Quantifying Ca $^{2+}$ Current and Permeability in ATP-gated P2X7 Receptors
Xin Liang, Damien Samways, Kyle Wolf, Elizabeth Bowles, Jennifer Richards, Jonathan Bruno, Sébastien Dutertre, Richard Dipaolo, Terrance Egan

To cite this version:
Xin Liang, Damien Samways, Kyle Wolf, Elizabeth Bowles, Jennifer Richards, et al.. Quantifying Ca $^{2+}$ Current and Permeability in ATP-gated P2X7 Receptors. Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2015, 290 (12), pp.7930-7942. 10.1074/jbc.M114.627810. hal-02306973

HAL Id: hal-02306973
https://hal.archives-ouvertes.fr/hal-02306973
Submitted on 7 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
 Quantifying Ca\(^{2+}\) Current and Permeability in ATP-gated P2X7 Receptors*

Received for publication, November 21, 2014, and in revised form, January 27, 2015. Published, JBC Papers in Press, February 2, 2015, DOI 10.1074/jbc.M114.627810

Xin Liang (梁欣†), Damien S. K. Samways‡, Kyle Wolf§, Elizabeth A. Bowles†, Jennifer P. Richards‡, Jonathan Bruno¶, Sébastien Dutertre**, Richard J. DiPaolo†, and Terrance M. Egan††

From the †Department of Pharmacological and Physiological Science and Center for Neuroscience, and the Departments of *Molecular Microbiology and Immunology and ‡Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri 63104, the §Department of Biology, Clarkson University, Potsdam, New York 13699, and the **Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier 2, CNRS, Montpellier, France

Background: Ca\(^{2+}\) triggers many of the actions of extracellular ATP.

Results: We measured the Ca\(^{2+}\) component of the ATP-gated non-selective cation current of P2X7 receptors.

Conclusion: Ca\(^{2+}\) flux varied with the species of origin, the splice variant, and the agonist concentration.

Significance: Our results suggest that domains that lie outside of the pore regulate the Ca\(^{2+}\) flux of P2X7 receptors.

ATP-gated P2X7 receptors are prominently expressed in inflammatory cells and play a key role in the immune response. A major consequence of receptor activation is the regulated influx of Ca\(^{2+}\) through the self-contained cation non-selective channel. Although the physiological importance of the resulting rise in intracellular Ca\(^{2+}\) is universally acknowledged, the biophysics of the Ca\(^{2+}\) flux responsible for the effects is poorly understood, largely because traditional methods of measuring Ca\(^{2+}\) permeability are difficult to apply to P2X7 receptors. Here we use an alternative approach, called dye-overload patch-clamp photometry, to quantify the agonist-gated Ca\(^{2+}\) flux of recombinant P2X7 receptors of dog, guinea pig, human, monkey, mouse, rat, and zebrafish. We find that the magnitude of the Ca\(^{2+}\) component of the ATP-gated current depends on the species of origin, the splice variant, and the concentration of the purinergic agonist. We also measured a significant contribution of Ca\(^{2+}\) to the agonist-gated current of the native P2X7Rs of mouse and human immune cells. Our results provide cross-species quantitative measures of the Ca\(^{2+}\) current of the P2X7 receptor for the first time, and suggest that the cytoplasmic N terminus plays a meaningful role in regulating the flow of Ca\(^{2+}\) through the channel.

All P2X receptors transduce a significant Ca\(^{2+}\) flux at the resting membrane potential (1) that triggers many of the physiological and pathophysiological actions of extracellular ATP (2–6). The molecular physiology of the Ca\(^{2+}\) flux is poorly understood despite outstanding recent advances in functional and structural studies (7). This is particularly true for the P2X7 receptor (P2X7R) that is unusually sensitive to allosteric block by extracellular Ca\(^{2+}\) (8), a fact that makes characterization of the Ca\(^{2+}\) component of the ATP-gated current particularly problematic (9, 10).

P2X7 receptors are a family of seven ATP-gated ion channels (P2X1R–P2X7R) that subserve a diverse range of functions in a subunit selective manner. The prominent expression of P2X7Rs in lymphocytes, macrophages, and microglia (11–14) suggests a vital role for this subtype in the immune response (15). P2X7Rs are inactive in healthy tissue because limited release and rapid hydrolysis keep the concentration of extracellular ATP ([ATP]o) low (<100 nM) (16–18). However, the [ATP]o rises to millimolar concentrations at sites of stress, cellular injury, tumor necrosis, and phagocytic degranulation (16, 18–21) where it acts as a “danger” signal that initiates innate immunity by stimulating the caspase-1-activating platform known as the “inflammasome” (22–24). The result is an increased production and rapid release of pro-inflammatory cytokines by mononuclear phagocytes (15, 24–26), ultimately leading to greater inflammation and/or cell death (13, 15). In many cases, the inward flow of Ca\(^{2+}\) through the P2X7R is a key component of this response (28–30). Furthermore, the sustained rise in the intracellular concentration of free Ca\(^{2+}\) that follows activation of P2X7Rs directly triggers macrophage apoptosis independent of pro-inflammatory signaling cascades (31).

