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ABSTRACT

The second data release of the Gaia mission has revealed a very rich structure in local velocity space. In terms of in-plane motions,
this rich structure is also seen as multiple ridges in the actions of the axisymmetric background potential of the Galaxy. These ridges
are probably related to a combination of effects from ongoing phase-mixing and resonances from the spiral arms and the bar. We
have recently developed a method to capture the behaviour of the stellar phase-space distribution function at a resonance, by re-
expressing it in terms of a new set of canonical actions and angles variables valid in the resonant region. Here, by properly treating
the distribution function at resonances, and by using a realistic model for a slowly rotating large Galactic bar with pattern speed
Ωb = 39 km s−1 kpc−1, we show that no less than six ridges in local action space can be related to resonances with the bar. Two of
these at low angular momentum correspond to the corotation resonance, and can be associated to the Hercules moving group in local
velocity space. Another one at high angular momentum corresponds to the outer Lindblad resonance, and can tentatively be associated
to the velocity structure seen as an arch at high azimuthal velocities in Gaia data. The other ridges are associated to the 3:1, 4:1 and
6:1 resonances. The latter can be associated to the so-called ‘horn’ of the local velocity distribution. While it is clear that effects from
spiral arms and incomplete phase-mixing related to external perturbations also play a role in shaping the complex kinematics revealed
by Gaia data, the present work demonstrates that, contrary to common misconceptions, the bar alone can create multiple prominent
ridges in velocity and action space.
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1. Introduction

The local velocity distribution of stars near the Sun has long been
known to exhibit clear substructures most likely caused by a
combination of resonances with multiple non-axisymmetric pat-
terns (e.g. Dehnen 1998; Famaey et al. 2005) and of incomplete
phase-mixing (Minchev et al. 2009; Gómez et al. 2012) linked
to external perturbations. The second data release from the Gaia
mission (Gaia Collaboration et al. 2018) has now revealed this
rich network of substructures with unprecedented details, dis-
playing multiple clearly defined ridges in velocity space (Katz
et al. 2018; Ramos et al. 2018), and even vertical velocity dis-
turbances (Antoja et al. 2018; Quillen et al. 2018b; Monari et al.
2018), which have been associated to the perturbation of the disc
by the Sagittarius dwarf galaxy (e.g. Laporte et al. 2019), or the
buckling of the Galactic bar (Khoperskov et al. 2019). As far
as in-plane motions are concerned, it is also interesting to con-
sider the distribution of stars in the space of actions, which are
adiabatic invariant integrals of the motion constituting the nat-
ural coordinate system for Galactic dynamics and perturbation
theory. Trick et al. (2019) produced such plots in various vol-
umes around the Sun. For local stars (d < 200 pc), they revealed
several prominent ridges in the radial action distribution, among
which a double-peak at the lowest border of the local azimuthal
action (angular momentum) distribution, corresponding to the

well-known Hercules moving group at low azimuthal velocities,
and one at high angular momentum, corresponding to an arch
at high velocities ‘covering’ the velocity ellipsoid from above at
V ∼ 40 km s−1, where V is the heliocentric tangential velocity.

The Hercules moving group, in particular, has long been sus-
pected to be associated to the perturbation of the potential by the
central bar of the Galaxy (Dehnen 1999b, 2000). If the Sun is
located just outside the bar’s outer Lindblad resonance (OLR),
where stars make two epicyclic oscillations while making one
retrograde rotation in the frame of the bar, the Hercules mov-
ing group is naturally generated by the linear deformation of the
unperturbed background phase-space distribution function (DF).
This however implies a rather fast pattern speed for the bar, of
the order of Ωb = 55 km s−1 kpc−1 (see also, e.g., Fux 2001;
Chakrabarty 2007; Minchev et al. 2007, 2010; Quillen et al.
2011; Antoja et al. 2014; Fragkoudi et al. 2019), which past in-
dependent measurements also favoured (Englmaier & Gerhard
1999; Fux 1999; Debattista et al. 2002; Bissantz et al. 2003).
By solving the linearized Boltzmann equation in the presence of
the simple quadrupole bar potential of Dehnen (2000), we could
show in Monari et al. (2016, 2017b,c) that the Hercules moving
group was indeed naturally formed outside of the bar’s OLR, and
that its observed position in velocity space was varying as pre-
dicted by such a model. However, recent measurements of both
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the three-dimensional density of red clump giants (Wegg et al.
2015) and the gas kinematics in the inner Galaxy (Sormani et al.
2015) indicate that the pattern speed of the Galactic bar could
be, in fact, significantly slower, as hinted by some older stud-
ies (Weiner & Sellwood 1999; Rodriguez-Fernandez & Combes
2008; Long et al. 2013). From dynamical modelling of the stel-
lar kinematics in the inner Galaxy, Portail et al. (2017, hereafter
P17) recently deduced a pattern speed of Ωb = 39 km s−1 kpc−1.
Pérez-Villegas et al. (2017) then showed, with orbit simulations
in the potential of P17, that stars trapped at the co-rotation reso-
nance of such a bar could also reproduce the Hercules position in
local velocity space. Recently, using an update of the Tremaine
& Weinberg (1984) method – similar to that of Debattista et al.
(2002) – on proper motion data from a combination of multi-
epoch data from the VVV survey and Gaia DR2, Sanders et al.
(2019) also found a pattern speed of Ωb = 41 ± 3 km s−1 kpc−1.
Simultaneously, Clarke et al. (2019) also derived line-of-sight in-
tegrated and distance-resolved maps of mean proper motions and
dispersions from the VVV Infrared Astrometric Catalogue com-
bined with data from Gaia DR2, and found excellent agreement
with a bar pattern speed of Ωb = 37.5 km s−1 kpc−1. Studying
in details all the dynamical effects of such a slowly rotating bar
on the local velocity field is thus extremely timely.

