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Abstract 

 

To create additional wings to a given strange attractor, several methods based on the heteroclinic 

loop or switching controls for example are applied, but complicate the approach and require the 

extension of the system to one or more other dimensions of the phase space. This deflects us from the 

objectives of research on  low-dimensional chaotic systems. 

Remaining in this narrow area of 3D phase spaces to invent multi-wing attractors constitutes the main 

scope of the present paper. Indeed, we present a rapid investigation of a very simple autonomous 3D 

system of firts-order differential equations with a rich variety of phase portraits. This new 

intentionally constructed model exhibits double, four- or even six-wing strange attractors. We point 

out that under the influence of the scalar parameters, such versatile chaotic attractors are obtained. A 

similar sequence was likewise observed for the periodic behaviors. Besides, both chaotic or regular 

featured trajectories are found to be in bilateral agreement even when the morphology of the portrait 

changes. Obviously, we present the basic attributes of the system and its bifurcation diagram.  

Eventually, we emphasize that the study of the relationship between the written differential equations 

and the observed characteristics of attractors remains undervalued. 

 

 

 

 

 

I. Introduction 

 

Techniques of mutating known double-

wing attractors into multi-scroll shapes are 

still experienced at least from 20 years 

[Aziz-Alaoui, 1999], and recent papers 

reported that such theoretical (and 

experiemental) field remains a challenging 

task [Tahir et al., 2015; Chen et al., 2016; 

Wang et al., 2017; Zhang et al., 2018]. 

Having in mind that it is possible to 

achieve multi-scroll chaotic attractors by 

establishing unstable points in a chaotic 

system [Elwakil et al., 2003], several other 

methods  to  increase the number of wings 

were accurately analyzed [Lü and Chen, 

2006].  

Among them, the piecewise-linear 

switching system yielding  to multi-scroll 

attractors appears as the most applied 

framework [Han et al., 2015].  

This paper will also introduce a chaotic 

model with an increasing number of wings, 

however without these sophisticated 

techniques. 
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Indeed, our main concern is to build a 

minimalist model related to the number of 

terms in the right-hand side of the 

equations with the lowest nonlinearity. 

Known as the parcimony principle, such 

goal can lead to a non-wasteful 3D system 

in the sense of economic use of 

mathematical relations. The ultimate 

purpose of this theoretical exploration is to 

determine a simple 3D strange attractor 

with different number of rolls in relation to 

scalar parameters rejecting obviously the 

bias of additional differential equations or 

artifacts (wave functions, homoclinic 

loops, ...). 

Versatile number of wings and more 

complexity could be expected from the 

designing our mathematical application. 

 

II. The 3D Chaotic System  
 

Our new system written in three first-order 

differential equations modifies the model 

of Bouali (2013) by adding a nonlinear 

term in the right-hand side of the third 

equation: 

 

{
 
 

 
 

  

𝒅𝒙

𝒅𝒕
= 𝛂 𝐳 −  𝐱(𝟏 −  𝐲)       

𝒅𝒚

𝒅𝒕
=  − 𝐲 (𝟏 − 𝐱𝟐)             

𝒅𝒛

𝒅𝒕
= − 𝛃 𝐱 − 𝛍 𝐳(𝟏 −  𝐲)  

     

where x, y, and z are the state variables of 

the system, and P (α, β, µ), the set of 

parameters. The model embeds two 

quadratic nonlinearities and only one cubic 

term, respectively, xy, yz, and yx2.  

II.1. Basic mathematical attributes 

 

The equilibria coordinates could be found 

by setting: 

𝒅𝒙

𝒅𝒕
= 

𝒅𝒚

𝒅𝒕
 =  

𝒅𝒛

𝒅𝒕
= 0. 

Thus, the following system leads to the 

solutions: 

{  

   α z −  x(1 −  y)               =  0   

 − y (1 − x2)                       =  0    

− β x − µ z(1 −  y)           =  0  

     

For the set of the parameters P (α, β, µ) = 

(0.1, 0.1, 1), the coordinates of the three 

equilibria are:  

S0 (x0, y0, z0) = (0, 0, 0),  

S1 (x1, y1, z1) = (1, 1-(0.1) i, i), 

and S2 (x2, y2, z2) = (-1, 1+ (0.1) i, i). 