P2X7Rs are also expressed by neurons and glia of the peripheral and central nervous systems (5) where they influence differentiation, homeostasis, and disease in part by increasing intracellular Ca\(^{2+}\) (25, 32–36). In the peripheral nervous system, the elevated [ATP]o that accompanies inflammatory bowel disease leads to rapid degeneration of gut neurons by direct activation of the P2X7Rs of the myenteric plexus (37). In the eye, subretinal hemorrhage increases the [ATP]o, leading to a P2X7R-dependent Ca\(^{2+}\) influx that activates caspase-8 and initiates photoreceptor cell apoptosis (38). In the central nervous system, P2X7Rs are found on microglia, oligodendrocytes, and astrocytes, where they contribute to the genesis of neuropathic and chronic inflammatory pain (25) and influence cell survival (39). Although the presence of P2X7Rs on central neu-
We measured the Pf% of an array of recombinant and native P2X7Rs, and found an unexpected variability in the contribution of Ca$^{2+}$ to the total ATP-gated membrane current. The variability was most pronounced in the zebrafish P2X7R and in splice variants of murine P2X7Rs. Ten splice variants (P2X7bR–P2X7kR) have been identified from a range of species since the initial molecular cloning of the first P2X7R from rat (now called rat P2X7aR) (6). Only two of these (human P2X7bR and murine P2X7kRs) form functional homomeric receptors (56, 57). We discovered that mouse and rat splice variants with identical pore-lining sequences show significantly different Pf%, suggesting that domains that lie outside of the channel pore regulate the Ca$^{2+}$ component of the ATP-gated current.

EXPERIMENTAL PROCEDURES

Human and animal procedures were approved by the Institutional Review Board and the Institutional Animal Care and Use Committee, respectively, of the St. Louis University School of Medicine.

Isolation of Human Macrophages—Monocyte-derived macrophages were obtained as described by Norenberg et al. (58). Blood obtained from healthy volunteers was centrifuged at 500 × g for 10 min to isolate plasma, buffy coat layer, and erythrocytes. The buffy coat layer was removed, diluted 2:1 with cold physiological buffered saline (PBS) with no added divalent cations, and then overlaid on 15 ml of Histopaque 1077 (Sigma) in a 50-ml centrifuge tube. The tube was centrifuged at 900 × g for 30 min to produce an interfacial layer of mononuclear cells, and platelets were isolated and then processed through three PBS wash and spin (250 × g for 7 min) cycles. After the final spin, the pelleted cells were resuspended in 8 ml of a culture medium made of SensiCell™ RPMI 1640, 7.5% heat-inactivated autologous plasma, 100 units/liter of penicillin, and 100 µg/ml of streptomycin (all from Life Technologies). The cell suspension was then divided equally among eight 14-well plates previously loaded with circular 13-mm glass coverslips (Gold Seal Cover Glass, Thermo Scientific, Waltham, MA), and placed in a humidified 5% CO$_2$ incubator for 2 h. Subsequently, the plates were washed several times with warm PBS to remove non-adherent cells, and the remaining cells were cultured in 0.5 ml of the culture medium for 6–14 days. Lipopolysaccharide (1 µg/ml, Sigma) was added for 6–12 h immediately preceding the start of the experiments.

Isolation of Mouse Macrophages—Peritoneal macrophages were obtained with modifications as described by Davies and Gordon (59). Two or three adult mice were intraperitoneally injected with 1 ml of sterile 3% Brewers thioglycoate (Thermo Scientific) using a 25-gauge needle. Four days later they were sacrificed via carbon dioxide inhalation and cervical dislocation. The abdominal skin was soaked with 70% ethanol, pulled up with sterile forceps, and cut to expose the peritoneal cavity. The peritoneum was injected with an ice-cold high-glucose Dulbecco’s modified Eagle’s medium (DMEM; with added glutamine and sodium pyruvate) (Life Technologies) using a 20-gauge needle, and the mouse was vigorously shaken for a few seconds. The suspended cells were then harvested by removing the DMEM from the peritoneal cavity using a 25-gauge needle. The cell suspensions obtained from individual mice were
pooled, and the cells were pelleted by centrifugation (5 min at 200 \times g). The cell pellet was resuspended in 5 ml of cold Red Cell Lysis Buffer (Sigma), incubated for 5 min at room temperature, and then pelleted. The supernatant was discarded, and the remaining cells were resuspended in DMEM, 10% heat inactivated fetal bovine serum (FBS; Thermo Scientific), and non-essential amino acids (Sigma). The cells were plated at a density of 500,000 cells/35-mm tissue culture dish and cultured in a humidified 5% CO2 incubator for up to 14 days. Two days before the experiment, the cells were replated onto 13-mm glass coverslips. Lipopolysaccharide (1 \mu g/ml) was added for 6–12 h immediately preceding the start of an experiment.

Isolation and Activation of Mouse Lymphocytes—Peripheral lymph nodes were isolated from BALB/c-FoxP3eGFP reporter mice (60). T cells were enriched using the Pan T cell isolation kit and AutoMACS magnetic bead separation (Miltenyi BioTech, San Diego, CA). Recovered T cells were stained for CD3-PE (clone GK1.5, BD Pharmingen) and purified by fluorescence activated cell sorting (FACS) to isolate CD4+FoxP3eGFP+ and CD4+FoxP3eGFP- populations. To activate cells, 1.5 \times 10^5 CD4+FoxP3eGFP+ and 2.5 \times 10^5 CD4+FoxP3eGFP- purified T cells were cultured in complete RPMI medium (2 \mathrm{mM} glutamine, 1:100 non-essential amino acids, 1 \mathrm{mM} sodium pyruvate, 10 \mathrm{mM} glutamine, 50 units/ml of penicillin G, and 50 \mu g/ml of streptomycin, and incubated at 37 °C in a humidified atmosphere with 5% CO2. The cells were enzymatically dissociated upon reaching 70–80% confluence in 75-cm2 tissue culture flasks, and co-transfected with a P2X7R plasmid (2 \mu g) that enters the cell is captured by the high concentration of fura-2 K5 (15 mM). Imaging data were analyzed using Manager 1.4 (63).