In Monari et al. (2017a, hereafter M17), we developed an
analytical method to capture the behaviour of the stellar phase-
space DF at a resonance (see also Binney 2018), where the lin-
earisation of the collisionless Boltzmann equation yields a di-
vergent solution (problem of small divisors). This is indeed a
fundamental difference between a model in which the Sun is lo-
cated just outside of the bar’s OLR and one where it is outside
of the bar’s corotation (CR) as in P17. Indeed, while the Her-
cules moving group is located outside of the trapping region in
the former case, and can be treated through linearisation of the
Boltzmann equation (Monari et al. 2016, 2017b,c), it is precisely
located in the resonant trapping region for a slow bar like that of
P17. However, with the M17 method, the deformation of veloc-
ity space induced by Dehnen’s bar potential with a slow pattern
speed was found to be rather minor. Here, by using the actual bar
potential of P17 instead, and by computing the perturbed DF in
the resonant regions, we confirm that the Hercules moving group
can indeed be reproduced (Pérez-Villegas et al. 2017), and that
many of the most prominent features in local action space can
in principle be associated to the resonances of a slow bar model
with Ωb = 39 km s−1 kpc−1.

In Sect. 2, we present the Galactic potential of P17 and our
extraction of its Fourier modes. We then summarize in Sect. 3
the M17 method to treat the behaviour of the DF at resonances,
and we apply in Sect. 4 this method to the main resonances of the
m = 2, 3, 4, 6 Fourier modes of the P17 potential. We then vali-
date our analytical treatment with numerical orbit integrations in
Sect. 5, where we also compare the model to Gaia DR2 data. We
conclude in Sect. 6.

2. The bar potential

We make use of the 2D Galaxy and bar potential Φ correspond-
ing to the fit obtained by P17 in a range of radii between R = 0
and R = 12 kpc. As is evident from Fig. 1, this potential is very
different from the pure m = 2 quadrupole that had been assumed
in M17. In this potential model, the Sun is located at R = 8.2 kpc
and at an azimuth inclined of 28◦ with respect to the long axis
of the bar. We measure the azimuth φ from the long axis of the
bar, so that the Sun is at φ = −28◦, i.e. in the direction opposite
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Fig. 1. The bar potential, i.e. the difference between the total P17 po-
tential used in this work Φ and its axisymmetric m = 0 part Φ0. The
Sun in this model is placed at (x, y) = (8.2 kpc, 0). The bar is rotating
clockwise. Its long axis (blue negative contours of Φ − Φ0) is inclined
at an angle of 28◦ from the line connecting the Sun to the center of the
Galaxy.
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Fig. 2. Amplitude of the Fourier modes of the bar potential A(R), as a
function of the Galactocentric radius R. In green m = 2, in blue m = 4,
in purple m = 6, and in pink m = 3.

to the rotation of the Galaxy (and of the bar). The bar rotates at
Ωb = 39 km s−1 kpc−1, and the CR is located at R ∼ 6 kpc.

The potential Φ(R, φ) is defined on a grid, and the potential
at any point in the Galaxy is obtained by spline interpolation.
We also extract the Fourier components of the potential and in
particular we use the m = 0 mode as the ‘axisymmetric back-
ground’ potential, and the m = 2, 3, 4, and 6 modes in Sect. 3.
In Fig. 2, we display these four Fourier modes. We note that the
m = 3 mode should be zero for a model truly in equilibrium in
the corotating frame, which is not exactly the case of the P17
model. We refer hereafter to the amplitude of the m-th mode of
the potential as Φm. In this way the background potential be-
comes Φ0(R).

Using the background potential Φ0, we can define the Galac-
tic circular frequency Ω(R) and epicyclic frequency κ(R) in the
usual way (see e.g. Binney & Tremaine 2008), and the circular
velocity curve vc(R) = RΩ(R).

For R & 12 kpc, we assume an axisymmetric continuation
of the form

Φ(R, φ) = Φ0(RΦ) + vc(RΦ)2 ln(R/RΦ), for R ≥ RΦ, (1)

Article number, page 2 of 10
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Fig. 3. Resonant zones in local velocity space (at the Sun’s position)
for different Fourier modes and resonances of the P17 bar, within the
epicyclic approximation used in our analytical model (see Sects. 3 and
4). The resonant zones are defined as the regions where the energy pa-
rameter k < 1 (see M17 and Sect. 3), i.e. the pendulum associated to
each resonance is librating. In green and red, we display the corotation
and 2:1 (OLR) resonance for the m=2 mode of the potential; in pink the
3:1 resonance of the m=3 mode; in blue the 4:1 resonance of the m=4
mode; in purple the 6:1 resonance of the m=6 mode.

i.e. a continuation corresponding to a flat circular velocity curve,
and setting all non-axisymmetric modes Φm>0 = 0 in these re-
gions. However, we do not set the boundary RΦ precisely at
12 kpc, but slightly more inside, i.e. RΦ = 10 kpc, because in
this way we find that the transition is smoother, and at this radius
the main m > 0 components have already negligible amplitude.

