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SCHUR’S LEMMA FOR COUPLED REDUCIBILITY
AND COUPLED NORMALITY∗

DANA LAHAT† , CHRISTIAN JUTTEN‡ , AND HELENE SHAPIRO§

Abstract. Let A = {Aij}i,j∈I , where I is an index set, be a doubly indexed family of matrices,
where Aij is ni × nj . For each i ∈ I, let Vi be an ni-dimensional vector space. We say A is
reducible in the coupled sense if there exist subspaces, Ui ⊆ Vi, with Ui 6= {0} for at least one i ∈ I,
and Ui 6= Vi for at least one i, such that Aij(Uj) ⊆ Ui for all i, j. Let B = {Bij}i,j∈I also be a
doubly indexed family of matrices, where Bij is mi × mj . For each i ∈ I, let Xi be a matrix of
size ni × mi. Suppose AijXj = XiBij for all i, j. We prove versions of Schur’s Lemma for A,B
satisfying coupled irreducibility conditions. We also consider a refinement of Schur’s Lemma for
sets of normal matrices and prove corresponding versions for A,B satisfying coupled normality and
coupled irreducibility conditions.

Key words. Schur’s Lemma, Sylvester equation, coupled reducibility, coupled decomposition,
normal matrices, coupled normality, independent component analysis (ICA), joint independent sub-
space analysis (JISA).
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1. Introduction. Let K be a positive integer. Let n1, . . . , nK and m1, . . . ,mK

be positive integers. Consider two doubly indexed families of matrices, A = {Aij}Ki,j=1

and B = {Bij}Ki,j=1, where Aij is ni × nj and Bij is mi ×mj . Put N =
∑K
i=1 ni and

M =
∑K
i=1mi. Arrange the Aij ’s into an N × N matrix, A, with Aij in block i, j

of A.

A =


A11 A12 · · · A1K

A21 A22 · · · A2K
...

...
...

AK1 AK2 · · · AKK

 .

Similarly, form an M ×M matrix B with Bij in block i, j. Let Xi be an ni × mi

matrix and form an N ×M matrix X with blocks X1, . . . , XK down the diagonal and
zero blocks elsewhere. Thus,

X =


X1 0 0 · · · 0
0 X2 0 · · · 0
0 0 X3 · · · 0
...

...
...

...
0 0 0 · · · XK

 ,
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where the 0 in position i, j represents an ni ×mi block of zeroes. Then AX = XB if
and only if

(1.1) AijXj = XiBij ,

for all i, j = 1, . . . ,K. We may rewrite AX = XB as AX −XB = 0, a homogeneous
Sylvester equation [25].

We define several versions of coupled reducibility and prove corresponding versions
of Schur’s Lemma [23] for pairs A, B. Imposing coupled irreducibility constraints on A
and B restricts the possible solutions, X1, . . . , XK , to the equations (1.1). We also
discuss a refinement of Schur’s Lemma for normal matrices, and prove corresponding
versions for A, B satisfying coupled normality conditions.

The system of coupled matrix equations (1.1) arises in a recent model for multiset
data analysis [15, 24, 18], called joint independent subspace analysis, or JISA. This
is a very general and flexible framework for data analysis, inspired by two important
extensions of independent component analysis (ICA) (e.g., [6]): (i) multidimensional
ICA, also known as independent subspace analysis (ISA) (e.g., [4]), and (ii) indepen-
dent vector analysis (IVA) [11]. ICA is one of the most successful modern frameworks
for data analysis and source separation, with many applications and rich theoretical
aspects (see, e.g., [7, 5, 10] for an overview). JISA subsumes the richness and power
of ICA, while offering new advantages in data fusion such as the joint analysis of
heterogeneous datasets (i.e., datasets with different structures).

Under certain statistical assumptions, ISA can be formulated as the joint block
diagonalization (JBD) of a set of covariance matrices. One is interested in the finest
possible block diagonal form for the set of matrices; i.e. a decomposition into irreduc-
ible block components. Numerical methods for finding such a decomposition of the
∗-algebra generated by the matrices have been proposed in [21, 22] and elsewhere. If
the JBD is unique, any block-diagonalizing matrix for this JBD can serve as an un-
mixing matrix for ISA and separate the signals [9, 14]. These results rely on Schur’s
lemma [23] to prove the simultaneous similarity of the irreducible components.

The JISA model uses the coupled block diagonalization (CBD) of a doubly indexed
family of correlation and cross-correlation matrices (see, e.g., [20]). Hence, the JISA
model requires coupled versions of irreducibility and Schur’s Lemma for CBD. In this
paper we establish some “coupled” results which are applied to JISA in [20].

We mention that JBD is a special case of a more general class of tensor decom-
positions in multilinear rank terms [8], and CBD is a special case of the vast and
rapidly growing field of coupled matrix and tensor decompositions (see, e.g., [13] and
references therein). It is thus plausible that other variants of Schur’s lemma will arise
when analysing other types of block-based decompositions.

The JISA model consists of K datasets, where each dataset is an unknown mix-
ture of several latent stochastic multivariate signals. The blocks of A and B represent
statistical links among these datasets. More specifically, Aij and Bij represent sta-
tistical correlations among latent signals in the ith and jth datasets. The multiset
joint analysis framework, as opposed to the analysis of K distinct unrelated datasets,
arises when a sufficient number of cross-correlations among datasets, i.e., Aij and
Bij , i 6= j, are not zero. The identifiability and uniqueness of this model, in its sim-
plest form, boil down to characterizing the set of solutions to the system of matrix
equations (1.1), when the cross-correlations among the latent signals are subject to
coupled (ir)reducibility [16, 19, 20]. See [16, 20] for further details on the JISA model,
and on the derivation of (1.1).
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In this paper we consider scenarios more general than those needed for the signal
processing problem in [16, 20]. Section 6, on coupled normal matrices, is relevant
for the JISA model in [16, 20], in which the matrices A and B are Hermitian, and
thus a special case of coupled normal. A limited version of some of these results was
presented orally in, e.g., [1, 17, 12] and in a technical report [16]; however, they were
never published.

While motivated by the system of K2 matrix equations (1.1), the main definitions,
theorems, and proofs do not require a finite K. Thus, for a general index set, I,
we consider doubly indexed families, A = {Aij}i,j∈I and B = {Bij}i,j∈I . For the
situation described above, I = {1, 2, . . . ,K}.

