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Youla-Kucera adaptive feedback disturbance rejection in the presence
of plant uncertainties

Bernard Vau and Ioan Doré Landau

Abstract— The stability of an adaptive disturbance rejection
scheme based on the Youla-Kucera parameterization is inves-
tigated, in case of an uncertain plant model is used in the
synthesis of the central controller. It is shown that stability
is guaranteed provided that two conditions are satisfied at the
same time: the first one is linked to the internal model principle,
and the second one depends on the closed-loop poles location.
For some uncertainties, these constraints cannot be met simul-
taneously with the minimal Q-filter. That leads to propose an
over-parametrized Youla-Kucera filter, in order to relax the
said conditions. Simulations on relevant examples illustrate the
procedure for stabilizing the Youla-Kucera adaptive rejection
scheme, in the presence of plant model uncertainties.

I. INTRODUCTION

In the last twenty years, the issue of adaptive rejection
of unknown disturbances has received a significant interest
in the field of control. Most of the proposed algorithms
are based on the Youla-Kucera parameterization (or Q-
parameterization) [1], that allows for the tuning of a compen-
sator within the class of all-stabilizing controllers. The first
contribution suggesting to blend a robust controller with an
adaptive structure established on the Q-filter seems to have
been reported in [9], and a successful adaptive rejection of
disturbances resulting from an unstable exogenous system is
mentioned in [12]. In the field of active noise control, a first
reference seems to be [2], [3] and a more recent reference is
[8]. In the field of vibration control a first reference seems
to be [6]. In all these papers, the system to be controlled is
assumed to be perfectly known, and under this assumption
these algorithms do not require a specific stability condition,
except that the closed-loop including the central controller
must be stable. However in many situations despite excellent
experimental identification techniques, the plant model is
subject to changes during operation and therefore the plant
model uncertainties have to be taken into account. In order
to address the issue of plant model uncertainties, Kinney
and Callafon proposed an adaptive scheme called REACT
[5] that aims at rejecting unknown disturbances acting on
a uncertain system. The uncertainties are represented by
means of the dual Youla-Kucera parameterization [1] that
had been previously used in the context of identification (see
for example [11]). In the REACT scheme, conditions about

This work was not supported by any organization
B.Vau is with SATIE, école normale supérieure de Paris-Saclay, 94230

Cachan, France
and with IXBLUE, 12 avenue des coquelicots 94385 Bonneuil-sur-Marne,
France bernard.vau@satie.ens-cachan.fr

I.D. Landau is with the Univ. Grenoble Alpes,
CNRS, Grenoble INP, GIPSA-lab, 38000 Genoble France
ioan.dore.landau@gipsa-lab.grenoble-inp.fr

stability are provided by means of the small gain theorem,
employed in the case of static controller coefficients, but
no stability analysis of the adaptive structure is established.
In REACT, the error signal is directly the system output.
This output can be expressed in an affine manner from
the Q-filter when it has static coefficients, but this affine
relation is lost in case of time-varying gains in the Q-filter,
because of the non-commutativity of time varying transfer
operators. It is probably one reason that compelled the
authors of [5] to use regularization in the recursive estimation
algorithm (LMS), which prevents the estimated parameters
from a possible divergence. Contrary to REACT, the structure
presented in [6], has an adaptation error being in any case
affine with respect to the estimated parameters, and for this
reason the stability analysis is more tractable. We propose
here to establish stability conditions of the latter scheme
that we call the adaptive disturbance rejection algorithm,
when the plant model is uncertain. The uncertainties are
expressed with the dual Youla-Kucera parameterization, and
we show that stability is guaranteed provided two conditions
are simultaneously satisfied. The first one is a consequence
of the internal model principle of Francis and Wohnam [4],
expressed by means of a Bezout equation, which reveals
to be independent with respect to uncertainties. The second
condition is linked to the location of the closed-loop poles,
that are no longer invariant with respect to the (finite impulse
response) Q-filter parameters, if the actual system differs
from the plant model, contrary to what happens when the
plant and the model match perfectly. In some situations, the
minimal solution of the said Bezout equation, may not lead
to a stable closed-loop, and consequently the convergence
cannot be obtained. In order to overcome this issue, a
solution consists in augmenting the order of the Q-filter until
a solution of the Bezout equation allows to fulfil the stability
condition. While this idea has been suggested in [13], pp. 48-
49, this approach has never been worked in detail to establish
a clear procedure.
The main contributions of this paper are: 1) A clear for-
mulation of the stability issues in adaptive rejection of dis-
turbances using Youla-Kucera parameterization when taking
into account the plant model uncertainties, 2) A stability
analysis in the presence of plant model uncertainties when
using a minimal order Q-filter, 3) Development of a proce-
dure for using overparametrized Q-filters in order to ensure
stability in the presence of plant model uncertainties, 4) Il-
lustration of the procedures developed on relevant simulation
examples.
The paper is organized as follows: Section II proposes a



