J. M. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, Components for Integrated Poly(dimethylsiloxane) Microfluidic Systems, Electrophoresis, vol.23, pp.3461-3473, 2002.

I. Wong and C. M. Ho, Surface Molecular Property Modifications for Poly(dimethylsiloxane) (PDMS) Based Microfluidic Devices, vol.7, pp.291-306, 2009.

M. W. Toepke and D. J. Beebe, PDMS Absorption of Small Molecules and Consequences in Microfluidic Applications, Lab Chip, vol.6, pp.1484-1486, 2006.

A. Utrata-wesolek, Antifouling Surfaces in Medical Application, Polimery, vol.58, pp.685-695, 2013.

N. Fusetani and A. Biofouling, Nat. Prod. Rep, vol.21, pp.94-104, 2004.

X. Pei and Q. Ye, Development of Marine Antifouling Coatings, Antifouling Surfaces and Materials

F. Zhou and . Ed, , pp.135-149, 2015.

J. L. Bohnert, T. A. Horbett, B. D. Ratner, and F. H. Royce, Adsorption of Proteins from Artificial Tear Solutions to, Contact Lens Materials. Invest. Ophthalmol. Visual. Sci, vol.29, pp.362-373, 1988.

D. Fonn, Targeting Contact Lens Induced Dryness and Discomfort: What Properties Will Make Lenses More Comfortable, Optom. Vis. Sci, vol.84, pp.279-285, 2007.

L. Santos, D. Rodrigues, M. Lira, M. E. Oliveira, R. Oliveira et al., The Influence of Surface Treatment on Hydrophobicity, Protein Adsorption and Microbial Colonisation of Silicone Hydrogel Contact Lenses, Cont. Lens Anterior Eye, vol.30, pp.183-188, 2007.

B. Liu, X. Liu, S. Shi, R. Huang, R. Su et al., Design and Mechanisms of Antifouling Materials for Surface Plasmon Resonance Sensors, Acta Biomater, vol.40, pp.100-118, 2016.

X. Liu, R. Huang, R. Su, W. Qi, L. Wang et al., Grafting Hyaluronic Acid Onto Gold Surface to Achieve Low Protein Fouling in Surface Plasmon Resonance Biosensors, ACS Appl. Mater. Interfaces, vol.6, pp.13034-13042, 2014.

F. N. Pirmoradi, J. K. Jackson, H. M. Burt, and M. Chiao, Ondemand Controlled Release of Docetaxel from a Battery-less MEMS Drug Delivery Device, Lab Chip, 2011.

F. N. Pirmoradi, K. Ou, J. K. Jackson, K. Letchford, J. Cui et al., Controlled Delivery of Antiangiogenic Drug to Human Eye Tissue Using a MEMS Device, Proc. IEEE Int. Conf. Micro Electro Mech

N. C. Tsai and C. Y. Sue, Review of MEMS-based Drug Delivery and Dosing Systems, Sens. Actuators, A, vol.134, pp.555-564, 2007.

H. S. Sundaram, J. Ella-menye, N. D. Brault, Q. Shao, and S. Jiang, Reversibly Switchable Polymer with Cationic/Zwitterionic/ Anionic Behavior Through Synergistic Protonation and Deprotonation, Chem. Sci, vol.5, 2014.

A. B. Lowe and C. L. Mccormick, Synthesis and Solution Properties of Zwitterionic Polymers, Chem. Rev, vol.102, pp.4177-4189, 2002.

T. Ueda, H. Oshida, K. Kurita, K. Ishihara, and N. Nakabayashi, Preparation of 2-Methacryloyloxyethyl Phosphorylcholine Copolymers with Alkyl Methacrylates and Their Blood Compatibility, Polym. J, vol.24, pp.1259-1269, 1992.

R. Zhou, P. F. Ren, H. C. Yang, and Z. K. Xu, Fabrication of Antifouling Membrane Surface by Poly(sulfobetaine methacrylate)/ Polydopamine Co-deposition, J. Membr. Sci, vol.466, pp.18-25, 2014.