We use F to denote the field of scalars. For some results, F can be any field. For
results involving unitary and normal matrices, F = C, the field of complex numbers.
For each i ∈ I, let ni and mi be positive integers, let Vi be an ni-dimensional vector
space over F, and let Wi be an mi-dimensional vector space over F. (Essentially,
Vi = Fni and Wi = Fmi .) For all i, j ∈ I, let Aij be an ni × nj matrix and let Bij
be mi ×mj . View Aij as a linear transformation from Vj to Vi, and Bij as a linear
transformation from Wj to Wi. For each i ∈ I, let Xi be an ni×mi matrix; view Xi

as a linear transformation fromWi to Vi. We are interested in families A, B satisfying
the equations (1.1) for all i, j ∈ I.

For some results, all of the ni’s will be equal, and all of the mi’s will be equal.
In this case, we use n for the common value of the ni’s and m for the common value
of the mi’s. We then set V = Fn and W = Fm. Each Xi is then n × m. For
I = {1, . . . ,K}, we have N = Kn, and M = Km. All of the blocks Aij in A are
then n× n, while all of the blocks Bij in B are m×m.

Section 2 reviews the usual matrix version of Schur’s Lemma and its proof. Sec-
tion 3 defines coupled reducibility and two restricted versions, called proper and strong
reducibility. Section 4 states and proves versions of Schur’s Lemma for coupled re-
ducibility and proper reducibility, Theorem 4.2. In section 5, we define some graphs
associated with the pair A, B and use them for versions of Schur’s Lemma corre-
sponding to strongly coupled reducibility, Theorems 5.5 and 5.9. Section 6 deals with
a refinement of Schur’s Lemma for sets of normal matrices and corresponding ver-
sions for pairs A, B that are coupled normal, Theorem 6.7. The Appendix presents
examples to support some claims made in Section 3.

2. Reducibility and Schur’s Lemma. We begin by reviewing the ordinary
notion of reducibility for a set of linear transformations and Schur’s Lemma.

Definition 2.1. A set, T , of linear transformations, on an n-dimensional vector
space V, is reducible if there is a proper, non-zero subspace U of V such that T (U) ⊆ U
for all T ∈ T . If T is not reducible, we say it is irreducible.

The subspace U is an invariant subspace for each transformation T in T . We
say T is fully reducible if it is possible to decompose V as a direct sum, V = U ⊕ Û ,
where U and Û are both nonzero, proper invariant subspaces of T .

Alternatively, one can state this in matrix terms. The linear transformations in T
may be represented as n × n matrices, relative to a choice of basis for V. Let d be
the dimension of U ; choose a basis for V in which the first d basis vectors are a basis
for U . Since U is an invariant subspace of each T in T , the matrices representing T
relative to this basis are block upper triangular with square diagonal blocks of sizes
d×d and (n−d)×(n−d). The first diagonal block, of size d×d, represents the action
of the transformation on the invariant subspace U . The (n− d)× d block in the lower
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left hand corner consists of zeroes. Since changing basis is equivalent to applying a
matrix similarity, we have the following matrix version of Definition 2.1.

Definition 2.2 (Matrix version of reducibility). A set M of n× n matrices is
reducible if, for some d, with 0 < d < n, there is a nonsingular matrix S such that,
for each A in M, the matrix S−1AS is block upper triangular with square diagonal
blocks of sizes d× d and (n− d)× (n− d).

When T is fully reducible, we can use a basis for V in which the first d basis
vectors are a basis for U , and the remaining n−d basis vectors are a basis for Û . The
corresponding matrices for T are then block diagonal, with diagonal blocks of sizes
d× d and (n− d)× (n− d).

If F = C andM is reducible, the S in Definition 2.2 can be chosen to be a unitary
matrix, by using an orthonormal basis for Cn in which the first d basis vectors are
an orthonormal basis for U . If M is fully reducible, and the subspaces U and Û
are orthogonal, use an orthonormal basis of U for the first d columns of S and an
orthonormal basis of Û for the remaining n − d columns. Then S is unitary, and
S−1MS is block diagonal, with diagonal blocks of sizes d× d and (n− d)× (n− d).

The following fact is well known; we include the proof because the idea is used
later. For this fact, we assume we are working over C, or at least over a field that
contains the eigenvalues of the transformations.

Proposition 2.3. LetM be an irreducible set of n×n complex matrices. Suppose
the n× n matrix C commutes with every element of M. Then C is a scalar matrix.

Proof. Let λ be an eigenvalue of C; let Uλ denote the corresponding eigenspace.
Let A ∈M. For any v ∈ Uλ, we have C(Av) = A(Cv) = λ(Av). Hence Av is in Uλ,
and so Uλ is invariant under each element of M. Since an eigenspace is nonzero,
and M is irreducible, we must have Uλ = Cn. Hence C = λIn.

Schur’s Lemma is used in representation theory for groups and algebras. However,
one need not have a group or algebra of matrices; the result holds for irreducible sets
of matrices. We include the usual proof [2], because the same idea is used to prove
our versions for coupled reducibility.

Theorem 2.4 (Schur’s Lemma). Let {Ai}i∈I be an irreducible family of n × n
matrices, and let {Bi}i∈I be an irreducible family of m ×m matrices. Suppose P is
an n × m matrix such that AiP = PBi for all i ∈ I. Then, either P = 0, or P
is nonsingular; in the latter case we must have m = n. For matrices of complex
numbers, if Ai = Bi for all i ∈ I, then P is a scalar matrix.

Proof. View the Ai’s as linear transformations on an n-dimensional vector
space V, and the Bi’s as linear transformations on an m-dimensional vector space W.
The n×m matrix P represents a linear transformation from W to V. So ker(P ) is a
subspace of W and range(P ) is a subspace of V.

Let w ∈ ker(P ). Then P (Biw) = AiPw = 0. Hence, ker(P ) is invariant
under {Bi}i∈I . Since {Bi}i∈I is irreducible, ker(P ) is either {0} or W. In the latter
case, P = 0. If P 6= 0, then ker(P ) = {0}. Now consider the range space of P .
For any w ∈ W, we have Ai(Pw) = P (Biw) ∈ range(P ), so the range space of P
is invariant under Ai for each i. Since {Ai}i∈I is irreducible, range(P ) is either {0}
or V. But we are assuming P 6= 0 so range(P ) = V. Since we also have ker(P ) = {0},
the matrix P must be nonsingular and m = n.

If Ai = Bi for all i ∈ I, then P commutes with each Ai. If each Ai is a complex
matrix, then, since {Ai}i∈I is irreducible, P must be a scalar matrix.
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For nonsingular P , we have P−1AiP = Bi for all i ∈ I, so {Ai}i∈I and {Bi}i∈I are
simultaneously similar.

