T. Pasman, D. Grijpma, D. Stamatialis, and A. Poot, Flat and microstructured polymeric membranes in organs-on-chips, J. R. Soc. Interface, vol.15, issue.144, 2018.

W. F. Quirós-solano, N. Gaio, O. Stassen, Y. B. Arik, C. Silvestri et al., Microfabricated tuneable and transferable porous PDMS membranes for Organs-onChips, Sci. Rep, vol.8, issue.1, p.13524, 2018.

. Helm-mw-van-der, Electrical and microfluidic technologies for organs-on-chips: Mimicking blood-brain barrier and gut tissues, 2018.

Y. Xia and G. M. Whitesides, Soft Lithography, Annu. Rev. Mater. Sci, vol.28, issue.1, p.153, 1998.

D. Huh, Y. Torisawa, G. A. Hamilton, H. J. Kim, and D. E. Ingber, Microengineered physiological biomimicry: organs-on-chips, Lab. Chip, vol.12, issue.12, p.2156, 2012.

A. K. Capulli, K. Tian, N. Mehandru, A. Bukhta, S. F. Choudhury et al., Approaching the In Vitro Clinical Trial: Engineering Organs on Chips, Lab. Chip, vol.14, issue.17, p.3181, 2014.

D. Huh, G. A. Hamilton, and D. E. Ingber, From 3D cell culture to organs-on-chips, Trends Cell Biol, vol.21, issue.12, p.745, 2011.

D. Huh, H. J. Kim, J. P. Fraser, D. E. Shea, M. Khan et al., Microfabrication of human organs-on-chips, Nat. Protoc, vol.8, issue.11, p.2135, 2013.

. Meer-ad-van-der and . Berg-a-van-den, Organs-on-chips: breaking the in vitro impasse, Integr. Biol, vol.4, issue.5, p.461, 2012.

S. N. Bhatia and D. E. Ingber, Microfluidic organs-on-chips, Nat. Biotechnol, vol.32, issue.8, p.760, 2014.

M. W. Der-helm, M. Odijk, J. Frimat, A. D. Van-der-meer, J. Eijkel et al.,

, Biosens. Bioelectron, vol.85, 2016.

V. V. Abhyankar, M. Wu, C. Koh, and A. V. Hatch, A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces, PLOS ONE, vol.11, issue.5, p.156341, 2016.

H. Lee, D. S. Kim, S. K. Ha, I. Choi, J. M. Lee et al., A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model

, Biotechnol. Bioeng, vol.114, issue.2, p.432, 2017.

P. Loskill, T. Sezhian, K. M. Tharp, F. T. Lee-montiel, S. Jeeawoody et al., WATon-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue, Lab. Chip, vol.17, issue.9, p.1645, 2017.

K. Shim, D. Lee, J. Han, N. Nguyen, S. Park et al., Microfluidic gut-on-a-chip with three-dimensional villi structure, Biomed. Microdevices, vol.19, issue.2, p.37, 2017.

L. Zhu, H. Xia, Z. Wang, E. Fong, J. Fan et al., A vertical-flow bioreactor array compacts hepatocytes for enhanced polarity and functions, Lab. Chip, vol.16, issue.20, p.3898, 2016.

K. J. Pocock, X. Gao, C. Wang, C. Priest, C. A. Prestidge et al., Low-temperature bonding process for the fabrication of hybrid glass-membrane organ-on-a-chip devices, J. MicroNanolithography MEMS MOEMS, vol.15, issue.4, p.44502, 2016.

B. M. Maoz, A. Herland, O. Henry, W. D. Leineweber, M. Yadid et al., Organs-onChips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities, Lab. Chip, vol.17, issue.13, p.2294, 2017.

Y. I. Wang, H. E. Abaci, and M. L. Shuler, Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening, Biotechnol. Bioeng, vol.114, issue.1, p.184, 2017.

M. Lampin, W. Null, C. Legris, M. Degrange, and M. F. Sigot-luizard, Correlation between substratum roughness and wettability, cell adhesion, and cell migration, J. Biomed. Mater. Res, vol.36, issue.1, p.99, 1997.

D. P. Dowling, I. S. Miller, M. Ardhaoui, and W. M. Gallagher, Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene

, J. Biomater. Appl, vol.26, issue.3, p.327, 2011.

T. P. Kunzler, T. Drobek, M. Schuler, and N. D. Spencer, Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients, Biomaterials, vol.28, issue.13, p.2175, 2007.