T. Wang, Y. Q. Wang, Y. L. Su, and Z. Y. Jiang, Antifouling Ultrafiltration Membrane Composed of polyethersulfone and sulfobetaine copolymer, J. Membr. Sci, vol.280, pp.343-350, 2006.

S. Mondal, Stimuli Responsive Surfaces for Fouling-resistant Polymeric Membranes, J. Membr. Sci. Technol, 2013.

J. Zheng, L. Li, S. Chen, and S. Jiang, Molecular Simulation Study of Water Interactions with Oligo (ethylene glycol)-terminated Alkanethiol Self-assembled Monolayers, Langmuir, vol.20, pp.8931-8938, 2004.

M. Kim, S. K. Schmitt, J. W. Choi, J. D. Krutty, and P. Gopalan, From Self-assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes, Polymers, vol.7, pp.1346-1378, 2015.

H. Yin and D. Marshall, Microfluidics for Single Cell Analysis, Curr. Opin. Biotechnol, vol.23, pp.110-119, 2012.

C. Probst, A. Grunberger, W. Wiechert, and D. Kohlheyer, Polydimethylsiloxane (PDMS) Sub-micron Traps for Single-cell Analysis of Bacteria, vol.4, pp.357-369, 2013.

P. C. Blainey, The Future is Now: Single-cell Genomics of Bacteria and Archaea, FEMS Microbiol. Rev, vol.37, pp.407-427, 2013.

N. M. Salih, M. Z. Sahdan, M. Morsin, and M. T. Asmah, Fabrication and Integration of PDMS-glass Based Microfluidic With Optical Absorbance Measurement Device for Coliform Bacteria Detection, IFMBE Proc, vol.63, pp.75-81, 2018.

A. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, and J. Aizenberg, Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns, Science, vol.315, pp.487-490, 2007.

A. Sidorenko, T. Krupenkin, and J. Aizenberg, Controlled Switching of the Wetting Behavior of Biomimetic Surfaces with Hydrogel-supported Nanostructures, J. Mater. Chem, vol.18, pp.3841-3846, 2008.

T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma et al., Reversible Switching Between Superhydrophilicity and Superhydrophobicity, Angew. Chem., Int. Ed, vol.43, pp.357-360, 2004.

H. Makamba, J. H. Kim, K. Lim, N. Park, and J. H. Hahn, Surface Modification of Poly(dimethylsiloxane) Microchannels. Electrophoresis, vol.24, pp.3607-3619, 2003.

A. L. Lim and R. Bai, Membrane Fouling and Cleaning in Microfiltration of Activated Sludge Wastewater, J. Membr. Sci, vol.216, pp.279-290, 2003.

X. Xiong, Z. Wu, Q. Yu, L. Xue, J. Du et al., Reversible Bacterial Adhesion on Mixed Poly(dimethylaminoethyl methacrylate)/poly(acrylamidophenyl boronic acid) Brush Surfaces, Langmuir, vol.31, 2015.

A. Zengin, G. Karakose, T. Caykara, and . Poly, -(dimethylamino)-ethyl methacrylate) Brushes Fabricated by Surface-mediated RAFT Polymerization and Their Response to pH, Eur. Polym. J, vol.49, issue.2, pp.3350-3358, 2013.

F. J. Xu, Q. J. Cai, Y. L. Li, E. T. Kang, and K. G. Neoh, Covalent Immobilization of Glucose Oxidase on Well-defined Poly(glycidyl methacrylate)-Si(111) Hybrids from Surface-initiated Atom-transfer Radical Polymerization, Biomacromolecules, vol.6, pp.1012-1020, 2005.

B. Y. Yu, J. Zheng, Y. Chang, M. C. Sin, C. H. Chang et al., Surface Zwitterionization of Titanium for A General Bio-inert Control of Plasma Proteins, Blood Cells, Tissue Cells, and Bacteria, Langmuir, vol.30, pp.7502-7512, 2014.