3. Coupled Reducibility. For simultaneous similarity of {Ai}i∈I and {Bi}i∈I ,
there is a nonsingular matrix, P , such that P−1AiP = Bi for all i. We now define
a “coupled” version of similarity for two doubly indexed families, A and B, with
ni = mi for all i ∈ I. In this case, Aij and Bij are matrices of the same size, and in
the equations (1.1), each Xi is a square matrix.

Definition 3.1. Let A = {Aij}i,j∈I and B = {Bij}i,j∈I , where ni = mi for
all i ∈ I. We say A and B are similar in the coupled sense if there exist nonsingular
matrices {Ti}i∈I , where Ti is ni × ni, such that T−1i AijTj = Bij for all i, j ∈ I.

For a finite index set I = {1, . . . ,K}, this can be stated in terms of the matrices A
and B. Let T be the block diagonal matrix T1 ⊕ T2 ⊕ · · · ⊕ TK . Then AT = TB if
and only if AijTj = TiBij for all i, j. Hence, A and B are similar in the coupled sense
if and only if T is nonsingular and T−1AT = B.

We now define several versions of reducible in the coupled sense for a doubly
indexed family A. The basic idea is that there are subspaces, {Ui}i∈I , where Ui ⊆ Vi,
such that Aij(Uj) ⊆ Ui for all i, j ∈ I. This holds trivially when Ui is zero for all i,
and when Ui = Vi for all i, so we shall insist that at least one subspace is nonzero,
and at least one is not Vi. We are also interested in two more restrictive versions: the
case where at least one Ui is a nonzero, proper subspace, and the case where every Ui
is a nonzero, proper subspace of Vi.

Definition 3.2. Let A = {Aij}i,j∈I where Aij is ni×nj. We say A is reducible
in the coupled sense if there exist subspaces {Ui}i∈I , where Ui ⊆ Vi, such that the
following hold.

1. For at least one i, we have Ui 6= {0}, and, for at least one i, we have Ui 6= Vi.
2. For all i, j ∈ I we have Aij(Uj) ⊆ Ui.

We say {Ui}i∈I is a reducing set of subspaces for A, or that A is reduced by {Ui}i∈I .
If A is not reducible in the coupled sense, we say it is irreducible in the coupled sense.
We say A is properly reducible in the coupled sense if at least one Ui is a nonzero,
proper subspace of Vi. We say A is strongly reducible in the coupled sense if every Ui
is a nonzero, proper subspace of Vi.
For i = j, we have Aii(Ui) ⊆ Ui, so Ui is an invariant subspace of Aii. If ni = n
for all i, and the subspaces {Ui}i∈I are all the same nonzero proper subspace, i.e, for
all i, we have Ui = U where U is a nonzero, proper subspace of V, then A is reducible
in the ordinary sense, given in Definition 2.1.

Remark 3.3. If ni = 1 for all i, the one-dimensional spaces Vi have no nonzero
proper invariant subspaces, so A cannot be properly or strongly irreducible. If K = 1,
then A consists of a single n× n matrix.

Note the following, which apply to any doubly indexed family A = {Aij}i,j∈I
and subspaces Ui ⊆ Vi .

1. If Uj = {0}, then Aij(Uj) ⊆ Ui holds for any Aij and any Ui.
2. If Ui = Vi, then Aij(Uj) ⊆ Ui holds for any Aij and any Uj .

These facts will be used below as we explore the matrix version of Definition 3.2 and
construct examples.

An equivalent matrix version of Definition 3.2 is obtained by choosing an ap-
propriate basis for each Vj . Let dj be the dimension of the subspace Uj . We have
0 ≤ dj ≤ nj . If dj is positive, let vj,1, . . . ,vj,dj be a basis for Uj and let Tj be a
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nonsingular nj×nj matrix which has vj,1, . . . ,vj,dj in the first dj columns. If dj = 0,

we may use any nonsingular nj ×nj matrix for Tj . Set Bij = T−1i AijTj ; equivalently,

AijTj = TiBij .

The first dj columns of Tj are a basis for Uj , so Aij(Uj) ⊆ Ui tells us the first dj
columns of AijTj are in Ui. Hence, the first dj columns of TiBij are in Ui, so by the
definition of Ti, each of the first dj columns of TiBij is a linear combination of the
first di columns of Ti. Therefore, each of the first dj columns of Bij will have zeroes
in all entries below row di, and the lower left hand corner of Bij is a block of zeroes
of size (ni − di) × dj . When 0 < di < ni and 0 < dj < nj , the matrix Bij has the
form

(3.1) Bij =

(
C D

0(ni−di)×dj E

)
,

where C is size di× dj and represents the action of Aij on the subspace Uj . The zero
block in the lower left hand block has size (ni − di) × dj , while D is di × (nj − dj)
and E is (ni − di)× (nj − dj).

Remark 3.4. The block matrix (3.1) has a block of zeroes in the lower left hand
corner of size (ni − di)× dj . We also use this terminology for di = 0, di = ni, dj = 0
and dj = nj , in which cases we mean the following. If di = 0, the first dj columns
of Bij are zero. If di = ni there is no restriction on the form of Bij . If dj = 0 there
is no restriction on the form of Bij . If dj = nj the last n− di rows of Bij are zero.

Conversely, if each Bij = T−1i AijTj has the block form in (3.1), define Ui to be the
subspace spanned by the first di columns of Ti. The subspaces {Ui}i∈I then satisfy
Aij(Uj) ⊆ Ui. Hence, we have the following equivalent matrix form of Definition 3.2.

Definition 3.5 (Matrix version of coupled reducibility). Let A = {Aij}i,j∈I .
We say A is reducible in the coupled sense, or, reducible by coupled similarity, if
there exist integers {di}i∈I , with 0 ≤ di ≤ ni, and nonsingular ni × ni matrices Ti,
such that the following hold.

1. At least one di is positive and at least one di is less than ni.
2. Each matrix Bij = T−1i AijTj has a block of zeroes in the lower left hand

corner of size (ni − di)× dj.
We say A is properly reducible in the coupled sense if 0 < di < ni for at least one
value of i. We say A is strongly reducible in the coupled sense if 0 < di < ni for
every i.

Full reducibility by coupled similarity occurs when, for each i, there is also a
subspace Ûi such that Vi = Ui ⊕ Ûi, and Aij(Ûj) ⊆ Ûi for all i, j ∈ I. For the
corresponding matrix version, use a basis for Uj in the first dj columns of Tj and a

basis for Ûj in the remaining nj − dj columns. For 0 < di < ni and 0 < dj < nj , the
matrix Bij = T−1i AijTj has the block form

(3.2) Bij =

(
C 0di×(nj−dj)

0(ni−di)×dj E

)
.

