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ABSTRACT

ConoServer (http://www.conoserver.org) is a
database specializing in the sequences and struc-
tures of conopeptides, which are toxins expressed
by marine cone snails. Cone snails are carnivorous
gastropods, which hunt their prey using a cocktail of
toxins that potently subvert nervous system
function. The ability of these toxins to specifically
target receptors, channels and transporters of the
nervous system has attracted considerable interest
for their use in physiological research and as drug
leads. Since the founding publication on ConoServer
in 2008, the number of entries in the database
has nearly doubled, the interface has been re-
designed and new annotations have been added,
including a more detailed description of cone snail
species, biological activity measurements and
information regarding the identification of each
sequence. Automatically updated statistics on clas-
sification schemes, three-dimensional structures,
conopeptide-bearing species and endoplasmic re-
ticulum signal sequence conservation trends,
provide a convenient overview of current knowledge
on conopeptides. Transcriptomics and proteomics
have began generating massive numbers of new
conopeptide sequences, and two dedicated tools
have been recently implemented in ConoServer to
standardize the analysis of conopeptide precursor
sequences and to help in the identification by
mass spectrometry of toxins whose sequences
were predicted at the nucleic acid level.

INTRODUCTION

Peptide toxins expressed by cone snails, or conopeptides,
display a high level of chemical diversity, allowing them to
potently target receptors, ion channels and transporters of
the nervous systems (1-3). Conopeptides, and especially

their disulfide-rich subclass referred to as conotoxins,
attract considerable interest in both fundamental research
and applied sciences, as evidenced by approximately
4000 articles published (based on a search in NCBI
PubMed using the keyword ‘conotoxins’). Because of
their exquisite specificity for receptor subtypes, conopep-
tides are valuable tools in neurological studies (4-6) and
several are being developed as drugs or drug leads (7-10).
The most advanced of these, MVIIA or ziconotide, is a
Food and Drug Administration (FDA)-approved anal-
gesic (11) and is more potent than morphine without de-
veloping tolerance. Two other conopeptides have entered
human clinical trials for the treatment of neuropathic pain
(12) and others are in preclinical evaluation. Furthermore,
numerous fundamental biological studies focused on
understanding the maturation of the venom (13), the in-
fluence of environment or cone snail development stage on
conopeptide expression (14-16) and the phylogenetic rela-
tionships between toxins (17,18) have been published.
ConoServer (http://www.conoserver.org) is a database
that aims to organize information on conopeptides for
easy and convenient access to conopeptide discovery,
structure and activity data as well as data on venom evo-
lution. Interest in conopeptide sequence and structural
data prompted the creation of ConoServer in 2007 (19),
and it has been a very popular website, with an average of
300 hits per day currently recorded. ConoServer has been
recognized as a valuable source of annotations by
UniProt, and since January 2010 links are formally
exchanged between UniProt-KB and ConoServer. Two
important missions of ConoServer are to help organize
knowledge on conopeptides and to provide tools to help
in the analysis and comparison of conopeptides.
Conopeptides have been categorized in the literature
using several classification schemes; the three classifica-
tions used in ConoServer are: the gene superfamilies clas-
sification that is based on similarities in conopeptide
precursor sequences, the cysteine frameworks classifica-
tion based on patterns of cysteines in the mature peptide
domain and the pharmacological families classification
that categorizes conopeptides according to their activity.

*To whom correspondence should be addressed. Tel: +61 7 3346 2019; Fax: +61 7 3346 2101; Email: d.craik@imb.uq.edu.au

© The Author(s) 2011. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

€T0Z ‘22 Joquieides uo puesusand) Jo A1sRAIUN e /B10'seuInolpioixo ey :diy Wol pepeojumod


http://www.conoserver.org
http://www.conoserver.org
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/

D326 Nucleic Acids Research, 2012, Vol. 40, Database issue

ConoServer helps to keep track of the use and evolution of
these classification schemes, and this function recently
facilitated the identification of inequalities in data col-
lected among different clades of cone snails and helped
to define new directions of research (20). ConoServer
has also proven to be a valuable tool to avoid the unin-
tended reuse of names, since currently accepted nomencla-
ture for conopeptides requires knowledge of the order of
peptide discovery. As well as continuing to provide useful
classification and nomenclature functions, ConoServer
now provides tools to analyze newly discovered cono-
peptide precursor sequences and deal with increasingly
complex venom mass spectrometry data on mature
peptides.