J. C. Lo?ters, W. Olthuis, P. H. Veltink, and P. Bergveld, The Mechanical Properties of the Rubber Elastic Polymer Polydimethylsiloxane for Sensor Applications, J. Micromech. Microeng, vol.7, pp.145-147, 1997.

J. Zhou, A. V. Ellis, and N. H. Voelcker, Recent Developments in PDMS Surface Modification For Microfluidic Devices, Electrophoresis, pp.31-33, 2010.

M. C. Martins, B. D. Ratner, and M. A. Barbosa, Protein Adsorption on Mixtures of Hydroxyl-and Methyl-Terminated Alkanethiols Self-assembled Monolayers, J. Biomed. Mater. Res, vol.67, pp.158-171, 2003.

Y. N. Chou, Y. Chang, and T. C. Wen, Applying Thermosettable Zwitterionic Copolymers as General Fouling-resistant and Thermaltolerant Biomaterial Interfaces, ACS Appl. Mater. Interfaces, vol.7, pp.10096-100107, 2015.

M. Brac?c, T. Mohan, R. Kargl, T. Griesser, S. Hribernik et al., Preparation of PDMS Ultrathin Films and Patterned Surface Modification with Cellulose

S. Guo, D. Jan?zewski, X. Zhu, R. Quintana, T. He et al., Surface Charge Control for Zwitterionic Polymer Brushes: Tailoring Surface Properties to Antifouling Applications, J. Colloid Interface Sci, vol.452, pp.43-53, 2015.

H. Ye, L. Huang, W. Li, Y. Zhang, L. Zhao et al., Protein Adsorption and Desorption Behavior of a pH-responsive Membrane Based on Ethylene Vinyl Alcohol Copolymer, 2017.

Y. H. Zhao, K. H. Wee, and R. Bai, Highly Hydrophilic and Lowprotein-fouling Polypropylene Membrane Prepared by Surface Modification with Sulfobetaine-based Zwitterionic Polymer Through a Combined Surface Polymerization Method, J. Membr. Sci, vol.362, pp.326-333, 2010.

P. Z?liszewska, A. Bratek-skicki, Z. Adamczyk, and M. Ciesla, Human Fibrinogen Adsorption on Positively Charged Latex Particles, Langmuir, vol.30, pp.11165-11174, 2014.

M. C. Sin, S. Chen, and Y. Chang, Hemocompatibility of Zwitterionic Interfaces and Membranes, Polym. J, vol.46, pp.436-443, 2014.

Y. Chang, S. H. Shu, Y. J. Shih, C. W. Chu, R. C. Ruaan et al., Hemocompatible Mixed-charge Copolymer Brushes of Pseudozwitterionic Surfaces Resistant to Nonspecific Plasma Protein Fouling, Langmuir, vol.26, pp.3522-3530, 2010.

A. Venault, K. J. Hsu, L. C. Yeh, A. Chinnathambi, H. T. Ho et al., Surface Charge-bias Impact of Amine-contained Pseudozwitterionic Biointerfaces on the Human Blood Compatibility, Colloids Surf, pp.372-383, 2017.

V. P. Hairden and J. Harris, The Isoelectric Point of Bacterial Cells, J. Bacteriol, vol.65, 1953.

S. Liu and S. P. Armes, Polymeric Surfactants for the New Millennium: A pH-Responsive, Zwitterionic, Schizophrenic Diblock Copolymer, Angew. Chem., Int. Ed, vol.41, pp.1413-1416, 2002.

Z. Yi, L. P. Zhu, Y. F. Zhao, Z. B. Wang, B. K. Zhu et al., Effects of Coagulant pH and Ion Strength on the Dehydration and Self-assembly of Poly(N, N-dimethylamino-2-ethyl methacrylate) Chains in the Preparation of Stimuli-responsive Polyethersulfone Blend Membranes, J. Membr. Sci, vol.463, pp.49-57, 2014.

M. Lorenzetti, I. Dogs?, T. Stos?cki, D. Stopar, M. Kalin et al., The Influence of Surface Modification on Bacterial Adhesion to Titanium-based Substrates, ACS Appl. Mater. Interfaces, vol.7, pp.1644-1651, 2015.