description of the uncertain plant. In section III a stabil-
ity analysis of the adaptive disturbance rejection algorithm
is provided. Section IV shows the advantage of an over-
parametrization of the Q-filter, and finally in section V
simulations on relevant examples illustrate the procedure for
stabilizing the Youla-Kucera adaptive rejection scheme, in
the presence of plant model uncertainties.

II. DESCRIPTION OF THE UNCERTAIN SYSTEM

Let us consider the nominal system Go(q
−1), q−1 being

the shift backward operator

Go(q
−1) =

Bo(q
−1)

Ao(q−1)
(1)

u(t) and y(t) are the system input, and output respectively,
and set d(t) an unknown harmonic disturbance acting addi-
tively on the system output such that

d(t) =
Nd(q

−1)

Dd(q−1)
δ(t) (2)

where δ(t) is the Dirac symbol.

This nominal system is used in the synthesis of a central
controller Co(q−1) with

Co(q
−1) =

Ro(q
−1)

So(q−1)
(3)

and a Youla-Kucera filter (or Q-filter) is added to the initial
controller structure,

Q(q−1) =
BQ(q−1)

AQ(q−1)

In the following, the Q-filter is assumed to be finite impulse
response filter, thus AQ(q−1) = 1 and

BQ(q−1) = bQ0 + bQ1 q
−1 + · · · bQnbq

−nb (4)

where nb is the degree of BQ(q−1).
Consequently, the relation from the system output to the
control signal is

u(t) = −Ro(q
−1) +BQ(q−1)Ao(q

−1)

So(q−1)−BQ(q−1)Bo(q−1)
y(t) (5)

The system model has parametric uncertainties, and we
propose to express them by means of the Dual-Youla pa-
rameterization, as in [5]. Let QD(q−1) be this Dual-Youla
filter

QD(q−1) =
∆(q−1)

Γ(q−1)
(6)

The numerator ∆(q−1) does not include any direct trans-
mission, and Γ(q−1) is monic. Then the uncertain system is
given by

G(q−1) =
B(q−1)

A(q−1)
=

Γ(q−1)Bo(q
−1) + ∆(q−1)So(q

−1)

Γ(q−1)Ao(q−1)−∆(q−1)Ro(q−1)
(7)

The relation from the uncertain system input to its output is

y(t) = G(q−1)u(t) + d(t) (8)

Fig. 1. Global block diagram of the uncertain system and the controller
including the Q-filter

and the global structure representing the uncertain system
with the controller and the Q-filter is provided in Fig. 1.
In the presence of the central controller, the closed-loop poles
are defined by the roots of

Po(q
−1) = Ao(q

−1)So(q
−1) +Bo(q

−1)Ro(q
−1) (9)

The description of uncertainties with the Dual Youla-Kucera
parameterization is the most general, provided QD(q−1) is
an infinite impulse response filter. From (7), one checks
immediately that

∆(q−1)

Γ(q−1)
=
B(q−1)Ao(q

−1)−A(q−1)Bo(q
−1)

A(q−1)So(q−1) +B(q−1)Ro(q−1)
(10)

Note that Γ(q−1) is nothing but the characteristic polynomial
of the closed-loop including the uncertain system and the
central controller. Since it is reasonable to assume that the
uncertain system is stabilized by the central controller, this
is equivalent for Γ(q−1) to be a stability polynomial. From
(5) and (7), the computation of the direct sensitivity function
from d(t) to y(t) can be carried out. One obtains

y(t) =
ΓA0(q−1)−∆(q−1)R0(q−1)

P0(q−1)
×

(S0(q−1)−BQ(q−1)B0(q−1))

Γ(q−1) +BQ(q−1)∆(q−1)
d(t) (11)

it appears immediately that in case of an uncertain system,
some poles of the direct sensitivity function are no longer
invariant, and they depend on BQ(q−1), contrary to the case
without system uncertainty.