The di × dj matrix C represents the action of Aij on Uj and the (ni − di)× (nj − dj)
matrix E represents the action of Aij on Ûj .

For the field of complex numbers we have unitary versions.
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Definition 3.6 (Unitary version of reducible in the coupled sense). Let A be a
family of complex matrices. We say A is unitarily reducible in the coupled sense if
the conditions of Definition 3.5 are satisfied with unitary matrices Ti.

For complex A, reducibility by coupled similarity implies reducibility by coupled
unitary similarity. Simply use an orthonormal basis for each Ui, and extend it to an
orthonormal basis for Vi to obtain a unitary matrix for Ti. If A is fully reducible,
and Ui and Ûi are orthogonal subspaces, then, for each Vi = Ui ⊕ Ûi, we can form a
unitary matrix Ti using an orthonormal basis for Ui for the first di columns and an
orthonormal basis for Ûi for the remaining ni − di columns. Each Bij then has the
block form (3.2).

Unitary reducibility matters in the JISA model, because A and B are correlation
matrices, and the appropriate linear change of variable leads to a congruence, rather
than a similarity. When Ti is unitary, T−1i = T ∗i . For T = T1 ⊕ T2 ⊕ · · · ⊕ Tk we then
have T−1AT = T ∗AT .

From the definitions, it is clear that if A is strongly reducible, then it is also
properly reducible, and if it is properly reducible, it is reducible. We introduce some
notation. Fix an index set, I. Use |I| to denote the size of I; when I is a finite
set with K elements, we assume I = {1, 2, . . . ,K}. Fix a family {ni}i∈I of positive
integers, and a field F. Consider the set of all A = {Aij}i,j∈I , where Aij is an ni×nj
matrix with entries from F. We use Red(F, {ni}i∈I) to denote the set of all such
families A which are reducible in the coupled sense. We use PropRed(F, {ni}i∈I)
for the set of all such A which are properly reducible in the coupled sense, and
StrRed(F, {ni}i∈I) for the set of all such A that are strongly reducible in the coupled
sense. When all ni’s have the same value, n, and |I| = K, we use the notations
Red(F, n,K), PropRed(F, n,K), and StrRed(F, n,K).

When ni = 1, the space Vi = F is one dimensional and has no nonzero proper
subspaces. Hence, StrRed(F, {ni}i∈I) is the empty set if ni = 1 for some i, and
PropRed(F, {ni}i∈I) is the empty set when ni = 1 for all i.

From Definition 3.2 it is obvious that

(3.3) StrRed(F, {ni}i∈I) ⊆ PropRed(F, {ni}i∈I) ⊆ Red(F, {ni}i∈I).

Using the superscript “C” to indicate the complement of a set, we then have

(3.4) RedC(F, {ni}i∈I) ⊆ PropRedC(F, {ni}i∈I) ⊆ StrRedC(F, {ni}i∈I).

The symbol “⊆” means “subset of or equal to.” We use “⊂” to indicate “proper subset
of.” One might expect that “⊆” can generally be replaced by “⊂” in (3.3) and (3.4).
This is correct when I has at least four elements, and ni ≥ 2 for at least one value
of i, but there are exceptions when |I| < 4. The appendix treats this in more detail
and presents examples. Here is a summary of what is shown there.

1. For any field F, if |I| ≥ 4 and ni ≥ 2 for at least one i,

StrRed(F, {ni}i∈I) ⊂ PropRed(F, {ni}i∈I) ⊂ Red(F, {ni}i∈I).

Consequently,

RedC(F, {ni}i∈I) ⊂ PropRedC(F, {ni}i∈I) ⊂ StrRedC(F, {ni}i∈I).

2. For any field F, if |I| ≥ 2 and ni ≥ 2 for at least one i,

StrRed(F, {ni}i∈I) ⊂ PropRed(F, {ni}i∈I).



8 DANA LAHAT, CHRISTIAN JUTTEN, AND HELENE SHAPIRO

3. If F is algebraically closed and n ≥ 2, then

PropRed(F, n, 2) = Red(F, n, 2) and PropRed(F, n, 3) = Red(F, n, 3).

4. For the field, R, of real numbers, when n = 2, we have

PropRed(R, 2, 2) ⊂ Red(R, 2, 2) and PropRed(R, 2, 3) ⊂ Red(R, 2, 3).

For n ≥ 3,

PropRed(R, n, 2) = Red(R, n, 2) and PropRed(R, n, 3) = Red(R, n, 3).

4. A coupled version of Schur’s Lemma. The main result of this section
is Theorem 4.2, a coupled version of Schur’s Lemma for reducibility and proper re-
ducibility. Section 5 deals with the more complicated version for strong reducibility.

Consider families A = {Aij}i,j∈I and B = {Bij}i,j∈I , where Aij is ni×nj and Bij
is mi×mj , linked by equations AijXj = XiBij , where Xi is ni×mi. Recall that Aij
is a linear transformation from Vj to Vi, and Bij is a linear transformation from Wj

to Wi. The matrix Xi is a linear transformation from Wi to Vi. Note that ker(Xi) is
a subspace of Wi and range(Xi) is a subspace of Vi.

Reviewing the proof of Schur’s Lemma (Theorem 2.4), the key facts are that
ker(P ) is an invariant subspace of {Bi}i∈I , and range(P ) is an invariant subspace
of {Ai}i∈I . For the case of complex matrices with Ai = Bi for all i, any eigenspace
of P is an invariant subspace of {Ai}i∈I . The following “coupled” versions of these
facts are used to prove coupled versions of Schur’s lemma for A, B. In the coupled
versions, the Xi’s play the role of the P .

Lemma 4.1. Let A = {Aij}i,j∈I and B = {Bij}i,j∈I , where Aij is ni×nj and Bij
is mi ×mj. Let Xi be ni ×mi and suppose for all i, j ∈ I, we have AijXj = XiBij .
If mi = ni for some i, then, for any scalar α, define Ui(α) = {v

∣∣ Xiv = αv}. The
following hold for all i, j ∈ I.

1. Bij(ker(Xj)) ⊆ ker(Xi).
2. Aij(range(Xj)) ⊆ range(Xi).
3. If A = B, then Aij(Uj(α)) ⊆ Ui(α).

Proof. Let w ∈ ker(Xj). Then Xi(Bijw) = AijXjw = 0, so Bijw ∈ ker(Xi).
This proves 1.