Calculating Pf→PNa—We used our empirical measurements of Pf% to estimate PCa/PNa using the following equation (54),

\[
P_{\text{Ca}}/P_{\text{Na}} = \frac{\gamma_{\text{Na}} \times [\text{Na}]_0 \times P_{\text{Cs}}/P_{\text{Na}} \times \gamma_{\text{Cs}} \times [\text{Cs}]_0 \times \text{exp} \left(\frac{2V \cdot F}{RT} \right)}{4 \times \gamma_{\text{Ca}} \times [\text{Ca}]_0 \times \left(\frac{1}{P_{\text{F}}^C} - 1 \right)}
\]

where \(\gamma_{\text{Na}}\) and \(\gamma_{\text{Ca}}\) are the activity coefficients for Na+ (0.72), Cs+ (0.72), and Ca2+ (0.57), respectively. The concentrations of extracellular Na+ and intracellular Ca2+ were those used in the Pf% experiments (see above), and the concentration of extracellular free Ca2+ was calculated using MaxChelator (69). P_{\text{Ca}}/P_{\text{Na}} equaled 1 (70), F, R, and T had their usual values at 22 °C, and V equaled ~60 mV.

Measuring \(P_{\text{Na}}/P_{\text{Na}}\) —We used a standard reversal potential approach, described in detail in Migita et al. (71), to measure relative N-methyl-D-glucamine\(^-\) (NMDG\(^+\)) permeability (i.e. \(P_{\text{NMDG}}/P_{\text{Na}}\)). Voltage ramps (140 mV, 200 ms) were applied and the resulting current was measured.
RESULTS

HEK293 cells express metabotropic P2Y receptors capable of increasing the concentration of intracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)) by mobilizing internal Ca\(^{2+}\) stores in a GTP-dependent manner (76, 77). We used a HEK293 cell line with stable expression of the genetically encoded Ca\(^{2+}\) sensor, GCaMP5G (78), to determine whether activation of P2Y receptors by ATP (6 mM) is an unintended consequence of using high agonist concentrations to measure P\(F\)%.

Data Analysis—We used GraphPad Prism for statistical analyses. The averaged values of pooled data with normal distributions are shown as mean ± S.E. Unless otherwise noted, groups were analyzed by one-way analysis of variance with significance determined by Tukey’s multiple comparison test. The exceptions were analyzed using Student’s t test. p values of ≤ 0.01 were considered statistically significant.

to HEK293 cells expressing P2X7Rs before and during short applications of BzATP (10–100 μM). The holding voltage was −100 mV, and the extracellular solution contained (in mM): 150 mM XCl, 2 CaCl\(_2\), 1 MgCl\(_2\), 10 HEPES, and 10 glucose, pH 7.4, where X was either Na\(^+\) or NMDG\(^+\). Calcium and magnesium were included to replicate the conditions used to measure P\(F\)%.

The intracellular solution contained (in mM): 150 NaCl, 10 EGTA, 10 HEPES, pH 7.3. Relative NMDG\(^+\) permeability (\(P_{\text{NMDG}}/P_{\text{Na}}\)) was determined from the difference in reversal potentials of agonist-gated currents measured in the two extracellular solutions (\(\Delta E_{\text{rev}} = E_{\text{rev.NMDG}} - E_{\text{rev.Na}}\)) as,

\[
P_{\text{NMDG}}/P_{\text{Na}} = \frac{[\text{Na}] \times \gamma_{\text{Na}} \times \exp \left(\frac{\Delta E_{\text{rev}}}{RT} \right) - 4 \times [\text{Ca}] \times \gamma_{\text{Ca}} \times p_{\text{Ca}}}{[\text{NMDG}] \times \gamma_{\text{NMDG}}}
\]

(Eq. 2)

where \(\gamma_{\text{NMDG}}\) equaled 0.72, and \(P_{\text{Ca}}/P_{\text{Na}}\) was calculated from the P\(F\)% as described above (see Equation 1). \(\Delta E_{\text{rev}}\) is the difference in reversal potentials measured in extracellular solutions containing either Na\(^+\) and Ca\(^{2+}\) or NMDG\(^+\) and Ca\(^{2+}\).

Homology Modeling of Resting and Activated rP2X7aRs—Models for the rat P2X7 receptor were built as previously described (72). Briefly, the apo (Protein Data Bank 4DW0) and ATP-bound (Protein Data Bank 4DW1) structures of zP2X4.1 (73) were used as templates to generate the rP2X7aR models using the homology modeling server SWISSMODEL (74). The rP2X7aR models were minimized using the GROMOS force-field implemented in the program DEEP VIEW (75). Models were visualized in PyMol.
P2Y response (1). Confident that we could record a pure ionotropic response, we then moved to the study of the P2X7Rs.

Genes encoding the P2X7Rs of dog, frog, guinea pig, human, monkey, mouse, rat, and zebrafish were individually expressed in HEK293 cells for study using patch-clamp photometry. Cells expressing transfected genes were visually identified by the fluorescence emitted by a reporter protein (eGFP or dsRed), and the Pf% was determined as described above. Transfected cells responded with robust inward currents (membrane holding potential = –60 mV) and changes in fura-2 fluorescence to applications of BzATP (100–600 μM) with one exception: we failed to record agonist-gated current or a change in fura-2 fluorescence in response to BzATP (up to and including 1 mM) and ATP (6 mM) in HEK293 cells transfected with the gene encoding the Xenopus laevis P2X7aR. This was surprising because injection of frog P2X7aR cRNA results in large ATP-gated currents in a Xenopus oocyte expression system (79).

Most P2X7aRs Transduce Substantial Ca\(^{2+}\) Currents—In all other cases, we reliably measured the Pf% with the dye-overload technique. First, we tested the P2X7aR constructs using a concentration of BzATP (100 μM) that does not significantly chelate Ca\(^{2+}\) (estimated free [Ca\(^{2+}\)]\(_o\) equaled 1.95 mM) (8). Only three (mouse, rat, and dog) of the seven responded with sizable membrane currents and changes in fura-2 fluorescence. In each case, the average Pf% equaled ~7% (Table 1). For the mouse ortholog, we studied both the Pro\(^{451}\) and Leu\(^{451}\) alleles (80, 81), and found no significant difference in their Pf% values.

