K. A. Cook-chennault, N. Thambi, and A. M. Sastry, Powering MEMS portable devices: a review of nonregenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems, Smart Materials and Structures, vol.17, p.43001, 2008.

J. Siang, M. H. Lim, and M. S. Leong, Review of vibration-based energy harvesting technology : Mechanism and architectural approach, International Journal of Energy Research, pp.1-28, 2018.

M. F. Daqaq, R. Masana, A. Erturk, and D. D. Quinn, On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion, Applied Mechanics Reviews, vol.66, p.40801, 2014.

R. L. Harne and K. W. Wang, A review of the recent research on vibration energy harvesting via bistable systems, Smart Materials and Structures, vol.22, p.23001, 2013.

G. Wang, W. H. Liao, B. Yang, X. Wang, W. Xu et al., Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier, Mechanical Systems and Signal Processing, vol.105, pp.427-446, 2018.

D. Liu, Y. Wu, X. Yong, and L. Jing, Stochastic response of bistable vibration energy harvesting system subject to filtered gaussian white noise. Mechanical Systems and Signal Processing, vol.130, pp.201-212, 2019.

C. B. Williams and R. B. Yates, Analysis Of A Microelectric Generator For Microsystems, Sensors and Actuators A: Physical, vol.52, pp.8-11, 1996.

T. Huguet, A. Badel, and M. Lallart, Exploiting bistable oscillator subharmonics for magnified broadband vibration energy harvesting, Applied Physics Letters, vol.111, p.173905, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01764325

T. Huguet, A. Badel, O. Druet, and M. Lallart, Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness, Applied Energy, vol.226, pp.607-617, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901836

A. J. Sneller, P. Cette, and B. P. Mann, Experimental investigation of a post-buckled piezoelectric beam with an attached central mass used to harvest energy, Proceedings of the Institution of Mechanical Engineers, vol.225, pp.497-509, 2011.

S. C. Stanton, B. A. Owens, and B. P. Mann, Harmonic balance analysis of the bistable piezoelectric inertial generator, Journal of Sound and Vibration, vol.331, pp.3617-3627, 2012.

M. Panyam, R. Masana, and M. F. Daqaq, On approximating the effective bandwidth of bi-stable energy harvesters, International Journal of Non-Linear Mechanics, vol.67, pp.153-163, 2014.

W. Q. Liu, A. Badel, F. Formosa, Y. P. Wu, and A. Agbossou, Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting, Smart Materials and Structures, vol.22, p.35013, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00782337

A. Badel and E. Lefeuvre, Nonlinear Conditioning Circuits for Piezoelectric Energy Harvesters, Nonlinearity in Energy Harvesting Systems Nonlinear, pp.321-359, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02042560

W. Q. Liu, A. Badel, F. Formosa, and Y. P. Wu, A new figure of merit for wideband vibration energy harvesters, Smart Materials and Structures, vol.24, p.125012, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01322274

A. Gutiérrez, C. Gonzàlez, J. Jiménez-leube, S. Zazo, N. Dopico et al., A Heterogeneous Wireless Identification Network for the Localization of Animals Based on Stochastic Movements, Sensors, vol.9, pp.3942-3957, 2009.