3. The distribution function in resonant regions:
action-angle formalism

Let (JR, Jφ) be the radial and azimuthal actions and (θR, θφ) the
canonically conjugated radial and azimuthal angles, defined in
the background axisymmetric potential Φ0. A star’s actions and
angles (from now on AA) are combinations of the star’s positions
and velocities, and they are particularly convenient phase-space
coordinates for several reasons, listed in Binney & Tremaine
(2008). In particular, the equilibrium axisymmetric background
DF can be written purely as a function of the actions from Jeans’
theorem, and they are the most convenient coordinates for per-
turbation theory. In simple words, the actions identify a star’s
orbit in phase-space, whilst the angles denote the phase of the
star on that particular orbit. The larger the radial action JR is, the
more energetic its radial excursions are, and the more eccentric
the orbit is. The azimuthal action Jφ represents the vertical com-
ponent of the angular momentum Lz. Here, we approximate the
true values of the AA using the epicyclic approximation (Bin-
ney & Tremaine 2008, M17). In further work, we will extend
the present modelling to more realistic AA variables obtained
through a combination of the Torus Machinery (e.g. Binney &
McMillan 2016) – to go from AA variables to positions and ve-
locities –, and of the ‘Stäckel fudge’ (e.g. Binney 2012; Sanders
& Binney 2016) – for the reverse transformation. For this reason,
the results obtained in this analytic approach are still not fully
quantitative, and we will confirm them in Sect. 5 with backward
orbit integrations not making use of the AA variables in comput-
ing the response of the DF to the bar perturbation. Our analytic

approach however offers a way to understand the physical mech-
anisms at play in the backward simulations.

Using the AA and the Galactic frequencies Ω and κ, we
can define an ‘unperturbed’ DF for the Galactic disc, i.e. a DF
that would not change in time, because of the Jeans theorem, if
there was no bar perturbation, which we denote f0(JR, Jφ). As in
M17, we choose the quasi-isothermal DF defined by Binney &
McMillan (2011), with a scale length of 2 kpc, a velocity dis-
persion scale-length of 10 kpc, and a local velocity dispersion
σR(R0) = 45 km s−1 (slightly hotter than in M17).

The response of the unperturbed DF to the bar potential is
strongest at the resonances, that happen at the locations of phase
space where

lωR(JR, Jφ) + m
[
ωφ(JR, Jφ) −Ωb

]
= 0. (2)

where ωR = θ̇R and ωφ = θ̇φ are the orbital frequencies, and
simply become, in the epicyclic approximation, ωR = κ(Rg) and
ωφ = Ω(Rg) + [κ(Rg)/Jφ]JR, where Rg(Jφ) is the guiding radius
(e.g., Dehnen 1999a).

In Eq. (2), we will consider the main resonances of the
m = 2, 3, 4, 6 Fourier modes of the potential. For the m = 2
mode, we shall take care of the (l,m) = (0, 2) resonance, namely
the CR, and the (l,m) = (1, 2), namely the OLR. For the other
modes, we will not consider the CR in the analytic approach,
to avoid overlap of resonances, but we shall treat the (l,m) =
(1, 3), (1, 4), (1, 6) resonances of the m = 3, 4, 6 Fourier modes
of the potential.

To study the response of f0 near a resonance, we have to de-
fine, in each of the five resonant zones considered here, a new set
of AA variables. We have to go through a first canonical trans-
formation of coordinates, from the old AA (JR, Jφ, θR, θφ) to new
‘fast’ and ‘slow’ AA (Jf , Js, θf , θs). The canonical transformation
is (Weinberg 1994, M17):

θs = lθR + m
(
θφ −Ωbt

)
, Jφ = mJs,

θf = θR, JR = lJs + Jf ,
(3)