Next, we used a higher concentration of BzATP (600 μM) and a Mg\(^{2+}\)-free test solution (9, 48) to elicit responses from the remaining four constructs (zebrafish, guinea pig, monkey, and human). Under these conditions, the calculated free [Ca\(^{2+}\)]\(_o\) drops from 1.95 to 1.40 mM as the [BzATP] rises from 0.1 to 0.6 mM and the [Mg\(^{2+}\)]\(_o\) falls from 1.0 to 0.0 mM. Although less Ca\(^{2+}\) was available to carry the agonist-gated current, we still measured substantial Pf% values equal to ~6–8% for guinea pig, monkey, and human P2X7aRs (Table 1). The Pf% of the zebrafish P2X7R was higher still at 14.3 ± 1.0% (n = 14).

Pf% Adjusted for Changes in [Ca\(^{2+}\)]\(_o\)—We sought to determine a fair method of comparing Pf% values measured under conditions where the free [Ca\(^{2+}\)]\(_o\) varied as a consequence of the agonist concentration. To this end, we measured the Pf% values of rat P2X7aR currents elicited by 100 μM BzATP and a range of ATP concentrations (Fig. 3, A and B). We used ATP because the cost of using millimolar concentrations of BzATP was prohibitive, and because others have shown that ATP and BzATP bind Ca\(^{2+}\) equally well (8). Furthermore, ATP is the endogenous agonist for native receptors, and thus provides insight regarding the amplitude of the Ca\(^{2+}\) flux under pathophysiological conditions where the high [ATP]\(_c\) causes significant buffering of extracellular Ca\(^{2+}\). We calculated the extracellular concentration of free Ca\(^{2+}\) in a given concentration of BzATP or ATP using MaxChelator (Fig. 3C), and then empirically determined the Pf%. As expected, the Pf% progressively decreased with increasing concentrations of agonist (Fig. 3D), falling from a high of 7.1 ± 0.2% (n = 136) at 0.1 μM BzATP to a low of 1.7 ± 0.3% (n = 12) at 6 mM ATP. The XY-plot of Pf% versus free [Ca\(^{2+}\)]\(_o\) was linear (Pearson’s r = 0.99) with a slope of 3.8% per mM extracellular Ca\(^{2+}\) (Fig. 3E).

We took advantage of this linear relationship to calculate an adjusted Pf% (Pf%\(_{adj}\)) equal to the product of Pf% and R, where R is the ratio of the free [Ca\(^{2+}\)]\(_o\) values expected in the absence (2 mM) and presence of 100 or 600 μM BzATP. The Pf%\(_{adj}\) values are ~3 and 43% higher than the empirically measured Pf% values for 100 and 600 μM BzATP, respectively (Table 1), and thus represent the projected contribution of Ca\(^{2+}\) to the total agonist-gated current measured in the absence of Ca\(^{2+}\) chelation (Fig. 3F). We used a multiple comparisons test to detect differences among the mean Pf%\(_{adj}\) values of all seven species and found that one species differed from all others: that is, Ca\(^{2+}\) makes a greater adjusted contribution (~20%) to the BzATP-gated current of the zebrafish P2X7aR than it does in any other species. Indeed, the unadjusted, empirically determined Pf% measured in the relatively low [Ca\(^{2+}\)]\(_o\) of 1.4 mM is still larger than that of other members of the ligand-gated ion channel superfamily measured in a higher [Ca\(^{2+}\)]\(_o\) typically equal to 1.8 mM (82).

We investigated the cause of the transcendent Pf% of the zebrafish P2X7aR using a site-directed mutagenesis approach. The zebrafish P2X7aR retains the polar amino acids of TM2 that facilitate Ca\(^{2+}\) flux through rat P2X2Rs (1, 71), but lacks the vestibular acidic amino acids that are responsible for the high Pf% values of rat and human P2X1Rs and P2X4Rs (83, 84).

Table 1

<table>
<thead>
<tr>
<th>Species (P2X7aR)</th>
<th>[BzATP]</th>
<th>[Ca(^{2+})]({lev}) ({lev})</th>
<th>[Mg(^{2+})](_{lev})</th>
<th>Pf%</th>
<th>Pf%(_{adj})</th>
<th>Pf/Ca/PNa (_{o})</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
<td>0.1</td>
<td>1.95</td>
<td>0.95</td>
<td>7.3</td>
<td>7.5 ± 0.2</td>
<td>1.8 ± 0.0</td>
<td>136</td>
</tr>
<tr>
<td>Rat</td>
<td>0.1</td>
<td>1.95</td>
<td>0.95</td>
<td>7.1</td>
<td>7.3 ± 0.2</td>
<td>1.7 ± 0.1</td>
<td>136</td>
</tr>
<tr>
<td>Rat (k)</td>
<td>0.1</td>
<td>1.95</td>
<td>0.95</td>
<td>2.8</td>
<td>2.8 ± 0.3*</td>
<td>0.7 ± 0.1*</td>
<td>34</td>
</tr>
<tr>
<td>Mouse</td>
<td>0.1</td>
<td>1.95</td>
<td>0.95</td>
<td>7.1</td>
<td>7.3 ± 0.4</td>
<td>1.7 ± 0.1</td>
<td>11</td>
</tr>
<tr>
<td>Mouse (k)</td>
<td>0.1</td>
<td>1.95</td>
<td>0.95</td>
<td>4.3</td>
<td>4.4 ± 0.3*</td>
<td>1.0 ± 0.1*</td>
<td>13</td>
</tr>
<tr>
<td>Guinea pig</td>
<td>0.6</td>
<td>1.40</td>
<td>0</td>
<td>5.7</td>
<td>8.2 ± 1.1</td>
<td>1.9 ± 0.3</td>
<td>7</td>
</tr>
<tr>
<td>Monkey</td>
<td>0.6</td>
<td>1.40</td>
<td>0</td>
<td>8.0</td>
<td>11.4 ± 1.0</td>
<td>2.7 ± 0.2</td>
<td>8</td>
</tr>
<tr>
<td>Human</td>
<td>0.6</td>
<td>1.40</td>
<td>0</td>
<td>7.1</td>
<td>10.2 ± 0.6</td>
<td>2.4 ± 0.2</td>
<td>22</td>
</tr>
<tr>
<td>Human X7 (a/b)</td>
<td>0.6</td>
<td>1.40</td>
<td>0</td>
<td>8.2</td>
<td>11.7 ± 0.4</td>
<td>2.9 ± 0.1</td>
<td>8</td>
</tr>
<tr>
<td>Zebrafish</td>
<td>0.6</td>
<td>1.40</td>
<td>0</td>
<td>14.3</td>
<td>20.4 ± 1.4</td>
<td>5.6 ± 0.5*</td>
<td>14</td>
</tr>
</tbody>
</table>