This article describes significant updates to ConoServer
that have been implemented since its initial publication in
2008 (19). General statistics on database content and
descriptions of new types of annotations introduced into
ConoServer are presented first and a new interface imple-
mented to improve accessibility to ConoServer content
is then described. Finally, two bioinformatics tools that
help process transcriptomics and proteomics data are
described. The analysis of massively parallel sequencing
and mass spectrometry data is challenging, and the new
ConoPrec and ConoMass tools help to meet this challenge
by addressing specific issues related to conopeptides.

DATABASE CONTENT

ConoServer annotations associated with individual cono-
peptide sequences are entered semi-automatically and
manually. An annotation system performs most of the
repetitive tasks, but the resulting outputs in all cases
are subjected to manual reviewing before being approved
and published. The majority of the sequence and three-
dimensional structure data are retrieved from publicly
available databases, including GenBank (21), UniProt-
KB (22), the Protein Data Bank (23) and the Biological
Magnetic Resonance Bank (24). Manual curation of the
peer-reviewed literature provides additional entries, which
are therefore unique to ConoServer. Conopeptides are
expressed as prepropeptides (25), and their corresponding
mature peptide is predicted using ConoPrec for cases
where it was not identified in the literature. As of
September 2011, ConoServer provides information on
1180 mature conopeptides. However, with more than
500 species of cone snails (26) and estimates of 200—1000
unique conopeptides per species (27), the number of
known peptides cataloged in ConoServer is only a small
fraction of the potential pool of wild-type conopeptides.
ConoServer will need to be regularly updated and im-
proved to cope with the increasing number of sequences.

ConoServer now provides sequence/structure/activity
relationships information that is of particular interest
for drug design studies. Examples of bioactivity data
that are now provided include measures of 1Csy, Kj, Ky
and percentage of inhibition of ion currents in various
electrophysiological assays. Besides native conopeptide se-
quences, ConoServer contains information on 338 syn-
thetic variants, which have been chemically synthesized

to study the receptor specificity and stability of conopep-
tides with potentially interesting pharmaceutical proper-
ties. ConoServer catalogs 95 three-dimensional structures
of wild-type conopeptides and 42 structures of synthetic
variants. The majority of these structures have been
determined by nuclear magnetic resonance (28). Finally,
ConoServer describes 1288 patented protein and 737
patented nucleic acid sequences.

New types of annotations related to the discovery and
evolution of conopeptides are now available in
ConoServer, including a more extensive description of or-
ganisms, information on how mature peptide sequences
were identified and the analysis of precursor sequences.
The geographic location and the diet (mollusk, worm or
fish) of specific cone snails are new features that are
retrieved from the Conus Biodiversity website (http://
biology.burke.washington.edu/conus/) or from the peer-
reviewed literature. Mature conopeptides are typically
either isolated directly from the venom or predicted from
a nucleic acid precursor. Information on the method of
identification, now included in ConoServer, allows users
to make a rapid assessment of the confidence of conopep-
tide sequences and the presence of post-translational
modifications. Conopeptides are classified into gene super-
families according to the similarity of the endoplasmic
reticulum (ER) signal sequence in their precursor. For
cases where the ER signal sequence is not identified in
the literature, ConoServer predicts it using the new tool
ConoPrec (described below). The sequences of 1120 pre-
cursors are currently in ConoServer and 16 gene super-
families are described. In addition, 13 other temporary
gene superfamily were recently introduced in ConoServer
to describe newly discovered conopeptide precursors
expressed by cone snails from the ‘early divergent’
clade (15,17).

ConoServer now computes statistics on known conopep-
tides. The statistical tables are kept up-to-date with
the database content, and provide information on rela-
tionships between classification schemes, sequence conser-
vation of signal sequence regions that define gene
superfamilies, the number of conopeptides for each
species and details on three-dimensional structures. As
an example of the use of this information, these statistics
were valuable in a recent discussion of the relationships
between the various conopeptide classification schemes
(20). The statistical tables also provide a convenient
access link to the database content. For example, there
are 18 conopeptides that are antagonists of sodium chan-
nels (1 pharmacological family), and some of them belong
to the M gene superfamily. Clicking on the ‘M’ in the
corresponding table gives access to the list of the
11 p-conopeptides belonging to the M superfamily.