where (l,m) = [(0, 2), (1, 2), (1, 3), (1, 4), (1, 6)] for the CR and
2:1 OLR of the m = 2 mode, 3:1 resonance of the m = 3 mode,
4:1 of the m = 4 mode, and 6:1 of the m = 6 mode respectively.
The angle θs is called the ‘slow angle’ because it evolves slowly
near a resonance, as is evident from the definition of the frequen-
cies and that of the resonance in Eq. (2). On the other hand, θf
changes more rapidly and is called the ‘fast angle’. Physically,
the slow angle θs represents the azimuth of the apocentre of the
orbit in the reference frame where the unperturbed orbit would
be close to the resonance. Therefore, θs represents the angle of
precession of the orbit. At this point, expanding the potential in
AA coordinates, it is possible to show that, near the resonances,
Jf is almost constant along a star’s orbit, and that one can aver-
age the Hamiltonian over the fast angles. For each value of Jf , the
motion in θs then becomes approximately a pendulum one, with
Js(t) the momentum of the pendulum. The steps to show this are
explained in detail in M17. One can then define a pendulum en-
ergy parameter k depending on the phase-space coordinates, that
determines whether the pendulum is ‘librating’ (i.e. the θs angle
oscillates back and forth between a maximum and a minimum
without ever covering the whole [0, 2π] range), or ‘circulating’
(i.e. θs has a motion that covers the whole range of angles). Stars
at a position of phase-space where the θs pendulum is librating
are called ‘trapped to the resonances’. In Fig. 3, we display in
local velocity space, at the position of the Sun, the five zones of
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Fig. 4. Perturbed DF for stars located at the Sun’s position in the model, obtained with the analytical method described in Sect. 3. Left panel:
velocity space (u, v). Right panel: perturbed DF in axisymmetric epicyclic action space (Jφ − Jcirc, JR), where Jcirc is the angular momentum of a
circular orbit at R = 8.2 kpc. The contours include (from the darkest to the lightest) 50, 68, 80, 90, and 95 per cent of the stars. The radial velocity
dispersion of the unperturbed DF f0 at the Sun is σR = 45 km s−1. The colored lines correspond to each other in the two panels, and are plotted to
identify the same features in velocity and action spaces. The green and yellow lines correspond to the corotation, and the red line to the 2:1 (OLR)
resonance for the m=2 mode; the pink line corresponds to the 3:1 resonance of the m=3 mode, the blue line to the 4:1 resonance of the m=4 mode,
and the purple line to the 6:1 resonance of the m=6 mode.

trapping associated to the five resonances which we consider in
the model of P17.

For a pendulum, it is of course possible to make a new canon-
ical transformation defining the actual AA of the pendulum it-
self: (θp, Jp). The way these depend on the phase-space coordi-
nates changes according to whether the orbit is trapped or not.
The pendulum AA define also the motion in Js(θp, Jp) nearby
the resonances. We can therefore rewrite the unperturbed DF as
f0(Jf , Js(θp, Jp)).

In M17 (see also Binney 2018), the perturbed DF close to
the resonances was then defined as the original DF phase-mixed
over the angles θp

f = 〈 f0(Jf , Js(θp, Jp)) 〉, (4)

where the average is done over the angle θp. Outside the zone of
resonance, the DF is instead described as

f = f0(Jf , 〈Js(θp, Jp)〉 ), (5)

where, in this case, the average represents the average Js of the
circulating motion. Note that these recipes to obtain the per-
turbed DF are, in principle, different for every resonance also
outside of the regions of trapping, while we want here to describe
simultaneously five resonances of the Galactic bar. However, the
value obtained outside the zone of resonance for f is very simi-
lar in the case of the five resonances, because the Js oscillations
amplitudes decrease fast going away from the resonant zone. It
is therefore sufficient to take, outside the resonant regions of the
phase space, the mean of the five DFs obtained for the five reso-
nances.

4. Analytical results

As in M17, we will concentrate hereafter on computing the per-
turbed DF at a few configuration space points, scanning through
velocity space in order to define, at each phase-space point and
for each resonance, the pendulum equation of motion for θs and
its associated AA coordinates (Jp, θp), allowing to compute the
perturbed DF as described in the previous Sect. and as detailed
in M17.

We start by plotting the perturbed DF as a function of the
coordinates of velocity space at the position of the Sun in the
model of P17. On the left panel of Fig. 4, we plot the DF in (u, v)

coordinates, namely the Galactocentric radial velocity in the di-
rection of the Galactic center, and the peculiar tangential veloc-
ity with respect to the circular one at the Sun. As can clearly be
seen on this figure, all five main resonances are present as de-
formations of the velocity distribution, that would be otherwise
smooth. In particular the effect of the m = 2 CR is to form an
Hercules-like moving group (Pérez-Villegas et al. 2017) with a
peak at (u, v) ' (−25,−50) km s−1, and two asymmetric ex-
tensions at positive and negative u. At the same time, the 6:1
resonance forms a ‘horn’-like structure at larger v and positive
u, while the OLR forms a structure similar to the arch present at
high azimuthal velocities in Gaia data (although not as strong as
in the data).

To show even more clearly all these structures, on the right
panel of Fig. 4, we show the DF in the (JR, Jφ) action space
of the unperturbed axisymmetric background. In this case, the
deformation due to the CR appears clearly as two stripes at
Jφ − Jcirc . −500 km s−1 kpc, corresponding to the deforma-
tion of the DF at positive and negative u in the Hercules region
of velocity space. In action space, the OLR is the pointy struc-
ture at Jφ − Jcirc ' 500 km s−1 kpc. In total, the bar alone thus
creates no less than six prominent ridges in velocity and action
space, at high as well as at low angular momenta, contrary to
common misconceptions that the bar can only create one or two
ridges, which is the case only when the bar is a pure m = 2 mode
(see, e.g., Khanna et al. 2019).

In Fig. 5, we reproduce the same plots of the distribution in
velocity and action spaces as a function of radius at the azimuth
of the Sun. All structures shift with R towards lower angular mo-
menta as expected. In particular the effect of the CR is to form
an Hercules-like moving group (Pérez-Villegas et al. 2017) that
shifts to lower v and becomes less populated as R increases, like
the Hercules moving group does in the real data.