III. STABILITY ANALYSIS OF THE ADAPTIVE
DISTURBANCE REJECTION ALGORITHM

The stability analysis in the presence of plant model
uncertainties will be achieved in the case of a minimal order



Q-filter. In an on-line implementation, BQ(q−1) is replaced
by B̂Q(q−1, t) = b̂Q0 (t) + · · · b̂Qnb(t)q−1 that results from
an estimation described below. If B̂Q(q−1, t) has constant
coefficients (11) becomes

y(t) =
ΓA0(q−1)−∆(q−1)R0(q−1)

P0(q−1)
×

(S0(q−1)− B̂Q(q−1)B0(q−1))

Γ(q−1) + B̂Q(q−1)∆(q−1)
d(t) (12)

The signal w(t) in Fig.1 has the expression

w(t) = −Bo(q−1)u(t) +Ao(q
−1)y(t) (13)

The following property holds

Property 1: In case of model uncertainty expressed with
the Dual-Youla parameterization as in (7), one has

w(t) =
Γ(q−1)Ao(q−1)−∆(q−1)Ro(q

−1)

Γ(q−1) + ∆(q−1)B̂Q(q−1)
d(t) (14)

Proof: From (13) w(t) = −Bo(q−1)u(t) +
Ao(q

−1)y(t), and then Γw(t) = (ΓAo − ∆Ro)d(t) +
∆[Sou(t) + Roy(t)]. But owing to the expression of the
controller including the Q-filter, one obtains ∆[Sou(t) +

Roy(t)] = − ∆B̂QPo

So−B̂QBo
y(t). Thus (ΓAo − ∆Ro)d(t) =

Γw(t)+
∆B̂QPo

So−B̂QBo
y(t). Owing to the expression of the direct

sensitivity function given in (12), one can write the equality
(ΓAo−∆Ro)d(t) = Γw(t)+

∆B̂Q(ΓAo−∆Ro)

Γ+B̂Q∆
hence the final

result w(t+ 1) = (ΓAo−∆Ro)

(Γ+∆B̂Q
d(t+ 1).

By combining (12) and (14), one obtains

y(t) =

(
So(q

−1)

Po(q−1)
− B̂Q(q−1, t)Bo(q

−1)

Po(q−1)

)
w(t) (15)

But in the adaptive rejection algorithm proposed in [6], an
(a-posteriori) adaptation error ε(t+ 1) is defined as

ε(t+ 1) =

(
So(q

−1)

Po(q−1)
− B̂Q(q−1, t+ 1)

Bo(q
−1)

Po(q−1)

)
w(t+ 1)

(16)
Similarly an a-priori adaptation error εo(t+ 1) is

εo(t+ 1) =

(
So(q

−1)

Po(q−1)
− B̂Q(q−1, t)

Bo(q
−1)

Po(q−1)

)
w(t+ 1)

(17)
Now, owing to (11), it is clear that in order to reject
asymptotically the output disturbance, the internal model
principle [4] can be expressed with the following Bezout
equation

Dp(q
−1)S

′
(q−1) +BQ(q−1)Bo(q

−1) = So(q
−1) (18)

where S
′
(q−1) et BQ(q−1) are the unknown terms. The min-

imal solution of this equation is such that nb = deg(BQ) =
deg(Dp)− 1. In this section, we are interested only by this

minimal solution. From (16) and (18), the adaptation error
can be written

ε(t+ 1) =
(
BQ(q−1)− B̂Q(q−1, t+ 1)

) B∗
o(q−1)

Po(q−1)
w(t)

+x(t+ 1) (19)

where x(t+1) =
Dp(q−1)S

′
(q−1)

Po(q−1) w(t+1) is a signal that tends
rapidly towards 0. By comparison with [6], one notices that
the adaptation error remains unchanged even if the model
is uncertain, the only difference lying in the expression of
w(t).
Set

w2(t) =
B∗(q−1)

P0(q−1)
w(t) (20)

the adaptation error can be put under the form

ε(t+ 1) = H(q−1)
(
θ − θ̂(t+ 1)

)T
φ(t) (21)

where
φT (t) = [ w2(t) · · ·w2(t− nb)]

θT = [bQ0 · · · b
Q
nb]

θ̂T (t) = [b̂Q0 (t) · · · b̂Qnb(t)]

and
H(q−1) = 1

The expression of the adaptation error in (21) is often
encountered in adaptive control, and it is well known (see
theorem 3.2 in [7]) that a passivity condition upon the
transfer function H(q−1) exists. This condition is obviously
satisfied here since H(q−1) = 1, therefore no passivity
constraint prevents the adaptive rejection algorithm from
converging even in case of system uncertainties.
The coefficients of vector θ̂(t) are estimated by means of the
so-called parameter adaptation algorithm (see [7])