For w ∈ W, we have Aij(Xjw) = Xi(Bijw) ∈ range(Xi), proving 2.
Finally, suppose A = B. Then AijXj = XiAij for all i, j. Let v ∈ Uj(α). Then

Xi(Aijv) = AijXjv = α(Aijv), showing Aijv ∈ Ui(α).

If mi = ni and α is an eigenvalue of Xi, with α ∈ F, then Ui(α) is the correspond-
ing eigenspace. If α is not an eigenvalue of Xi, then Ui(α) is the zero subspace.

We now state a version of Schur’s Lemma for families that are irreducible in the
coupled sense. The proofs simply extend the argument used to prove the usual Schur
Lemma.

Theorem 4.2. Let A = {Aij}i,j∈I and B = {Bij}i,j∈I , where Aij is ni × nj
and Bij is mi × mj. Let Xi be ni × mi and suppose that for all i, j ∈ I, we have
AijXj = XiBij.

1. Suppose both A and B are irreducible in the coupled sense. Then, either
Xi = 0 for all i, or Xi is nonsingular for all i. In the latter case, mi = ni
for all i. If A = B, and A is a family of complex matrices, then there is a
scalar α such that Xi = αIni

for all i.
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2. Suppose neither A nor B is properly reducible in the coupled sense. Then, for
each i, either Xi = 0 or Xi is nonsingular. If Xi is nonzero we must have
mi = ni. If A = B and consists of complex matrices, then any nonzero Xi is
a scalar multiple of Ini , i.e., for some scalar αi we have Xi = αiIni .

Proof. For part 1, assume both A and B are coupled irreducible. Consider the
subspaces ker(Xi), i ∈ I. Since B is irreducible in the coupled sense, statement 1 of
Lemma 4.1 tells us there are only two possibilities: either ker(Xi) = {0} for all i, or
ker(Xi) =Wi for all i. In the latter case, Xi = 0 for all i and so we are done.

Suppose now that ker(Xi) = {0} for all i. We now use the subspaces range(Xi),
for i ∈ I. Since A is irreducible in the coupled sense, part 2 of Lemma 4.1 tells us
the only possibilities are range(Xi) = {0} for all i, or, range(Xi) = Vi for all i. If
range(Xi) = {0} for all i, then Xi = 0 for all i. Otherwise, ker(Xi) = {0} and
range(Xi) = Vi for all i. Hence each Xi is nonsingular and mi = ni.

Now supposeA = B and F = C. Let α be an eigenvalue of Xp for some fixed p ∈ I.
Part 3 of Lemma 4.1 tells us Aij(Uj(α)) ⊆ Ui(α) for all i, j. Since A is irreducible in
the coupled sense, there are then only two possibilities for the subspaces Ui(α): either
they are all zero, or Ui(α) = Vi for all i. Since α was chosen to be an eigenvalue of Xp,
we know Up(α) is not zero. Therefore, Ui(α) = Vi for all i, and hence Xi = αIni

for
all i.

For part 2, assume neither A nor B is properly reducible in the coupled sense.
Consider ker(Xi). Since B is not properly reducible in the coupled sense, Lemma 4.1
tells us ker(Xi) cannot be a nonzero, proper subspace of Wi. Hence, for each partic-
ular i, either ker(Xi) = {0} or ker(Xi) =Wi. In the latter case, Xi = 0.

Suppose ker(Xi) = {0} for some i. Since A is not properly reducible in the
coupled sense, Lemma 4.1 tells us range(Xi) is either {0} or Vi. If range(Xi) = {0}
then Xi = 0 . Otherwise, we have both ker(Xi) = {0} and range(Xi) = Vi, so Xi is
nonsingular and mi = ni.

Now suppose A = B is a family of complex matrices. Suppose Xp 6= 0 for
some p. Let αp be an eigenvalue of Xp. Note αp 6= 0 because Xp is nonsingular.
By Lemma 4.1, we have Aij(Uj(αp)) ⊆ Ui(αp) for all i, j. Since A is not properly
reducible in the coupled sense, each Ui(αp) is either zero or the full vector space Vi.
Since αp is an eigenvalue of Xp, the space Up(αp) is not zero. Therefore, Up(αj) = Vp
and Xp = αpInp .

Remark 4.3. The ordinary version of Schur’s Lemma, Theorem 2.4, applies to the
case where both A and B are irreducible in the sense of Definition 2.1, and Xi = P
for all i.

Note the different conclusions for the two parts of Theorem 4.2. For part 1, either
all Xi’s are zero, or all are nonsingular. When A = B and F = C, all the Xi’s are
the same scalar multiple of the identity matrix. In part 2, there are more options
for the Xi’s. Each Xi is either zero or nonsingular, but some can be zero and others
nonsingular. For A = B and F = C, the proof for part 2 gives Xp = αpInp

for
a particular value of p; it does not show every nonzero Xi equals the same scalar
multiple of the identity matrix.

The broader range of options for the Xi’s in part 2 makes sense when we con-
sider that, at least for |I| ≥ 4, we have PropRed(F, {ni}i∈I) ⊂ Red(F, {ni}i∈I), and
hence RedC(F, {ni}i∈I) ⊂ PropRedC(F, {ni}i∈I). Part 2 applies to a broader set of
pairs A, B than part 1.

Consider the situation in part 2 of Theorem 4.2. Suppose Xi = 0 and Xj is
nonsingular. The equation AijXj = XiBij then tells us Aij = 0, while AjiXi = XjBji
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gives Bji = 0. Set

I0 = {i ∈ I | Xi = 0} and Inon = {i ∈ I | Xi is nonsingular}.

We have Aij = 0 and Bji = 0 whenever i ∈ I0 and j ∈ Inon. For example,
suppose I = {1, 2, . . . ,K}, and, for some 0 < s < K, we have I0 = {1, 2, . . . , s}
and Inon = {s+ 1, s+ 2, . . . ,K}. The N ×N matrix A then has only zero blocks in
the upper right hand corner formed from the first s block rows and last K − s block
columns. The M ×M matrix B has zero blocks in the lower left hand corner formed
by the last K − s block rows and first s block columns.

A =



A11 · · · A1s 0 · · · 0
...

...
...

...
As1 · · · Ass 0 · · · 0

A(s+1)1 · · · A(s+1)s A(s+1)(s+1) · · · A(s+1)K

...
...

...
...

AK1 · · · AKs AK(s+1) · · · AKK


.

Returning to the case of general I, one can check that A is coupled reducible via the
subspaces Ui = {0} for i ∈ I0, and Ui = Vi for i ∈ Inon. The family B is coupled
reducible via the subspaces Ui =Wi when i ∈ I0, and Ui = {0} when i ∈ Inon.