*Significantly different from rat P2X7aR.

Significantly different from mP2X7aR.

*Significantly different from all other species.
We considered the possibility that two glutamates (Glu48 and Glu51) just downstream of the zebrafish TM1 might take the place of the vestibular acidic amino acids of rat and human P2X1R and P2X4R that are missing in the P2X7Rs, and thus provide an electrostatic potential capable of concentrating Ca2+ at the entrance to the pore. To test this hypothesis, we removed the negative charge by mutating both glutamates to glutamine. Although the resulting mutant (zfP2X7aR-E48N/E51N) showed currents in response to 600 μM BzATP, the concomitant change in fluorescence was reduced. From these data, we calculated a Pf\% equal to 8.0 ± 0.5% (n = 8), which is significantly smaller than that of the wild-type zebrafish receptor (≈14%) and more in line with those of the other P2X7\textalpha{}R orthologs. This result suggests that acidic amino acids play a role in regulating the Ca2+ flux of the zfP2X7aR, perhaps by pulling Ca2+ into the lateral portals that form the entrance to the pore (72).

Co-transfection of hP2X7aR and hP2X7bR—Heteromeric hP2X7a/bRs show channel properties in fluorescent assays that differ from those of the homomeric hP2X7aR (56). To determine whether heteromerization affects Ca2+ transport, we measured the Pf\% of the BzATP-gated current of HEK293 cells transfected with genes encoding P2X7aRs and hP2X7bRs. Cells expressing only the P2X7bR showed small membrane currents (<2 pA/pF) in response to relatively high concentrations of BzATP (600 μM) and ATP (6 mM). The fluorescent signals associated with these currents were too small to quantify. In contrast, 600 μM BzATP evoked large currents (>50 pA/pF) in cells co-transfected with a 1:3 ratio of the hP2X7a and hP2X7b genes. These currents resembled in size and shape those recorded from cells expressing only the hP2X7aR. We compared the ATP concentration-current curves of cells transfected with one or both genes to gauge heteromerization using a low-divalent (0.2 Ca2+ and no Mg2+) extracellular solution (8, 9). In keeping with Adinolfi et al. (56), we saw leftward shifts in the concentration-current curves of cells transfected with both genes by comparison to cells expressing only the P2X7aR (Fig. 4). From these data, we measured a significant difference (Student’s t test; p < 0.01) in agonist potency of cells transfected with one (hP2X7a; ATP EC\textsubscript{50} = 5.3 ± 1.4 mM, n = 6) or both
The Ca\(^{2+}\) Current of P2X7 Receptors

FIGURE 5. The rP2X7kR is constitutively dilated. A, a sequence alignment of the N terminus and TM1 of rat and mouse P2X7a and P2X7k receptors. Identical and similar residues are shown in green. TM1 is marked with a red bar. B, the top two traces show the time courses of the membrane currents gated by 100 μM BzATP in voltage-clamped HEK293 cells (holding voltage = −60 mV) expressing either rP2X7aRs (left) or rP2X7kRs (right). The rP2X7kR often took several minutes to fully deactivate upon washout of agonist. In the bottom trace, normalized rP2X7aR and rP2X7kR currents are overlaid to show the difference in deactivation times. C and D, voltage ramps (140 mV, 200 ms) from a holding voltage of −60 mV were applied to HEK293 cells expressing either rP2X7aRs (panel C) or rP2X7kRs (panel D) before and during applications of 30 μM BzATP. Currents through the rP2X7aR were reversed at membrane potentials (bottom left trace) that were significantly more negative than the currents through the rP2X7kR (bottom right trace). These data support the hypothesis that the pore of the rP2X7kR is constitutively dilated. Similar results were found using the mouse splice variants.

(hP2X7A/hP2X7B; ATP EC\(_{50}\) = 1.1 ± 0.2 mM, n = 6) genes, suggesting that some of the agonist-gated current flows through a population of heteromeric receptors. We then measured the P\(_f\)% of cells co-transfected with genes encoding hP2X7aRs and hP2X7bRs. Although the P\(_f\)% values measured from these cells tended to be higher (8.2 ± 0.5%, n = 8) than cells expressing P2X7aR alone (~7.1%; see Table 1), the difference in the two values failed to reach statistical significance (Student’s t test; p = 0.1229). Although many factors can influence the outcome of co-expression experiments, our results suggest that heteromerization affects the binding/gating properties of human P2X7Rs (i.e. the EC\(_{50}\)) more than ionic selectivity (i.e. the P\(_f\)%).