θ̂(t+ 1) = θ̂(t) + F (t)φ(t)ε(t+ 1)

(22a)

F (t+ 1) =
1

λ1(t)

F (t)− F (t)φ(t)φT (t)F (t)
λ1(t)
λ2(t) + φT (t)F (t)φ(t)


(22b)

where F (t) is the adaptation gain (positive definite matrix),
and 0 < λ1(t) ≤ 1, 0 ≤ λ2(t) < 2 are the forgetting factors.
The a-posteriori adaptation error is computed from the a-
priori adaptation error expression (17), and from

ε(t+ 1) =
εo(t+ 1)

1 + φT (t)F (t)φ(t)
(23)

Notice that from the expression of the direct sensitivity
function (11), the internal model principle leads to an
unique Bezout equation (18), invariant under system un-
certainties: BQ(q−1) depends on So(q

−1), Dp(q
−1), but

not on Γ(q−1) and ∆(q−1). However as said at the end
of section II, the closed-loop polynomial becomes equal to



Po(q
−1)(Γ(q−1) +BQ(q−1)∆(q−1)). And this polynomial

can possibly exhibit some zeros outside the unit circle, which
jeopardize the closed-loop stability.
φ(t) will be finite if and only if all the zeros of the
polynomial Γ(q−1)+∆(q−1)B̂Q(q−1) remain inside the unit
circle. On the other hand it is necessary for B̂Q to tend
towards BQ(q−1) which must satisfy (18). In some situation
an incompatibility may arise from these two constraints
especially if the uncertainties are large. In this case the
algorithm either does not converge or it tends towards values
which leads to an unstable closed-loop. To overcome this
difficulty, one solution is to overparametrize the Q-filter as
it will be shown next.

IV. OVERPARAMETERIZATION OF THE YOULA BLOCK

In this section, we call B̄Q(q−1) the minimal solution
of the Bezout equation corresponding to the internal model
condition

Dp(q
−1)S

′
(q−1) + B̄Q(q−1)Bo(q

−1) = So(q
−1) (24)

with deg(B̄Q) = deg(Dp) − 1. Any non-minimal solution
BQ(q−1) in (18) can be obtained from B̄Q(q−1). As a matter
of fact (24) is equivalent to

Dp(q
−1)

(
S
′
(q−1)− V (q−1)Bo(q

−1)
)

+(
B̄Q(q−1) + V (q−1)Dp(q

−1)
)
Bo(q

−1) = So(q
−1) (25)

where V (q−1) is a polynomial which parametrizes (25).
The set of solutions BQ(q−1) in (18) is given by the
expression BQ(q−1) = B̄Q(q−1) + V (q−1)Dp(q

−1).
Furthermore if B̂(q−1) is overparametrized, the polynomial
V (q−1) must allow for B̂(q−1) to tend towards
B̄Q(q−1) + V (q−1)Dp(q

−1).

Property 2: In case of an uncertain system described by
means of the Dual-Youla parameterization, controlled by
the adaptive disturbance rejection algorithm, the closed-loop
is asymptotically stable, and the regressor φ(t) remains
bounded if there exists at least one polynomial V (q−1) such
that

Γ(q−1) + ∆(q−1)B̄Q(q−1) + ∆(q−1)V (q−1)Dp(q
−1)

has all its zeros in the unit circle, with B̄Q(q−1) the minimal
solution of the Bezout equation

Dp(q
−1)S

′
(q−1) + B̄Q(q−1)Bo(q

−1) = So(q
−1)

Proof: From (14) and (20), a sufficient
condition for φ(t) to remain bounded is that
Γ(q−1) + ∆(q−1)BQ(q−1) be a stability polynomial.
Since BQ(q−1) = B̄(q−1) + V (q−1)Dp(q

−1), a
sufficient condition for φ(t) to be bounded is that
Γ(q−1) + ∆(q−1)B̄Q(q−1) + ∆(q−1)V (q−1)Dp(q

−1) has
all its zeros inside the unit circle. On the other hand,
according to (24), the internal model principle is satisfied

provided Dp(q
−1)S

′
(q−1) + B̄Q(q−1)Bo(q

−1) = So(q
−1).

For a given order of V (q−1), there may be no coefficient such
that the condition of property 2 is satisfied. In this situation,
the only remaining solution consists in augmenting the order
of V (q−1), and consequently the order of BQ(q−1).