5. Strong reducibility and Schur’s Lemma. We now consider strongly cou-
pled reducibility. Our goal is a version of Schur’s lemma for families that are not
strongly reducible in the coupled sense, with a conclusion similar to that of Theo-
rem 4.2: each Xi is either zero or nonsingular. The next example shows that for such
a conclusion, we need some restrictions on Aij and Bij .

Example 5.1. Let n = m = 2 (so V =W = F2), and K = 2. Put

A11 = A22 =

(
0 1
0 0

)
A21 =

(
0 0
0 0

)
A12 =

(
a b
c d

)

B11 = B22 =

(
0 1
0 0

)
B21 =

(
a b
c d

)
B12 =

(
0 0
0 0

)
.

In terms of the matrices A,B:

A =


0 1 | a b
0 0 | c d

0 0 | 0 1
0 0 | 0 0

 B =


0 1 | 0 0
0 0 | 0 0

a b | 0 1
c d | 0 0

 .

Let U be the subspace spanned by e1 =

(
1
0

)
. One may easily check that A is

properly reducible in the coupled sense with U1 = U and U2 = {0}, while B is properly
reducible in the coupled sense with U1 = {0} and U2 = U . However, if c 6= 0, then
neither A nor B is strongly reducible in the coupled sense. The reason is that U is

the only nonzero, proper invariant subspace for the diagonal blocks,

(
0 1
0 0

)
, of A

and B, so U1 = U2 = U is the only possible choice for nonzero, proper subspaces U1
and U2. If c 6= 0, then A12(U) 6⊂ U , and B21(U) 6⊂ U . So if c 6= 0, neither A nor B
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is strongly reducible in the coupled sense. Set X1 =

(
0 1
0 0

)
, X2 =

(
0 0
0 0

)
and X = X1 ⊕X2. One may check that AX = XB = 0 and hence AijXj = XiBij
for i, j = 1, 2. The point is that the matrix X1 is neither zero nor nonsingular.

Our theorem for coupled pairs A, B that are not strongly reducible will be for
the case when ni = n and mi = m for all i. It will have a hypothesis about graphs
related to A and B; roughly speaking, this hypothesis will tell us there are “enough”
nonsingular Aij ’s and Bij ’s. Although our main result assumes A is a family of n×n
matrices and B is a family of m×m matrices, we define the graphs for families with
matrices of any size.

Recall that a matrix is said to have full column rank if the columns are linearly
independent; thus, the rank of the matrix equals the number of columns. If A is a
p × q matrix with full column rank, and U is a subspace of Fq, then A(U) has the
same dimension as U .

Consider A = {Aij}i,j∈I , and subspaces {Ui}i∈I , satisfying Aij(Uj) ⊆ Ui for
all i, j. Let di be the dimension of Ui. If Aij has full column rank, then Aij(Uj) ⊆ Ui
tells us dj ≤ di. If Aji also has full column rank, then we also have di ≤ dj , and
hence di = dj . When Aij and Aji both have full column rank, nj ≤ ni and ni ≤ nj ,
so ni = nj ; hence, Aij and Aji are actually square, nonsingular matrices. If all of
the Aij ’s have full column rank, then all of the ni’s have the same value, n, and
all of the subspaces Uj have the same dimension, d. However, we need not assume
all of the matrices Aij are nonsingular in order to show the Uj ’s all have the same
dimension. To explore this further, we introduce a directed graph in which directed
edges correspond to the Aij ’s of full column rank.

Definition 5.2. Let A = {Aij}i,j∈I , with Aij of size ni×nj. The directed graph
(digraph) of A, denoted D(A), is the graph on vertices {vi}i∈I , such that there is a
directed edge (vi, vj) from vi to vj if and only if Aij has full column rank.

For a finite index set, I = {1, . . . ,K}, there are K vertices. If ni = 1 for all i,
our D(A) is just the usual directed graph associated with a K ×K matrix.

More generally, there is a vertex for each i ∈ I, so there could be infinitely many
vertices. We use the same definition for directed walk as for graphs with a finite
number of vertices. A directed walk is a finite sequence of vertices, vi1 , vi2 , . . . , vip ,
such that (vij , vi(j+1)

) is a directed edge for 1 ≤ j ≤ (p − 1). In this case, we write
vi1 → vi2 → · · · → vip . Vertices v and w in a directed graph D are said to be strongly
connected if there is a directed walk from v to w and a directed walk from w to v. We
say D is strongly connected if each pair of vertices of D is strongly connected.

Proposition 5.3. Let A = {Aij}i,j∈I and suppose the subspaces {Ui}i∈I satisfy
Aij(Uj) ⊆ Ui, for all i, j. Then the following hold.

1. If there is a directed walk from vi to vj in D(A), then nj ≤ ni, and
dim(Uj) ≤ dim(Ui).

2. If the vertices vi and vj are strongly connected in D(A), then ni = nj, and
dim(Uj) = dim(Ui)

3. If D(A) is strongly connected, all of the ni’s are equal, and all of the sub-
spaces Ui have the same dimension.

Proof. Let di = dim(Ui). If (vi, vj) is a directed edge of D(A), then Aij has full
column rank, so, as we have already observed, nj ≤ ni and dj ≤ di.

More generally, suppose vi = vi1 → vi2 → · · · → vip = vj is a directed walk
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from vi to vj in D(A). Working from right to left, we have

nj = nip ≤ nip−1
≤ · · · ≤ ni2 ≤ ni1 = ni

and
dj = dip ≤ dip−1

≤ · · · ≤ di2 ≤ di1 = di.

Hence, nj ≤ ni and dj ≤ di.
If vi and vj are strongly connected, there is a directed walk from vi to vj and a

directed walk from vj to vi. So ni = nj and di = dj .
If D(A) is strongly connected, then, for all i, j, we have di = dj and ni = nj , so

all of the subspaces Uj have the same dimension and all of the ni’s have the same
value.

As an example, suppose I = {1, . . . ,K} and A12, A23, . . . AK−1,K , AK1 all have
full column rank. Then D(A) contains the directed cycle

v1 → v2 → · · · → vK−1 → vK → v1,

and is strongly connected.
If D(A) is not strongly connected, the strong components identify sets of ni’s

which must be equal, and sets of subspaces Ui which must have the same dimension.
For each strong component, C, of D(A), all ni’s corresponding to vertices of C must
be equal, and all subspaces Ui corresponding to vertices of C must have the same
dimension. For a finite I, we can use the strong components to put the N × N
matrix A into a block triangular form in which none of the Aij ’s below the diagonal
blocks has full column rank. (See [3], section 3.2.)