The Murine P2X7k Splice Variant Shows Limited Ca\(^{2+}\) Flux—Rat and mouse P2X7kRs are derived from an alternative exon 1’ (6) and contain unique N termini and TM1s that differ from those of the P2X7aR splice variants (Fig. 5A). We determined the P\(_f\)% values of the P2X7kR splice variants in response to the same concentration of BzATP (100 μM) used to study the P2X7aRs. We studied the rat P2X7kR first, and in keeping with previous reports (57), we found two obvious differences in the character of its BzATP-gated currents. First, deactivation of the transmembrane current was noticeably slower than that of the rat P2X7aR (Fig. 5B). Second, the reversal potential of the BzATP-gated current measured in an extracellular solution containing 150 mM NMDG\(^+\), 2 mM Ca\(^{2+}\), and 1 mM Mg\(^{2+}\) was right-shifted by −25 mV (−41.8 ± 0.6 mV for the rP2X7aR, and −15.0 ± 2.4 mV for the rat P2X7kR; Fig. 5, C and D). These data yield E\(_{\text{Ca}}\) (Fig. 6A), as expected if all of the physiologically relevant divalent cation, Ca\(^{2+}\), to whole cell current also differed.

We measured the P\(_f\)% of the BzATP-gated current of the rat and mouse P2X7kRs. In both instances, 100 μM BzATP evoked inward membrane currents and changes in fura-2 fluorescence emission as expected for non-selective cation channels permeable to Ca\(^{2+}\) (for example, see Fig. 6A). Within the constraints outlined under “Experimental Procedures,” we measured a linear relationship of Q\(_{\text{Ca}}\) versus Q\(_{\text{i}}\) (Fig. 6B), as expected if all of
the Ca2+ that binds to the intracellular fura-2 comes from the ATP-gated inward current traveling through the channel pore. We discovered that the PF% of the agonist-gated inward current of the rat P2X7kR (2.8 ± 0.3%; n = 34) was significantly smaller than that of the rat P2X7aR (7.1%). Again, similar results were found when comparing splice variants from mouse (4.3 versus 7.1% for the P2X7aR and P2X7kR splice variants, respectively; see Fig. 6C and Table 1). Taken together, our measurements of $P_{\text{NMDC}}/P_{\text{Na}}$ and P_{F}% show that P2X7kRs conduct smaller Ca2+ currents than P2X7aRs despite having a higher permeability to large cations, implying that a critical Ca2+ selectivity filter is disrupted in the constitutively dilated P2X7kRs. These findings bring forth two intriguing hypotheses. First, P2X7a and P2X7k receptors may have different physiological roles. Second, the rationale for pore dilation may not be an increased permeability to large cations as generally assumed, but rather a decreased permeability to Ca2+, an essential trigger of the downstream sequela of P2X receptor activation (5).

Relative Ca2+ Permeability—Relative Ca2+ permeabilities are commonly used to compare the selectivity of ligand-gated ion channels for Ca2+ (82, 85). Therefore, we used our empirical measurements of PF% to estimate the relative Ca2+ to Na+ permeability ($P_{\text{Ca}}/P_{\text{Na}}$) within the limits of the Goldman-Hodgkin-Katz equation (64), allowing the calcium selectivity of P2X7Rs to be compared with those of other P2X subtypes and other classes of ligand-gated ion channels. The derived $P_{\text{Ca}}/P_{\text{Na}}$ of the P2X7Rs equaled 0.7 to 5.6 (Table 1), values that approximate those of the empirically measured $P_{\text{Ca}}/P_{\text{Na}}$ of other P2X subtypes (1.2–4.8) and other ligand-gated channels (0.4–10.4) (82, 86, 87). As expected, the upper and lower limits of the purinergic $P_{\text{Ca}}/P_{\text{Na}}$ were set by the zfp2X7aR and the murine P2X7kRs, respectively.

The PF% of Native P2X7 Channels of Mouse and Human Immune Cells—We determined the PF% of the BzATP-gated current of monocyte-derived macrophages isolated from mouse peritoneum and human blood (Fig. 7, A and B). After a minimum of 6 days in culture, we incubated the macrophages with 1 μg/ml of lipopolysaccharide for 6–12 h and then measured their response to 100 (mouse) or 600 μM (human) BzATP. The purinergic antagonist, 2’,3’-O-(2,4,6-trinitrophenyl)-ATP (100 nM), was included in the superfuse at the time of the experiment to block the possible contribution of P2X1Rs to the BzATP-gated current (see Fig. 7A) (88). Measured in this way, the PF% of the ATP-gated current of mouse and human macrophages equaled 8.8 ± 1.0 (n = 7) and 9.0 ± 0.5% (n = 10), respectively. We then used the empirical measurements to calculate PF%adj and $P_{\text{Ca}}/P_{\text{Na}}$ values. For mouse macrophages, PF%adj equaled 9.0 ± 1.0% and $P_{\text{Ca}}/P_{\text{Na}}$ equaled 2.3 ± 0.3%. For human macrophages, PF%adj and $P_{\text{Ca}}/P_{\text{Na}}$ equaled 12.8 ± 0.8 and 3.3 ± 0.2%, respectively. Macrophages preferentially express the P2X7aR (68). In keeping with this observation, we found no statistically significant difference in the PF% measured from recombinant P2X7aRs expressed in HEK293 cells and...
those measured from the native ATP-gated responses of species-matched macrophages. To the best of our knowledge, these values are the first quantitative measures of the Ca\(^{2+}\) current of a native P2X7aR, and prove the hypothesis that P2X7Rs transduce significant Ca\(^{2+}\) currents in immune cells.