R. Lange, F. Lüthen, U. Beck, J. Rychly, A. Baumann et al., Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material, Biomol. Eng, vol.19, issue.2-6, p.255, 2002.

J. H. Lee, G. Khang, J. W. Lee, and H. B. Lee, Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient, J. Colloid Interface Sci, vol.205, issue.2, p.323, 1998.

J. Wala, D. Maji, and S. Das, Influence of physico-mechanical properties of elastomeric material for different cell growth, Biomed. Mater. Bristol Engl, vol.12, issue.6, p.65002, 2017.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix elasticity directs stem cell lineage specification, Cell, vol.126, issue.4, p.677, 2006.

S. M. Casillo, A. P. Peredo, S. J. Perry, H. H. Chung, and T. R. Gaborski, Membrane Pore Spacing Can Modulate Endothelial Cell-Substrate and Cell-Cell Interactions, ACS Biomater. Sci. Eng, vol.3, issue.3, p.243, 2017.

S. Choi, Y. Zhang, and Y. Xia, Three-dimensional Scaffolds for Tissue Engineering: The Importance of Uniformity in Pore Size and Structure, Langmuir ACS J. Surf. Colloids, vol.26, issue.24, 2010.

D. Luca, A. Ostrowska, B. Lorenzo-moldero, I. Lepedda, A. Swieszkowski et al.,

C. Blitterswijk, Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds, Sci. Rep

Q. L. Loh and C. Choong, Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size, Tissue Eng. Part B Rev, vol.19, issue.6, p.485, 2013.

F. J. O'brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials, vol.26, issue.4, p.433, 2005.

Q. Zhang, H. Lu, N. Kawazoe, and G. Chen, Pore size effect of collagen scaffolds on cartilage regeneration, Acta Biomater, vol.10, issue.5, 2005.

F. Du, H. Wang, W. Zhao, D. Li, D. Kong et al., Gradient nanofibrous chitosan/poly ?-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering, Biomaterials, vol.33, issue.3, p.762, 2012.

V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves et al., Properties of melt processed chitosan and aliphatic polyester blends, Mater. Sci. Eng. A, vol.403, issue.1, 2005.

V. N. Malheiro, S. G. Caridade, N. M. Alves, and J. F. Mano, New poly(?-caprolactone)/chitosan blend fibers for tissue engineering applications, Acta Biomater, vol.6, issue.2, p.418, 2010.

L. Van-der-schueren, I. Steyaert, D. Schoenmaker, B. , D. Clerck et al.,

, Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system, Carbohydr. Polym, vol.88, issue.4, p.1221, 2012.

A. Cooper, N. Bhattarai, and M. Zhang, Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration, Carbohydr. Polym, vol.85, issue.1, p.149, 2011.

R. S. Teotia, D. Kalita, A. K. Singh, S. K. Verma, S. S. Kadam et al., Bifunctional Polysulfone-Chitosan Composite Hollow Fiber Membrane for Bioartificial Liver, ACS Biomater. Sci. Eng, vol.1, issue.6, p.372, 2015.

M. Prabaharan, M. A. Rodriguez-perez, J. A. De-saja, and J. F. Mano, Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability, J. Biomed. Mater. Res. B Appl. Biomater, vol.81, issue.2, p.427, 2007.

F. Chen, X. Li, X. Mo, C. He, H. Wang et al., Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix, J. Biomater. Sci. Polym. Ed, vol.19, issue.5, p.677, 2008.

S. Hong and G. Kim, Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells, Carbohydr. Polym, vol.83, issue.2, p.940, 2011.

P. Das, J. Lahitte, J. Remigy, B. Garmy-susini, S. Desclaux et al., Artificial membranes tuning for lymphatic wall repair, Eur. Chapter Meet. Tissue Eng
URL : https://hal.archives-ouvertes.fr/hal-01360666

, Med. Int. Soc

Z. Li and B. H. Tan, Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications, Mater. Sci. Eng. C, vol.15, 2014.

S. Morelli, A. Piscioneri, A. Messina, S. Salerno, M. B. Al-fageeh et al., Neuronal growth and differentiation on biodegradable membranes, J. Tissue Eng. Regen. Med, vol.9, issue.2, p.106, 2015.

Y. Xiao, D. Li, X. Chen, J. Lu, H. Fan et al., Preparation and cytocompatibility of chitosan-modified polylactide, J. Appl. Polym. Sci, vol.110, issue.1, p.408, 2008.