For the proofs of coupled versions of Schur’s Lemma, the subspaces Ui of interest
are the kernels and ranges of the matrices {Xi}i∈I .

Proposition 5.4. Let A = {Aij}i,j∈I and B = {Bij}i,j∈I . Let Xi be ni ×mi,
and suppose AijXj = XiBij for all i, j ∈ I. Then the following hold.

1. If vi and vj are strongly connected in D(A), then range(Xi) and range(Xj)
have the same dimension, i.e., Xi and Xj have the same rank.

2. If vi and vj are strongly connected in D(B), then ker(Xi) and ker(Xj) have
the same dimension, i.e., Xi and Xj have the same nullity.

3. If D(A) is strongly connected, all of the ni’s have the same value, n, and all
of the Xi’s have the same rank.

4. If D(B) is strongly connected, all of the mi’s have the same value, m, and all
of the Xi’s have the same nullity, d.

5. If vi and vj are strongly connected in D(B), then Xi and Xj have the same
rank.

6. If D(B) is strongly connected, all of the Xi’s have the same rank.

Proof. The first four parts follow from Lemma 4.1 and Proposition 5.3. For part 5,
suppose vi and vj are strongly connected in D(B). Then mi = mj , so the matrices Xi

and Xj have the same number of columns. From part 2, we know Xi and Xj have the
same nullity. The rank plus nullity theorem then tells us Xi and Xj have the same
rank. Part 6 is an immediate consequence of part 5.

We now have a version of Schur’s lemma for families A, B when neither is strongly
reducible in the coupled sense.

Theorem 5.5. Assume neither A = {Aij}i,j∈I nor B = {Bij}i,j∈I is strongly
reducible in the coupled sense. Assume also that both D(A) and D(B) are strongly
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connected. Let Xi be n×m for all i ∈ I, and suppose AijXj = XiBij for all i, j ∈ I.
Then either Xi = 0 for all i, or Xi is nonsingular for all i. In the latter case we must
have m = n. If A = B is a family of complex matrices, then there is some scalar α
such that Xi = αIn for all i.

Proof. Note first that since D(A) and D(B) are both strongly connected, the Aij ’s
are all square matrices of the same size, n, and the Bij ’s are all square matrices of
the same size, m.

By Proposition 5.4, the subspaces ker(Xi), for i ∈ I, all have the same dimen-
sion, d. Since B is not strongly reducible in the coupled sense, either d = 0 or d = m.
If d = m, then Xi = 0 for all i and we are done.

Assume then that d = 0. Proposition 5.4 tells us the subspaces range(Xi) all
have the same dimension, r. Since A is not strongly reducible in the coupled sense
either r = 0 or r = n. If r = 0, then Xi = 0 for all i. If r = n, then, since we also
have d = 0, the Xi’s are nonsingular; we then have m = n.

If A = B, we have AijXj = XiAij for all i, j. Fix p and let α be an eigenvalue
of Xp with corresponding eigenspace Up(α); the subspace Up(α) is nonzero, because α
is an eigenvalue of Xp. From part 3 of Lemma 4.1, we have Aij(Uj(α)) ⊆ Ui(α) for
all i, j. Since D(A) is strongly connected, Proposition 5.3 tells us the spaces Ui(α) all
have the same dimension; call it f . Since Up(α) is nonzero, we know f > 0. Hence,
since A is not strongly reducible in the coupled sense, we must have f = n, and
Xi = αIn for all i.

Remark 5.6. Earlier work [16] gives a proof, using block matrix computation, for
the case where all Aij ’s and Bij ’s are assumed to be nonsingular.

The proof of Theorem 5.5 uses the assumption that both D(A) and D(B) are
strongly connected in two ways: to establish that ni = n and mi = m for all i, and
to show that the relevant subspaces (kernels and ranges of the Xi’s) have the same
dimension. We now develop another version of Theorem 5.5, in which we weaken the
hypothesis about the graphs, but then need to explicitly assume that ni = n and
mi = m for all i. The key point for this second version is that Xi and Xj have the
same rank whenever vi and vj are strongly connected in either of the digraphs D(A)
or D(B).

We use A and B to define an undirected graph, G(A,B), as follows.

Definition 5.7. The undirected graph, G(A,B), is the graph on vertices {vi}i∈I ,
such that {vi, vj} is an (undirected) edge of G(A,B) if and only if the vertices vi and vj
are either strongly connected in D(A), or in D(B) (or both). We call this the linked
graph of A and B.

Proposition 5.8. Let A = {Aij}i,j∈I and B = {Bij}i,j∈I . Let Xi be ni×mi and
suppose AijXj = XiBij for all i, j ∈ I. If vi and vj are connected in G(A, B) then Xi

and Xj have the same rank. If G(A, B) is connected, then all of the matrices Xi have
the same rank.

Proof. Suppose vi and vj are connected in G(A,B). Then there is a sequence
of vertices, vi = vi1 , vi2 , vi3 , . . . , vip−1

, vip = vj , such that {vik , vik+1
} is an edge of

G(A,B) for k = 1, . . . , p− 1. This means vik and vik+1
are either strongly connected

in D(A) or strongly connected in D(B), or both. Therefore, rank(Xik) = rank(Xik+1
)

for k = 1, . . . , p− 1, and hence rank(Xi) = rank(Xj).

If either D(A) or D(B) is strongly connected, then G(A,B) will be connected.
However, G(A,B) can be a connected graph even if neither of the digraphs D(A)
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Fig. 1. D(A), D(B) and G(A, B)

nor D(B) is strongly connected. For example, suppose K = 3 and

A =

 0 A12 0
A21 0 0
0 0 0

 B =

 0 0 B13

0 0 0
B31 0 0

 ,

where A12, A21, B13 and B31 are all nonsingular. Neither D(A) nor D(B) is connected,
but G(A,B) is connected. (See Figure 1.)

As another example, suppose I1 and I2 are nonempty, disjoint subsets of I such
that I = I1 ∪ I2. Partition the vertices of G(A, B) into two sets corresponding to I1
and I2, setting

S = {vi | i ∈ I1} and T = {vi | i ∈ I2}.
Suppose rank(Aij) < nj and rank(Bij) < mj , whenever i ∈ I1 and j ∈ I2. Then
neither D(A) nor D(B) has any directed edges from vertices in S to vertices in T .
The linked graph G(A,B) then has no edges from vertices in S to vertices in T and
hence is not connected.