Finally, we measured the Pf% of the ATP-gated current of mouse CD4\(^+\)Foxp3\(^-\) conventional and CD4\(^-\)Foxp3\(^+\) regulatory T-lymphocytes that preferentially express the P2X7kR splice variant (68), using the same extracellular divalent cation concentrations (2 mM total Ca\(^{2+}\) and 1 mM total Mg\(^{2+}\)) used to study recombinant P2X7Rs. Both types of resting CD4\(^+\) T-lymphocytes failed to respond to either 100 \(\mu\)M BzATP or 1 mM ATP; at these concentrations, both agonists fully activate P2X7kRs (57, 89). Likewise, activated conventional CD4\(^+\) T cells did not respond to either agonist with inward current. In contrast, 1 mM ATP evoked inward current (5.0 \(\pm\) 1.3 pA/pF; \(n = 11\)) in activated CD4\(^+\) regulatory T cells with a Pf% of 5.2 \(\pm\) 0.6% (\(n = 9\)). The adjusted Pf%\(_{adj}\) equaled 7.1 \(\pm\) 0.6% (free [Ca\(^{2+}\)]\(_o\) = 1.45; see Fig. 2C), and the calculated \(P_{CA}/P_{NA}\) equaled 1.8 \(\pm\) 0.2. These same cells failed to respond to 100 \(\mu\)M BzATP (Fig. 7C). The inability of BzATP to induce membrane current when applied at a concentration greatly exceeding its EC\(_{50}\) (~8 \(\mu\)M; see (57)), and the unexpectedly high Pf%, argue against the involvement of homomeric P2X7kRs in the CD4\(^+\)Foxp3\(^+\) regulatory T cell response.

DISCUSSION

The allosteric block of P2X7R current by extracellular divalent cations complicates direct \(P_{CA}/P_{NA}\) measurements, making it difficult to judge the relative merit of this subfamily as a Ca\(^{2+}\) source by comparison to other P2XRs and the ligand-gated ion channel superfamily as a whole. We circumvented this problem by measuring the fractional contribution of Ca\(^{2+}\) to the total ATP-gated membrane current (i.e. the Pf%) using a true-to-life concentration of extracellular Ca\(^{2+}\) and an appropriate membrane potential of ~60 mV (90, 91). We found that empirical measurements using recombinant receptors ranged from 3 to ~15% by comparison to the average Pf% of the P2X family as a whole (8.6 \(\pm\) 0.8%; red dotted line of Fig. 8A). However, these comparisons are not without fault. This is because the P2X7Rs of guinea pig, monkey, human, and zebrafish required a concentration of BzATP (600 \(\mu\)M) that was high enough to significantly lower the concentration of free [Ca\(^{2+}\)]\(_o\). We circumvented this problem by calculating a Pf%\(_{adj}\) that accounts for the variations in free [Ca\(^{2+}\)]\(_o\), and found that P2X7aRs take their place beside the P2X1R and P2X4R as family members that show significant Ca\(^{2+}\) currents. In contrast, the P2X7kRs, with the Pf%\(_{adj}\)s of ~3–4%, resemble those of P2X3Rs and P2X5Rs in showing no appreciable preference (calculated \(P_{CA}/P_{NA} \leq 1\) for Ca\(^{2+}\) over Na\(^+\)).

By measuring Pf% values we were able to estimate \(P_{CA}/P_{NA}\). Our calculated values ranged from ~1 for the entirely cation non-selective P2X7kRs, to ~2–6 for the P2X7aRs that preferentially transport Ca\(^{2+}\) (see Table 1). We calculated similar ratios (~2–3) for the native responses of mouse and human macrophages and lymphocytes. All of these values are comparable with those measured from other types of ligand-gated ion channels (82), but remarkably different from that (\(P_{CA}/P_{NA} = 35\)) reported in an early study (92) of the unclassified (but presumably P2X7R-mediated) ATP-gated current of transformed human B-lymphocytes. Although it is possible that this ATP-
gated current is unique, a more likely explanation is that the measurement reflects the inherent difficulties of determining relative Ca\(^{2+}\) permeability using low concentrations of extracellular Ca\(^{2+}\) in cells expressing a P2X7R susceptible to allosteric block by divalent cations. Indeed, a P\(_{Ca}/P_{Na}\) of 35 translates to a \(P_f\%\) of \(~60\%\), which is unprecedented in the ligand-gated ion channel superfamily.

Using 1 mM ATP, we measured a \(P_f\%_{pad}\) of \(~7\%\) from activated mouse CD4\(^+\) Foxp3\(^+\) regulatory T cells, a value that is not significantly different from that of recombinant P2X7Rs expressed in HEK293 cells (also \(~7\%\)). This is surprising because these lymphocytes contain a 30-fold excess of P2X7kR mRNA by comparison to P2X7aR (68). At present, we do not know the identity of the receptor responsible for the regulatory T cell response. Although both the relatively large \(P_f\%\) and the relatively low sensitivity to ATP suggest a P2X7aR response, the inability of 100 \(\mu\)M BzATP to induce current in cells that previously reacted to 1 mM ATP is unusual for either a P2X7aR or P2X7kR effect. One possibility is the contribution of a heteromeric receptor of undetermined components. Future biochemical, biophysical, and pharmacological studies are needed to determine whether this hypothesis is correct.

Our finding that the splice variants of the murine P2X7Rs differ almost 2-fold in \(P_f\%\) suggests that structural regulation of the Ca\(^{2+}\) current is more complicated than previously imagined. Although definitive identification of the cation selectivity filter remains a work in progress (84), we previously documented two domains that contribute to the significant Ca\(^{2+}\) permeability and current of the P2XR family (Fig. 8B). “Domain 1” is made of juxtamembrane acidic amino acids (six in total in the trimeric receptor) that are present in family members with the highest \(P_f\%\) (P2X1R, P2X4R), and either absent (P2X2R, P2X5R) or shielded (P2X3R) in members with lower \(P_f\%\) values (83). Although the precise mechanism of action is unknown, we proposed that Domain 1 amino acids use the electrostatic attraction of COO\(^-\) side chains to concentrate Ca\(^{2+}\) in the fenestrae that form the entrance to the pore (84, 93). Our present results provide additional support for this hypothesis, as we now show that the very high \(P_f\%\) of the zfP2X7R requires carboxylates at positions that are just extracellular to the transmembrane domains and expected to be in or near the mouth of the pore. Definitive proof of this hypothesis awaits the report of a high-resolution structural map of the zfP2X7R protein.