It is also interesting to study how the different resonant ridges
tend to move in terms of their radial velocity u as a function of R.
In Laporte et al. (2019) and Fragkoudi et al. (2019), this has been
illustrated from Gaia data as a mapping of the radial velocity as a
function of position in the R− v space (where v refers here to the
azimuthal velocity, even outside of the Solar neighbourhood).
In Fig. 6, we produce a similar plot from our analytical model.
Given the epicyclic approximation used in this approach, this
should not serve as a direct quantitative comparison, but does
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Fig. 5. As in Fig. 4, but for stars at different positions in the Galaxy (always aligned with the Sun and the Galactic center). Top row: DF in local
velocity space. Bottom row: DF in local action space. The panels from left to right represent stars at R = 7.4, 7.8, 8.2, 8.6, 9 kpc.

Fig. 6. Mean −〈u〉 velocity (color bar) predicted by the analytical model
in the (R, v) space, for stars aligned with the Sun and the Galactic
center (i.e. at the Solar azimuth). The bins are ∆R = 0.4 kpc and
∆v = 5 km s−1. The colored lines correspond to the positions in this
space of the OLR (red line), 3:1 (pink line), 4:1 (blue line), 6:1 (purple
line) and CR (green line). The velocity −〈u〉 was chosen to facilitate the
qualitative visual comparison with the figures in Laporte et al. (2019)
and Fragkoudi et al. (2019).

capture the behaviour of the different resonances as a function
of radius in the P17 model. In particular, one can note a splitting
between the ridges associated to the 6:1 and CR resonances at
R ∼ 9.5 kpc, reminiscent of Fig. 13 of Laporte et al. (2019),
as well as a ridge at high v corresponding to the 2:1 OLR also
present in the data. Perhaps more subtly, the ridges associated
to the 3:1 and 4:1 resonances are very close to each other, and
create a thick ridge at R & 9.5 kpc, which becomes thinner at
smaller radii once the effect of the 3:1 resonance vanishes in this
space, a feature which is also tentatively seen in the data. We
note that, when the same P17 bar is given a pattern speed of
Ωb = 50 km s−1 kpc−1 (which is of course unphysical in the
case of this particular bar model, because it would make the bar
extend beyond its corotation radius), the ridge at high v becomes

inexistent, and the two ridges corresponding here to the CR and
6:1 resonances do not display their characteristic splitting around
9 kpc.

These plots, and in particular the one at R = 8.2 kpc, thus
allow us to physically understand the possible bar-related origin
of many of the action space ridges identified by, e.g., Trick et al.
(2019). However, because of the epicyclic approximation used
here, it will be useful to switch to orbit integrations in order to
directly compare the effects of the bar to Gaia DR2 data.

5. Backward integrations and comparison to Gaia

In our analytical model hereabove, we approximated the val-
ues of the AA variables using the epicyclic approximation. One
should however keep in mind that the position of the resonant
zones in this analytic approach will depend on the ability of the
AA epicyclic approximation to represent the true AA variables,
which is the case only close to the center of the (u, v)-plane.
While this drawback of the analytical method will be cured in
further work, we chose to confirm our analytical results here
with another technique to obtain the response of the DF to the
bar perturbation, the ‘backward integrations’ used for example
by Vauterin & Dejonghe (1997) and Dehnen (2000). It was also
recently used by Hunt & Bovy (2018) to explore the possibility
that the Hercules moving group could be caused by the m = 4
mode of a bar, with an amplitude similar to that found in N-body
simulations. This method consists in integrating backwards the
orbit of stars all at a certain point x of configuration space now,
but having different velocities on a grid in the (u, v) plane. The
method is based on the conservation of the phase-space density.
Let us imagine that, at some time t = t1 in the past, the amplitude
of the bar was null, and then it started to grow with time until the
current configuration at t = 0. The value of the unperturbed DF
f0 at t = t1 for the i-th velocity grid point (i.e. an orbit at (x, vi)
at t = 0) was f0(xi,1, vi,1), where xi,1 and vi,1 are the initial posi-
tion and velocity of the orbit. Then, because of the conservation
of phase-space density, its current value at the point x and the
velocity vi is

f (x, vi) = f0(xi,1, vi,1). (6)
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This method has to assume an integration time and a law for the
growth of the bar. In our case we assume the default values used
by Dehnen (2000), i.e., 4 bar rotation for the integration time,
a growth of the bar regulated by the polynomial law in Eq. 4
of Dehnen (2000), and a bar growth time of 2 bar rotations. We
assume in this case the full numerical potential by P17, with its
extension outside of R = 12 kpc as in the other Sections. Due
to some heating induced by the bar growth, we choose a colder
initial DF, with a local radial velocity dispersion of 35 km s−1,
noting that the location of the structures in velocity space are
independent of the velocity dispersion.

The results of the backward integrations for the same points
in configuration space as in Fig. 5 are presented in Fig. 7. From
this figure it is clear that the structures with this method are more
complex for two main reasons: the ongoing phase-mixing, which
adds noise to the backward integrations, especially for long inte-
gration times (Fux 2001), and the effects of resonances not con-
sidered above, in particular the CR of the modes m > 2, which
tend to boost in action space the second ridge (green line on
Fig. 4) associated to the Hercules stream. This Hercules group
is centred at (u, v) ' (−25, 50) km s−1 for R = 8.2 kpc, and
shifting towards lower (higher) v as R increases (decreases), as
in the analytical prediction. In action space, one can also clearly
identify the several ridges associated to the resonances described
in Sect. 4, which are shifting in Jφ as a function of R.