IMPROVED ACCESS TO THE DATABASE

Figure 1 shows the new interface that was designed to im-
prove the ergonomy of the website. A search bar located
in the page header allows users to retrieve conopeptides by
name or identifier in the protein, nucleic acid or three-
dimensional structure entries. A menu located below the
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search bar gives access to advanced searches, web-based
tools, statistics pages or to descriptions of the classifica-
tion schemes. The search by references was modified to
display the list of all references used in ConoServer,
sorted by year and first author name. Links displayed
next to each reference lead to the corresponding list of
peptides and nucleic acids. The advanced search for pep-
tides, nucleic acids and three-dimensional structures allows
users to select multiple search criteria, to use sequence in-
formation and to select the fields to be displayed in the
resulting list of entries. Utilization of the various conopep-
tide classification schemes requires knowledge of their def-
inition, and easy access to tables defining the different
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classes is now directly provided from the top menu. The
classification scheme tables are provided with textual ex-
planations that clarify the definitions in use in ConoServer.
The result lists can also be used to align sequences using
CLUSTALW (29), draw LOGO representations (30) or
generate phylogenetic trees using PHYLIP (31).

The complete set of information on each conopeptide
sequence or structure is displayed on ConoServer cards. A
partial view of the card for conopeptide MrIA is shown in
Figure 1. New features displayed on the cards include cone
snail geographic locations and diet, biological assay data
and a list of synthetic variants. A photograph of the shell
of the corresponding cone snail is also shown when
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Figure 1. ConoServer interface and protein card for conopeptide MrlIA from Conus marmoreus, shown as a representative example of the updated
interface. The top of the website displays a search bar and a menu that allows users to navigate between textual information pages, search forms,
statistics tables and descriptions of the various conopeptide classification schemes.
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available. These images are either in the public domain or
provided with permission by collectors, as indicated on the
website. Activity data include the source organism of the
receptor subtype tested, the agonist and its concentration,
the competitive inhibitor and its concentration, the Hill
coefficient, notes and a peer-reviewed or a patent refer-
ence. Sequences of synthetic variants of each entry are
also listed. For protein precursors, the signal sequence
region and mature peptide region are now highlighted in
the sequence.

ConoServer data are available for download in XML
format using a link located in the ‘“Tools’ menu. Protein,
nucleic acid and structural data are described in separate
files, whose contents are synchronized with the database.

ConoPrec: ANALYSIS OF CONOPEPTIDE
PRECURSORS

ConoPrec provides a standardized analysis of conopeptide
precursor sequences. This tool is used internally to analyze
some of the data in ConoServer and is available to users
via the website. Modern transcriptomic techniques pro-
duce a deluge of contig sequences that need to be analyzed.
The high sequence variability of conopeptides renders
classical analysis by sequence alignment inefficient for
contig identification, and ConoPrec was designed to help
select and analyze contigs coding for conopeptide precur-
sors. This web-based tool has been already employed in a
recent publication analyzing transcript sequences from
Conus californicus (15).

Users can submit to ConoPrec a single nucleic acid or
protein sequence, or, alternatively, can upload a file con-
taining a set of sequences in FASTA format. The submis-
sion of a single sequence produces a detailed on-line
output, whereas batch submission of sequences produces
several output files, in XLS, Comma Separated Values
(CSV) and text format. The outputs for each submitted
precursor include the identification of sequence regions,
classification according to the three classification
schemes, identification of the most similar sequences in

ConoServer and predictions of potential
post-translational ~ modifications of the mature
conopeptide.

In the case when a nucleic acid sequence is submitted,
ConoPrec identifies the most probable open reading frame
(ORF) on the basis of the presence of a leading methio-
nine, ORF length and Kozak consensus sequence statis-
tics. The ORF is then translated and the precursor protein
sequence is further analyzed. The ER signal sequence re-
gion is identified using the signalP algorithm (32). The
gene superfamily is determined by sequence similarity to
ER signal sequences from conopeptides already annotated
in ConoServer. If no signal sequence has an identity
>90%, the gene superfamily is not assigned. In that
case, and if a single sequence was submitted, the maximum
percentage of identity within each superfamily is provided
to the user. The boundaries of the mature peptide region
are then determined using sequence patterns that predict
the cleavage sites of endopeptidases (typically proprotein
convertases that are widely implicated in protein