 

Besides, in order to investigate the stability 

of S0 (x0, y0, z0), J the Jacobian is: 

J= [

(𝟏 −  𝐲) 𝒙 𝛂

𝟐𝒙𝒚 (𝟏 − 𝐱𝟐) 𝟎

−𝛃 µ 𝐳 −µ (𝟏 −  𝐲)
] 

It is easy to found that the corresponding 

characteristic equation, |J − λI| = 0 at S0 is:  

(1-λ) (λ2 + 2λ +1.01) = 0 

Thus, the eigenvalues are :  

λ1 = 1,  λ2 = -1 + 0.1 i,  and  λ3 =  -1 - 0.1 i              

We notice that λ1, the real eigenvalue, is 

positive reporting that S0 is unstable with 

Index-1. Therefore, the emergence of 

chaos becomes confirmed knowing that the 

Shilnikov criteria [Shilnikov et al., 1998] 

requiring at least one unstable equilibrium 

are fulfilled.  
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II.2.  The dissipativity 

The dissipative nature of the 3D system 

could be derived from the divergence nature 

of the whole vector field: 

𝒅𝒊𝒗. (𝑽𝒐𝒍𝒖𝒎𝒆) =
𝝏𝑽𝒐𝒍𝒖𝒎𝒆

𝝏𝒕⁄

𝑽𝒐𝒍𝒖𝒎𝒆
= 𝑻𝒓(𝑱) 

 

To this end, Tr (J), the sum of the diagonal 

terms of the Jacobian should be negative to 

attest the dissipativity of the flow: 

 

𝑻𝒓( 𝑱 ) = − (𝟏 −  𝐲)(𝟏 +  µ) + (𝟏 −  𝐱𝟐) < 0    

 

where µ real value.  

Dissipativity and volume contraction of the 

flow are accurately identified when these 

state variables of the flow, x, and y (and 

not including z) satisfy the required 

condition:  

 

(𝟏 − 𝐱𝟐)  < (𝟏 −  𝐲)(𝟏 +  µ) 
 

In the specific case where the condition is 

actually fulfilled, orbits are ultimately 

limited in a specific fractal-dimensional 

subspace of zero volume. That is the case 

at the neighborhood of S0. 

On the other hand, the Lyapunov 

exponents spectrum shows the chaotic 

nature of the system since for µ, varying 

from 0.1 to 1.4, the dominant Lyapunov 

exponent reaches a positive value (Fig. 1).  

 

 

Fig.1. Spectrum of the largest Lyapunov 

exponent. Its value varies in the vicinity of the 

unit, which testifies to the chaoticity of the 3D 

model. 

 

III. Strange Attractors Evolving 

from Two- to Four or Six-wing 

 

We simulate the system with the parameter 

set P (α, β, µ)= (1, -0.1, 1) that lead to an 

unconventional  double-wing attractor (fig. 

2a). Surprisingly, the modification of the 

parameter set to P (α, β, µ)= (0.1, 0.2, 1) 

displays a  portrait of four-wing attractor 

(fig. 2b). Furthermore, for P (α, β, µ)= (0.1, 

0.1, 1), the third representation depicts an 

identifiable six-wing strange attractor 

having a very complex dynamics (fig. 2c). 

We can notice that the rolls could be 

gathered in non identical pairs exhibiting a 

certain degre of symmetry. We can also 

indicate that almost all dynamics are 

highly volatile in relation the initial 

conditions. A small gap can project any 

simulation to a vanishing path. 
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Fig. 2. Multiwing strange attractors.  