In Fig. 8 we compare the actual velocity distribution of stars
in the solar neighbourhood from the exquisite Gaia DR2 data
(Gaia Collaboration et al. 2018, only stars with line-of-sight ve-
locities in a spherical volume of 200 pc) with the one obtained
from the backward integrations shown in the central panel, top
row, of Fig. 7. For the kinematics of the solar neighbourhood,
we show the (U,V) velocities, i.e. the Cartesian velocities in
the rest frame of the Sun, with U positive towards the Galactic
center and V positive towards the Galactic rotation. The (u, v)
velocities are related to the (U,V) velocities, once the veloc-
ity of the Sun with respect to the local circular speed (or the
‘Local Standard of Rest’) (U�,V�) is known, which we discuss
hereafter. The model’s kinematics is hotter than that of the Gaia
stars, and therefore for the latter we show the contour contain-
ing 99 per cent of the stars as the most external contour, in-
stead of 95 per cent for the model. The comparison of the model
with the data shows many similarities in the velocity distribu-
tions: the already cited Hercules moving group, the presence of
the high V arch (even more visible in action space in Fig. 9)
which appears only in the 99 per cent contour of the Gaia stars at
V ∼ 40 km s−1 (but is admittedly more marked in the data), two
‘horn’-like features, especially clear in the 68 per cent contours,
at (U,V) ∼ (50,−25) km s−1, and at (U,V) ∼ (40,−40) km s−1.
These could be connected to the structures in the 50 and 68
per cent contours in the models, at (u, v) ∼ (60,−30) km s−1,
and at (u, v) ∼ (50,−40) km s−1. Finally, we can notice the
presence of another large arc-like feature in the data, from
(U,V) ∼ (−80, 0) km s−1 to (U,V) ∼ (60, 0) km s−1 and which
could be identified with the arc-like feature in the model between
(u, v) ∼ (−70, 0) km s−1 and (u, v) ∼ (70, 0) km s−1.

We analyze in more detail these structures in Fig. 9, by asso-
ciating them to features in epicyclic action space, using colored
lines. We identify the high V arch with a red line, which be-
comes particularly prominent in action space, the Hercules mov-
ing group with a green and a yellow line (for the negative and
positive u ridges respectively), the arch close to V ∼ 0 with a
blue line, and the most prominent horn at smaller V with a pur-
ple line.

To compare the colored lines from the (U,V) plane of the
data to the (u, v) plane of the model, and convert both to action
space, we have to assume a value for the Sun’s peculiar motion
(U�,V�). In this case we use U� = 11 km s−1 (Schönrich et al.
2010) and an unusually low value of V� = 0, which we will dis-
cuss below. As we have already seen in Sect. 4, the position of
the structures in the (u, v) plane in the bottom left panel corre-
spond to ridges in action space, already identified in Sect. 4. In
the top right panel we plot the action distribution for the data1,
using the epicyclic approximation, the background potential of
P17, and V� = 0. The distribution in this space presents ridges,
already observed by other authors (Trick et al. 2019), and we see
how nicely these correspond to structures identified in velocity
space and present also in the model. Interestingly, we noted that
the m = 3 mode should be zero for a model truly in equilibrium
in the corotating frame, and indeed this resonance is not standing
out in the local data, even though it might have an effect at larger
radii (see Fig. 6). On the other hand, the high angular momentum
arch is prominent in action space both in the data and model, but
its position is not perfectly reproduced. This is due to the choice
of V� = 0. The latter is indeed the value that allows the best su-
perposition with all the structures in the data and in the model,
but for some individual structures such as this high V arch, the
superposition implies another value of V�: the high V arch is
better fit for the more usual value V� = 10 km s−1. Another pos-
sibility is that the P17 barred model is displaying deficiencies in
explaining the data in the regions of velocity space where other
effects such as phase-wrapping due to external perturbers (e.g.
Laporte et al. 2019) become important.

The value V� = 0 is of course unusual, and at odds with most
estimates of the same parameter in the literature (e.g. Dehnen
& Binney 1998; Schönrich et al. 2010). However, this unusual
value could simply reflect the fact that the circular velocity curve
of the Milky Way is somewhat different from that of the P17
model. Modifying only sightly the circular velocity curve vc(R)
also modifies Ω(R) and κ(R), and consequently the relative posi-
tion of the resonances in local velocity space (as well as the ex-
tension of the ‘gap’ between the Hercules moving group and the
main velocity ellipsoid, as was already noted by Dehnen 2000).
We performed a simple fit to see how we could modify vc(R)
and V� to minimize the distance between the resonances and
the position of the structures defined in the (U,V) plane of the
data. In this toy-model, we assumed for the background poten-
tial vc(R) = v0(R/R0)α where R0 = 8.2 kpc is the Sun’s radius
and v0 = 241 km s−1 is the value of vc(R0) in the background
model of P17. This simple fit shows that, for V� = 8 km s−1 and
a locally decreasing rotation curve (α = −0.1), we get the best
agreement between the position of the structures in the (U,V)
plane and the position of the resonances from the bar model of
P17. However, all this could also depend on the precise value of
the pattern speed, which might be slightly lower than assumed
here (e.g., Clarke et al. 2019).