. Helm-mw-van-der, M. Odijk, J. Frimat, A. D. Meer, . Van-der et al., Fabrication and Validation of an Organ-on-chip System with Integrated Electrodes to Directly Quantify Transendothelial Electrical Resistance, JoVE J. Vis. Exp, issue.127, p.56334, 2017.

, FRP Flow Sensor: FLOW-RATE PLATFORM | Fluigent, 2018.

. Fluigent, , 2018.

H. W. Sill, Y. S. Chang, J. R. Artman, J. A. Frangos, T. M. Hollis et al., Shear stress increases hydraulic conductivity of cultured endothelial monolayers, Am. J. Physiol.-Heart Circ. Physiol, vol.268, issue.2, p.535, 1995.

Z. Pang, D. A. Antonetti, and J. M. Tarbell, Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation, Ann. Biomed. Eng, vol.33, issue.11, p.1536, 2005.

P. M. Luckett, J. Fischbarg, J. Bhattacharya, and S. C. Silverstein, Hydraulic conductivity of endothelial cell monolayers cultured on human amnion, Am. J. Physiol.-Heart Circ. Physiol, vol.256, issue.6, p.1675, 1989.

P. Desmond, J. P. Best, E. Morgenroth, and N. Derlon, Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms, Water Res, vol.132, p.211, 2018.

P. Desmond, L. Böni, P. Fischer, E. Morgenroth, and N. Derlon, Stratification in the physical structure and cohesion of membrane biofilms -Implications for hydraulic resistance

, J. Membr. Sci, vol.564, 2018.

B. P. Tripathi, P. Das, F. Simon, and M. Stamm, Ultralow fouling membranes by surface modification with functional polydopamine, Eur. Polym. J, vol.99, 2018.

E. Fröhlich, G. Bonstingl, A. Höfler, C. Meindl, G. Leitinger et al., Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols

, Toxicol. In Vitro, issue.1, p.409, 2013.

K. Madhavan, W. H. Elliott, W. Bonani, E. Monnet, and W. Tan, Mechanical and biocompatible characterizations of a readily available multilayer vascular graft, J. Biomed. Mater. Res. B Appl. Biomater, vol.101, issue.4, p.506, 2013.

H. Bazyar, P. Lv, J. A. Wood, S. Porada, D. Lohse et al., Liquid-liquid displacement in slippery liquid-infused membranes (SLIMs), Soft Matter, vol.14, issue.10, p.1780, 2018.

T. Gvs-filter, , 2018.

R. S. Barhate and S. Ramakrishna, Nanofibrous filtering media: Filtration problems and solutions from tiny materials, J. Membr. Sci, vol.296, issue.1, p.1, 2007.

D. Bjorge, N. Daels, D. Vrieze, S. Dejans, P. Van-camp et al., Performance assessment of electrospun nanofibers for filter applications, Desalination, vol.249, issue.3, p.942, 2009.

A. Cooper, R. Oldinski, H. Ma, J. D. Bryers, and M. Zhang, Chitosan-based nanofibrous membranes for antibacterial filter applications, Carbohydr. Polym, vol.92, issue.1, p.254, 2013.

P. Premnath, A. Tavangar, B. Tan, and K. Venkatakrishnan, Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns, Exp. Cell Res, vol.337, issue.1, p.44, 2015.

X. Xiao, W. Wang, D. Liu, H. Zhang, P. Gao et al., The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways, Sci. Rep, vol.5, p.9409, 2015.

M. Mastrogiacomo, S. Scaglione, R. Martinetti, L. Dolcini, F. Beltrame et al., Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics, Biomaterials, vol.27, issue.17, p.3230, 2006.

B. Chueh, D. Huh, C. R. Kyrtsos, T. Houssin, N. Futai et al., Leakage-Free Bonding of Porous Membranes into Layered Microfluidic Array Systems, Anal. Chem, vol.79, issue.9, p.3504, 2007.

L. M. Griep, F. Wolbers, B. De-wagenaar, P. M. Ter-braak, B. B. Weksler et al., BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function, Biomed. Microdevices, vol.15, issue.1, p.145, 2013.

T. Gvs-filter, , 2018.

, SI Fig. 2. Leakage test inside the channels by pipetting Fluorescent, p.1

, PBS) dye. Scale bar 2000 µm