processing) (33) and two exopeptidases that are known
to be involved in mollusk protein maturation (34,35):
carboxypeptidase E, which cleaves C-terminal lysines
and arginines, and peptidylglycine a-amidating monooxy-
genase, which cleaves a C-terminal glycine. Three types of
post-translational modifications can be predicted:
C-terminal amidation, pyroglutamylation and
y-carboxylation. Since «-amidating monooxygenase
performs C-terminal amidation, this modification is pre-
dicted when activity of this exopeptidase is predicted. The
modification of an N-terminal glutamine or glutamate
into pyroglutamic acid occurs spontaneously, and can
therefore be accurately predicted. The modification of glu-
tamate into y-carboxylic glutamic acids is predicted using
a recognition sequence pattern matching part of the
proprotein sequence (36). Specifically, the study of
Czerwiec et al. (36) was extended here using current
ConoServer data, leading to a refined pattern used in
ConoPrec: [KR].{2,3}[ACGILMFSV].{3,4}[KRN], where
alternative amino acids at a given position are between
square brackets, a dot followed by curly brackets de-
notes repeats of any type of amino acid, and the
possible lengths of these repeats are indicated between
the curly brackets.

ConoMass: ANALYSIS OF PROTEOMIC RESULTS

The ConoMass tool was implemented in ConoServer to
match peptide masses predicted from transcripts with a list
of masses obtained experimentally by proteomics analysis
of cone snail venoms. The high frequency and variability
of post-translational modifications in conopeptides is
a major challenge for the success of this task. Indeed,
besides disulfide bond formation, 13 other post-
translational modifications have been so far identified in
wild-type conopeptides (20). ConoMass analysis is divided
into two steps: (i) computation of the masses correspond-
ing to all possible modifications of conopeptide sequences
predicted from transcripts; and (ii) identification of these
predicted masses in experimental mass spectra. This
stepwise approach allows users to compare several sets
of mass spectrometry data to the same list of masses
derived from transcript sequences, whose generation is
the most time consuming for a large-scale contig database.

Users can upload a list of mature conopeptide se-
quences in FASTA format to ConoMass or submit a
single sequence using a similar interface to that of
ConoPrec. All or some of 12 post-translational modifica-
tions can be selected. Among the 13 known wild-type
modifications, only glycosylation is not dealt within
ConoMass because it potentially generates an enormous
number of possibilities. Only one conopeptide with a
glycosylated serine and three conopeptides with a
glycosylated threonine have been discovered so far and
thus the exclusion of glycosylation from ConoMass
analysis is not expected to be a significant limitation.
Chemical modifications commonly employed before
mass spectrometry analyses, such as reduction and alkyl-
ation of cysteines, can also be considered. ConoMass
output files are available in XLS, CSV and text



file formats. The files contain the list of predicted
monoisotopic and average masses, their corresponding se-
quences and the number and nature of the
post-translational modifications. These files are kept for
2 days on the server and a session number allows users to
retrieve them at any time. The session number can also be
used in the second part of the tool without having to
download or upload result files.

On the mass spectrometry comparison page of
ConoMass, users are requested to provide mass spectrom-
etry data files, which can be in CSV, Rich Text File (RTF)
or text formats. After uploading the files, users must select
a column from the mass spectrometry files, identify the
masses as monoisotopic or average and select an
adequate mass correction. In the second part of the
page, the list of predicted peptide masses can be
uploaded using the text format generated in the first step
of ConoMass. Alternatively, the session number of the
first step of ConoMass can be provided to indicate a list
of predicted masses still stored on the server. A precision
indicative of a mass match should also be provided. The
computations of the ConoMass tool are submitted to a
queuing system that prevents overload of the server
capacity. The output of ConoMass is a list of
post-translationally modified conopeptide sequences
whose masses were identified in a list of experimental
masses derived from crude venom mass spectrometry
analysis. Three other tools available in the ‘Tools’
section of ConoServer help to clean and bin the proteomic
data and compare results of different mass spectrometry
experiments. These three tools are provided as a comple-
ment to ConoMass but are not conopeptide specific.

ConoMass should significantly facilitate the validation
of integrated venomic strategies for the accelerated discov-
ery of novel conopeptides. However, the limitations of this
tool will be directly linked to the accuracy of the mass
spectrometry data for efficient matching results as well
as to the ability of the users to provide correctly predicted
mature peptide sequences.

CONCLUSIONS

The current version of ConoServer provides users with a
new interface, new tools for conopeptide analysis and sig-
nificantly enhanced information content in the rapidly
evolving field of conopeptides. It is hoped that these and
other ongoing improvements will further enhance the use
of the database and, in doing so, facilitate conopeptide
research.
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