Finally, in Fig. 10, we present a further comparison of the
model with the data, this time on a larger range of R, to show how
the gap between the Hercules moving group and the main veloc-
ity mode changes with radius (something that was already stud-
ied by Antoja et al. 2014; Monari et al. 2017c; Pérez-Villegas
et al. 2017, before the Gaia DR2). We confirm the clear iden-

1 The action distribution for the data is slightly more spread in Jφ, even
at small JR, than in the model. This is due to the fact that, while in the
model we plot the action space corresponding to stars all at one point in
configuration space, the stars in the data are distributed in a sphere of
finite volume and have observational errors.
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Fig. 7. As in Fig. 5, but this time the DF is obtained using the backward integration technique described in Sect. 5. In this case, the initial value of
the radial velocity dispersion of the unperturbed DF f0 at the Sun was σR = 35 km s−1.
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Fig. 8. Left panel: Observed local velocity UV plane for Gaia DR2 stars inside a spherical volume of radius 0.2 kpc, with the distances estimated
by Bailer-Jones et al. (2018). The contours include (from the darkest to the lightest) 50, 68, 80, 90, and 99 per cent of the stars. Right panel: the
(u, v) velocity distribution at the Sun obtained with the backward integrations discussed in Sect. 5 for the P17 model, i.e. the central panel (top
row) of Fig. 7. In this case, the contours include (from the darkest to the lightest) 50, 68, 80, 90, and 95 per cent of the stars.

tification of the gap in the data and how it shifts with R in the
top row of Fig. 10, following the vertical red line that we over-
plot on both the data and model. This line corresponds, at each
R, to the velocity v of stars that have the same angular momen-
tum (i.e. the same guiding radius) as those that are at the gap
velocity at R = 8.2 kpc. In the bottom row, we show how the
gap is also clear in the backward integration model, although
less marked than in the data, in part due to a larger velocity
dispersion, but also because of uncertainty on the unperturbed
DF we assumed, and because the data must also be affected by
other physical mechanisms. In particular, two bumps are espe-
cially clear in the data at 7.8 kpc, and not reproduced by the
model. Again such limitations appear precisely in the regions of
velocity space where other effects such as the inner resonances
of outer spirals, or phase-wrapping due to external perturbers,
become important.

6. Discussion and conclusion

In this work have used the analytical method recently developed
in Monari et al. (2017a, M17) to study the response of the Galac-
tic disc DF to the large bar Galactic potential model developed
by Portail et al. (2017, P17). This method is based on the use of
action-angle (AA) coordinates and perturbation theory.

Extracting from this Galactic potential model the Fourier
modes of the bar, we have shown that in particular the m=2,
m=4, and m=6 modes deform the disc DF in ways that resem-
ble those shown by the second data release of the Gaia satellite
around the Sun. The m=2 modes CR and OLR can be tentatively
associated to features like the Hercules moving group (concave
downwards in velocity space, as shown by the green and yellow
lines on Figs. 4 and 9) and the high azimuthal velocity arch in
the local velocity distribution of stars (albeit slightly less marked
than in the data). Interestingly, the 6 : 1 resonance of the m=6
mode corresponds to the so called ‘horn’ feature of local velocity
space.
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Fig. 9. Top row, left panel: Gaia (U,V) kinematics in the solar neighbourhood from Fig. 8; the contours contain 50, 68, 80, 90, and 99 per cent of
the stars. Top row, right panel: as in the left panel, but this time the stars are plotted in the space of actions (Jφ − Jcirc, JR); the actions are computed
assuming the P17 background potential, the epicyclic approximation, and (U�,V�) = (11.1, 0) km s−1; Jcirc is the angular momentum of a circular
orbit at the Sun. Bottom row, left panel: (u, v) distribution at the Sun obtained with backward integration from Fig. 8; the contours contain 50,
68, 80, 90, and 95 per cent of the stars. Bottom row, right panel: as in the left panel, but this time the stars are plotted in the space of actions
(Jφ − Jcirc, JR). In all the plots the colored lines represent the same and corresponding positions in the (u, v), (Jφ − Jcirc, JR), and (U,V) spaces. One
can clearly identify the effect of the CR (Hercules, green line), 6:1 (‘horn’, purple line) and 4:1 (blue line) in both the model and data. The 2:1
resonance (red line) is also present in both, and most prominently seen in action space, but with a slight position mismatch between model and
data, linked to the choice of V� and the shape of the circular velocity curve of the axisymmetric background (see text). Note also the prominent
deformation in the velocity plane of the data at (U,V) ∼ (−35,−15) km s−1, namely the Hyades moving group, which is not reproduced by our
bar-only model, and which has long been suspected to be related to a spiral perturbation.

We also performed backward integrations using the whole
Galactic bar model (no extraction of modes), showing that the
same features obtained with the analytical method are also
present in velocity and action space (but slightly offset because
of the epicyclic approximation used for computing actions), fur-
ther complicated by the presence of other modes of the bar and
by ongoing phase-mixing.