(a) 2-wing attractor of the 3D system with P(α, β, µ)= (1, -0.1, 1) and IC (x0, y0, z0)= (1.9053, 0.0038, 

-0.2332), (b) 4-wing attractor of the 3D system with  P(α, β, µ)= (0.1, 0.2, 1) and ICb (x0, y0, z0)= 

(0.01, 2.734, 0.0456), and (c) 6-wing attractor of the 3D system with P(α, β, µ)= (0.1, 0.1, 1) and ICc 

(x0, y0, z0)= (-0.794, 0.00132, -0.941). 

 

 

The volatility of the number of wings in 

the narrow chaos bubbles is also observed 

for the regular movements in the wide 

periodicity windows, as depicted in the 

bifurcation diagrams of x and z (Fig. 3).
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Fig. 3. The bifurcation diagrams of x and z show wide windows of periodicity. The system 

parametrized with P (α, β, µ)= (0.1, 0.1, s), and s the control parameter є ]0, 1.1 [ leads to large 

bubbles of stability when the trajectories of (a) the variable x, and (b) the variable z cross the plane 

𝑦 ̅ = 3. 

 

The variation of the parameter set P leads 

to a sequence of periodic cycles strongly 

similar to that shown in chaotic patterns. 

The sample of periodic behaviors in Figure 

4 displays even and likewise odd rolls. For 

instance, the featured regular dynamics are 

obtained by the modification of β and µ, 

when α keeps the value 0.1. 

It is worth mentioning that further analysis 

should be done to encompass the whole 

characteristics of this new 3D dynamical 

system.

 

 

Fig. 4. A Sample of the Periodic Motions.  

(a) A basic periodicity observed for P(α, β, µ)= (0.1, -0.1, 1), (b) period-4 dynamics for  P(α, β, µ)= 

(0.1, 0.2, 0.7), (c) period-6 for P(α, β, µ)= (0.1, 0.1, 0.5), and (d) period-8 for P(α, β, µ)= (0.1, 0.1, 

0.7).
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Despite its apparently simple formulation, 

the model leads also toward typical 

solenoid-like dynamics for particular 

parameter sets (figure 5). Whether chaotic 

or regular, the dynamics reported illustrate 

the ability of 3D systems to adopt a wide 

range of patterns and shapes. 

 

 
Fig.5.  The 3D system exhibits solenoid-like 

phase portraits.  

(a) A chaotic attractor is displayed for P(α, β, 

µ)= (0.1, 0.1, 0.2) and IC (x0, y0, z0)= (-0.446, 

2.826, -0.391,and (b) a periodic behavior for 

P(α, β, µ)= (0.1, 0.2, 0.2). 

 

Our model could be described as versatile 

not only for its sensitive dependence of the 

number of wings on the variation of the 

parameters but also for the extreme 

volatility of the dynamics in relation with 

the asymptotic stability of the attractors. 

Indeed, small gaps of the initial conditions 

are omitted and the attractors disappear. 

Thus, for the attractor with six wings, 

starting a simulation with  IC (-0.794, 

0.001, -0.941) and not IC (-0.794, 0.00132, 

-0.941) does not replicate the related 

dynamics.  

This tiny difference Δy = 0.00032 is 

sufficient to deflect the trajectory out from 

the basin of attraction. 

 

 

IV. Concluding Remarks 
 

 

Generating grid multi-wing attractors 

throught heteroclinic loops, by adding a 

piecewise linear function, and other 

advanced methods as coupling 3D systems 

with additional first-order differential 

equations were widely investigated.  

However, our research does not lie into 

such mainstream, but explores directly 

what system allows the variation of the 

number of wings without heavy 

techniques. To this end, generating multi-

wing chaotic attractors  without  

complicatedness can be achieved.  

We have shown that the multiplication of 

wings to attractors, relevant for research 

purposes, could be controled by scalar 

parameters. The carefully selection of the 

equations governing the dynamics deserves  

to be practiced in this direction.  

Our results are expected to develop further 

experimentations. Indeed, the discovery of 

such new system contributing towards 

knowledge of the relation between the 

choice of right-hand terms of the system 

equations and global complex dynamical 

behaviors  are quite subtle and deserve to 

be deeply studied. 
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