(X_\sigma) \quad \forall \ a \in A^{10}(X_\sigma). \]

It follows that

\[A^{10}(X_\sigma) \cdot A^1(X_\sigma) \subset \text{Im}(A^{11}(\text{Gr}(3, V_{10})) \xrightarrow{\iota^*} A^{11}(X_\sigma)) \]

also consists of universally defined cycles.

In conclusion, we have shown that \(R^{11}(X_\sigma) \) consists of universally defined cycles, and so theorem ?? is a corollary of theorem ??.

\begin{flushright}
\Box
\end{flushright}

Remark 3.5. Theorem ?? is an indication that perhaps the hypersurfaces \(X \subset \text{Gr}(3, V_{10}) \) have a *multiplicative Chow–Künneth decomposition*, in the sense of [?, Chapter 8]. Unfortunately, establishing this seems difficult; one would need something like theorem ?? for

\[A^{40}(\mathcal{X} \times_B \mathcal{X} \times_B \mathcal{X}). \]

Acknowledgements. Thanks to my mythical colleague Gilberto Kiwi for inspiring conversations.

References

[16] C. Voisin, Bloch’s conjecture for Catanese and Barlow surfaces, J. Differential Geometry 97 (2014), 149—175,

INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE, CNRS – UNIVERSITÉ DE STRASBOURG, 7 RUE RENÉ DESCARTES, 67084 STRASBOURG CEDEX, FRANCE.

E-mail address: robert.laterveer@math.unistra.fr