V. SIMULATION EXAMPLES

Let us consider the following system Go(q
−1) = Bo(q−1)

Ao(q−1) ,

and the controller Co(q−1) = Ro(q−1)
So(q−1) (central controller),

where
Bo(q

−1) = 0.5q−1 − 0.5q−2

Ao(q
−1) = 1− 1.45q−1 + 0.475q−2

Ro(q
−1) = 0.15− 0.14q−1

So(q
−1) = 1− 0.74q−1

In a first set of simulation (first configuration) the expression
of Γ(q−1) and ∆(q−1) are

Γ(q−1) = 1− 1.4q−1 + 0.45q−2

∆(q−1) = 0.09q−1 − 0.09q−2

The uncertain system and the nominal one are represented
in Fig. 2

Fig. 2. Uncertain and nominal systems, (first uncertainty configuration)

The sampling period is equal to 1, and one assumes that an
harmonic (single frequency) output disturbance acts upon the
system, with a pulsation equal to ω = 0.2. Consequently

Dp(q
−1) = 1− 1.96q−1 + q−2

Under these assumptions the minimal order polynomial
B̄Q(q−1) is B̄Q(q−1) = −8.56 + 11q−1. If there is no
uncertainty, the condition of persistent excitation is satisfied
(see [6]), leading not only to stability but to parameters
convergence too. One can check easily that Γ(q−1) +
B̄Q(q−1)∆(q−1) has not all its zeros inside the unit circle,
and a simulation of the adaptive rejection algorithm applied
to this system shows that convergence is not obtained: At first
the coefficients of B̂Q(q−1) tend toward those of B̄Q(q−1),



Fig. 3. Adaptive rejection with a first order B̂Q(q−1) (first uncertainty
configuration)

but that entails some instability leading the estimated coeffi-
cients to discard from those of B̄Q(q−1) in a cyclic manner,
as shown in Fig. 3
That leads to employ an overparameterized Youla-Kucera
block, with BQ(q−1) = B̄Q(q−1)+Dp(q

−1)V (q−1). At first
V (q−1) is chosen to be a scalar (degree 0), which implies
that deg(BQ(q−1) = 2. If V ∈ [0.85, 8.93], one can check
that Γ(q−1)+∆(q−1)B̄Q(q−1)+∆(q−1)V (q−1)Dp(q

−1) is
a stability polynomial, and there exists an infinity of second
order polynomials B̂Q(q−1) allowing for the convergence of
ε(t+1) towards 0. Consequently the adaptive algorithm will
converge: This is exactly what can be observed in Fig. 4.

Fig. 4. Adaptive rejection with a second order B̂Q(q−1) , (first uncertainty
configuration)

A second uncertainty configuration is now proposed

Γ(q−1) = 1− 1.4q−1 + 0.45q−2

∆(q−1) = 0.15q−1 − 0.15q−2

The uncertain and nominal systems are displayed in Fig. 5
It can be verified that no scalar V creates the condition for(
Γ(q−1) + ∆(q−1)B̄Q(q−1) + ∆(q−1)V (q−1)Dp(q

−1)
)

to
have all its zeros inside the unit circle, and a simulation
carried out with a second order polynomial B̂Q(q−1) does
not entail convergence (Fig. 6)
At last we propose to increase the order of V (q−1), which
is set to 1 such that V (q−1) = v0 + v1q

−1. Thus B̂Q(q−1)
is now a third order polynomial. An evaluation of the
closed-loop stability in function of v0 et v1 over [−15,+5]

Fig. 5. Uncertain and nominal systems, (second uncertainty configuration)

Fig. 6. Adaptive rejection with a second order polynomial B̂Q(q−1),
(second uncertainty configuration).

reveals that a stability area exists as displayed in Fig. 7.
Consequently, this algorithm must converge if it includes
a third order polynomial B̂Q(q−1). This is confirmed by
simulations as shown in Fig. 8.

VI. CONCLUDING REMARKS

It has been shown that uncertainty linked to the plant
model used in the design of an adaptive rejection scheme for
the cancellation of unknown narrow band disturbances can
lead to instability. The uncertainties have been represented by
means of the dual Youla-Kucera parameterization. In order
to guarantee stability, two necessary and sufficient conditions
must be satisfied at the same time. However, for a minimal
order Q-filter in the controller, the said conditions cannot
always be met simultaneously. In this case it is necessary
to increase the order of the (finite impulse response) Q-
filter. We have shown with simulation examples that this
overparameterization can create condition for the algorithm
to be stable.
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