“Domain 2” is made of three polar amino acids (nine in total) that line the narrowest part of the rat P2X2R pore (see Fig. 8B). Others and we showed that altering the hydrophobicity, volume, and/or charge of residues in Domain 2 affect cation (71) and anion permeability (94), and \(P_f\%\) (1). Sequence conservation in this domain is relatively poor, and whereas it seems likely that such a narrow part of the pore affects permeability and conduction across the entire family, additional experiments are needed to prove this hypothesis (84). Interestingly, the critical polar amino acids of the P2X2R (Thr\(^{336}\), Thr\(^{339}\), Ser\(^{340}\)) are conserved in all the P2X7Rs used in the present study, and a specific mutation of at least one of these (Ser\(^{342}\) of the rat P2X7aR, equivalent to Thr\(^{339}\) of the rat P2X2R) results in a loss-of-function (95).

Now, our experiments suggest that a third domain should also be considered. Murine P2X7aRs and P2X7kRs have identical pore forming TM2s but divergent \(P_f\%\), and differ only in the primary sequences of their N termini and TM1s. Site-directed mutagenesis of the TM1 of the rat P2X2R affects gating (96, 97) to a greater extent than the \(P_f\%\) (62), suggesting that TM1 plays little or no role in modulation of the Ca\(^{2+}\) component of the ATP-gated current. We assume that this condition holds true for P2X7Rs too, and we plan to test this hypothesis in future experiments. If true, then the N terminus must be the site responsible for the different \(P_f\%\) values of the two splice variants. Mutagenesis of the rat P2X7aR N terminus affects the conformational changes that accompany “pore dilation,” a process by which a limiting constriction in the pore widens to the extent that large cations like NMDG\(^{+}\) show appreciable permeability (65, 95, 98). We suggest that dilation of the pore results in disruption of the putative Domain 2 Ca\(^{2+}\) selectivity filter. In this scenario, Domain 2 is made of the side chains (or backbone carbonyl oxygens) of critical polar amino acids (for example, Ser\(^{239}\) and Ser\(^{242}\) of the rat P2X7aR) that loosely coordinate partially dehydrated Ca\(^{2+}\) and thereby facilitate Ca\(^{2+}\) transport through the pore. This binding site is disrupted in the constitutively dilated P2X7kRs where the distance between the polar amino acids is too great to provide the electrostatic potential needed to selectively bind Ca\(^{2+}\) at the expense of Na\(^+\) and K\(^+\). In 2004, Fisher et al. (99) speculated that pore dilation could alter the preferential flow of one ion over another, and our results support this proposition.

This said, we cannot rule out the possibility that pore dilation and regulation of the Ca\(^{2+}\) current are unrelated processes controlled by distinct domains, and that the co-occurrence of constitutive pore dilation and limited Ca\(^{2+}\) flux in the P2X7kR is coincidental. One way to address this issue is to study both processes in a single cell before and after onset of pore dilation, which might be possible for cells expressing the rat P2X7aR. Unfortunately, significant pore dilation measured in physiological concentrations of divalent cations requires a prolonged agonist exposure that results in a progressive leak of fura-2 out of the cell and Ca\(^{2+}\) into the cell (98); the unintended result is a saturation of the remaining fluorescent dye that negates the accuracy of the \(P_f\%\) measurement. Future experiments on mutant P2X7aRs with altered pore properties may help to determine whether one or more structural domains underlie genesis of these two effects.

In conclusion, we show that P2X7aRs transduce a significant Ca\(^{2+}\) flux that is as large or larger than those of most ligand-gated channel families. In contrast, the constitutively dilated P2X7kRs show no selective preference for Ca\(^{2+}\), which most likely reflects an N-terminal directed change in the conformation of the conducting pore. The results bring to light the intriguing hypothesis that the physiological consequence of pore dilation is a decrease in Ca\(^{2+}\) entry (99). Such a mechanism may have evolved to prevent Ca\(^{2+}\) overload in cells expressing P2X7aRs that show a time-dependent facilitation of peak current amplitude, or in cells expressing P2X7kRs with altered channel kinetics and/or increased sensitivities to ATP. Our data also demonstrate an important and somewhat overlooked physiological consequence of the substantial buffering
of Ca2+ at the high [ATP]\textsubscript{o} values that accompany disease. That is, elevated levels of extracellular ATP lead to smaller than expected Ca2+ currents, which would blunt agonist-gated responses triggered by an elevation of intracellular [Ca2+]. At the same time, the reduction of [Ca2+]\textsubscript{i} by ATP would partially relieve the allosteric Ca2+ block of the P2X7R, leading to a larger than expected peak current. In the future, it will be important to consider all of these factors when attempting to gauge the likely response of any cell expressing a P2X7R to ATP.

Acknowledgments—We thank Drs. Elena Adinolfi, Lin-Hua Jiang, Stefan Gründler, Annette Nicke, Richard Alan North, Ronald Sleyter, Stanka Stojilkovic, and Mark Voigt for supplying P2X7R plasmids. We also thank Drs. Randy Sprague and Timothy Doyle for help in isolating human macrophages, Dr. Floretina Soto for critiquing a pre-submission version of the manuscript, and Dr. Donald Bers for useful discussions and initial calculations of the Ca2+ buffering capacity of ATP in defined extracellular solutions.

REFERENCES

Downloaded from http://www.jbc.org at CNS on April 3, 2015
The Ca2+ Current of P2X7 Receptors

Molecular Biophysics: Quantifying Ca2+ Current and Permeability in ATP-gated P2X7 Receptors

J. Biol. Chem. 2015, 290:7930-7942.
doi: 10.1074/jbc.M114.627810 originally published online February 2, 2015

Access the most updated version of this article at doi: 10.1074/jbc.M114.627810

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 98 references, 31 of which can be accessed free at http://www.jbc.org/content/290/12/7930.full.html#ref-list-1