The features obtained with the models can be seen most
clearly in action-space, both in the model and in the Gaia data.
The comparison between the model and the heliocentric velocity
features in the data favours very small peculiar tangential veloc-
ities of the Sun. However, we showed that a small change of the
circular velocity curve in the model can result in agreement with
the data and a peculiar velocity of the Sun V� = 8 km s−1 much
more in line with other estimates in the literature.

One caveat of using our method, as implemented in this
work, is the use of the epicyclic approximation to estimate AA
and orbital frequencies, which is valid only for orbits that deviate
little from circularity. In the future we will update these results
and extend them to the possibility to describe higher eccentricity
orbits using more precise AA and frequencies estimation meth-

ods, like the Stäckel fudge (Sanders & Binney 2016) and the
torus machinery (Binney & McMillan 2016; Binney 2018). It
would also be extremely important to extend perturbation theory
methods, like the one used here – or the linear theory to study the
perturbations of the DF far from the resonances (Monari et al.
2016)–, to the temporal evolution of the perturbations, and to be
able to include non-equilibrium phase-mixing effects (Agobert
et al. in prep.).

The purpose of this paper was to demonstrate which struc-
tures of (local and non-local) velocity space can be created by
the resonances of a large Galactic bar alone. Future fits to larger
volumes in configuration space, exploiting the full capabilities
of the Gaia data, as well as future spectroscopic surveys such
as WEAVE and 4MOST, will allow to test whether such struc-
tures are present in the data at all radii and azimuths, allowing
to test such large bar models with a low pattern speed. How-
ever, one should keep in mind that other perturbations, mostly
external perturbations and spiral arms, are present too, and that
they cannot be ignored in a more thorough modelling. Impor-
tantly, their effects could explain some of the phase-space struc-
tures that the present bar-only model cannot. In particular, phase-
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Fig. 10. Top row: Observed V distribution for Gaia DR2 stars inside spherical volumes (of radius 0.2 kpc) centred at different Galactocentric radii
and along the line connecting the Galactic center to the Sun; the distances of the stars used here are those provided by Bailer-Jones et al. (2018).
Bottom row: v distribution obtained from the backward integration already shown in Fig. 7 and marginalizing along the u-axis (assuming V� = 0).
The red lines correspond to the same velocities on both rows, and to the same angular momentum as that of the gap at R = 8.2 kpc.

wrapping due to external perturbations affect velocity space by
creating ridges locally at

√
u2 + v2 & 40 km s−1 (Minchev et al.

2009; Gómez et al. 2012; Antoja et al. 2018; Laporte et al. 2019),
while the bar model studied here does not create any structures
beyond the region of velocity space delineated by its CR at low
v and OLR at high v. Some features identified in Ramos et al.
(2018) and Laporte et al. (2019) are clearly outside of this zone.
Moreover, Laporte et al. (2019) identified structures in vertical
velocities in the R − v space, which cannot be explained by the
in-plane resonances of the bar studied here. The same wave-like
features have also been identified in the study of the mean ver-
tical and radial velocities of the stars in Gaia DR1 and DR2 as
a function of angular momentum (or guiding radius) by Schön-
rich & Dehnen (2018) and Friske & Schönrich (2019). These
wave-like features are partly aligned in mean radial and verti-
cal velocity, and have also an azimuthal dependence compati-
ble with m = 2 and m = 4 symmetries, and are reminiscent of
the bending modes formed by satellite interaction on a galac-
tic disc. This is also the favoured explanation that Carrillo et al.
(2019) propose for many of the observed radial and vertical mo-
tions observed in Gaia DR2. On the other hand, Quillen et al.
(2018a) have shown that some ridges and arcs seen in the local
velocity distribution could be caused by multiple spiral features
with different pattern speeds. While our results remove, in prin-
ciple, the need for an alternative explanation for some observed
ridges that can be created by the bar resonances, it certainly does
not exclude that other features are related to spiral arms. For in-
stance, the Hercules moving group appears as a double-structure
in the UV-plane of the data (see also Katz et al. 2018; Li &
Shen 2019), and this splitting is not present in the uv-plane of
the P17 bar-only model, thus asking for additional effects in or-
der to split Hercules in two. One other obvious deficiency of the
P17 bar model is its inability at explaining the strong Hyades
overdensity at (U,V) ∼ (−35,−15) km s−1, which has long been
suspected to be related to a spiral perturbation (e.g., Quillen &
Minchev 2005; Pompéia et al. 2011; McMillan 2013). The shape
of the median velocity field as a function of position uncovered
by Katz et al. (2018) is also highly suggestive of a spiral per-
turbation (see also Siebert et al. 2012). Nevertheless, we con-
clude that the bar model studied here has some merits. Indeed,
the most recent proper motion data within the inner Galaxy point
towards a large bar with a low pattern speed (e.g., Clarke et al.
2019; Sanders et al. 2019). We showed here that the strength
of the m =2, 4, and 6 modes of the P17 large bar model pro-
duces resonances with a noticeable amplitude (see also Hunt &

Bovy 2018), and that a low pattern speed puts those resonances
at about the right positions in order to explain some of the most
prominent ridges observed in local velocity and action spaces.
Such a large bar model could thus serve as a basis model for fu-
ture detailed study of other internal and external perturbations of
the Galactic disc.
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