Now suppose that, whenever i ∈ I1 and j ∈ I2, we have rank(Aij) < nj and
rank(Bji) < mi, (note the reversal of subscripts on Bji). In this case, D(A) has no
directed edges from vertices in S to vertices in T , while D(B) has no directed edges
from vertices in T to vertices in S. Consequently, if v ∈ S and w ∈ T , then the
pair v, w is not strongly connected in either D(A) or D(B). Hence, G(A,B) has no
edges between vertices in S and vertices in T ; thus G(A,B) is not connected.

The following variation of Theorem 5.5 uses this linked graph, G(A, B).

Theorem 5.9. Assume neither A = {Aij}i,j∈I nor B = {Bij}i,j∈I is strongly
reducible in the coupled sense. Assume also that ni = n and mi = m for all i,
and that G(A,B) is connected. Let Xi be n × m, and suppose AijXj = XiBij for
all i, j ∈ I. Then either Xi = 0 for all i, or Xi is nonsingular for all i. In the latter
case we must have m = n. If A = B is a family of complex matrices, then there is
some scalar α such that Xi = αIn for all i.

Proof. By Proposition 5.8, the subspaces range(Xi), for i in I, all have the same
dimension, r. Since all of the Xi’s have the same number of columns, the rank plus
nullity theorem tells us the subspaces ker(Xi), for i ∈ I, must also all have the same
dimension, d. The remainder of the proof is the same as that for Theorem 5.5.

Comparing Theorems 4.2, 5.5, and 5.9, the simplest version is part 1 of Theo-
rem 4.2. It is the closest to the usual Schur’s Lemma. However, the hypothesis that
both A and B be irreducible in the coupled sense is more restrictive than the hypoth-
esis of part 2 of Theorem 4.2. The conclusion of part 2 has more options for the Xi’s
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than part 1. Theorems 5.5 and 5.9 apply to the larger class of pairs A, B that are
not strongly reducible in the coupled sense, but have additional restrictions about
the connectivity of the graphs D(A), D(B), and G(A, B) and the equality of the ni’s
and mi’s.

6. Normality and coupled normality. We now consider Schur’s Lemma for
irreducible sets of normal matrices. This is closely related to Lemma A.4 of [22]. We
obtain corresponding results for sets A, B satisfying a “coupled normality” condition.
For this section we work over the field of complex numbers. We use * to denote the
transpose conjugate of a matrix. If U is a subspace of V, we use U⊥ for the orthogonal
complement of U . We will need the following facts.

Proposition 6.1. Let A be a normal matrix. Let S be nonsingular and suppose
B = S−1AS. Then the following are equivalent.

1. The matrix B is normal.
2. S−1A∗S = B∗.
3. The matrix SS∗ commutes with A.
4. The matrix SS∗ commutes with A∗.
5. The matrix S∗S commutes with B.
6. The matrix S∗S commutes with B∗.

Proof. The equivalence of 2, 3 and 4 is easily shown. Using B = S−1AS,

S−1A∗S = B∗ ⇐⇒ S−1A∗S = S∗A∗S−∗

⇐⇒ A∗SS∗ = SS∗A∗

⇐⇒ SS∗A = ASS∗,

where the third line comes from taking the transpose conjugate of the equation in the
second line. A similar calculation, starting with A = SBS−1, shows 2, 5 and 6 are
equivalent:

SB∗S−1 = A∗ ⇐⇒ SB∗S−1 = S−∗B∗S∗

⇐⇒ S∗SB∗ = B∗S∗S
⇐⇒ BS∗S = S∗SB.

The fact that 2 implies 1 is also easy. If S−1A∗S = B∗, use AA∗ = A∗A to get

BB∗ = (S−1AS)(S−1A∗S) = (S−1A∗S)(S−1AS) = B∗B.

The only part needing any work at all is to show 1 implies 2. Let λ1, . . . , λn be the
eigenvalues of A and let D be the diagonal matrix with diagonal entries λ1, . . . , λn.
Since A is normal, A = U∗DU for some unitary matrix U , and A∗ = U∗DU , where the
bar denotes complex conjugation. Note λ1, . . . , λn are the eigenvalues of A∗. Let p(x)
be a polynomial such that p(λi) = λi for each eigenvalue λi. Then D = p(D), and

A∗ = U∗p(D)U = p(U∗DU) = p(A).

Since B is similar to A, the matrix B also has eigenvalues λ1, . . . , λn and B∗ has
eigenvalues λ1, . . . , λn. If B is normal, B = V ∗DV for some unitary matrix V .
Hence,

B∗ = V ∗DV = V ∗p(D)V = p(V ∗DV ) = p(B).

But p(B) = p(S−1AS) = S−1p(A)S = S−1A∗S, so B∗ = S−1A∗S.

This gives an easy proof of the following.
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Theorem 6.2. Suppose {Ai}i∈I and {Bi}i∈I are irreducible families of normal
matrices, and S is a nonsingular matrix such that S−1AiS = Bi for all i ∈ I. Then S
is a scalar multiple of a unitary matrix.

Proof. By the preceding proposition, SS∗ commutes with each Ai. Since {Ai}i∈I
is an irreducible family, SS∗ must be a scalar matrix. Since S is nonsingular, the
Hermitian matrix SS∗ is positive definite; hence SS∗ = αI where α is a positive real
number. Set U = 1√

α
S. Then UU∗ = 1

αSS
∗ = I. So U is unitary and S =

√
αU .

Remark 6.3. This argument is essentially the proof of Lemma A.4 of [22], which
says that if two irreducible representations of a ∗-algebra of square matrices are equiv-
alent, then they are similar via a unitary similarity. Let S be the algebra generated
by {Ai}i∈I and let T be the algebra generated by {Bi}i∈I . For any normal matrix, N ,
the matrix N∗ is a polynomial in N , so the algebras S and T are ∗-algebras, (which
means that whenever A is in the algebra, so is A∗). Let S be a nonsingular matrix
such that S−1AiS = Bi for all i. Proposition 6.1 tells us S−1A∗iS = B∗i for all i, so S
may be extended to an isomorphism of the ∗-algebras S and T in the usual way.

We now introduce the idea of coupled normality.

Definition 6.4. The family A = {Aij}i,j∈I is normal in the coupled sense if
A∗ijAij = AjiA

∗
ji for all i, j ∈ I.

If A is normal in the coupled sense, setting i = j gives A∗iiAii = AiiA
∗
ii, so Aii

is normal for all i. Note also that if Aji = A∗ij for all i, j, then A is coupled normal.
When I = {1, . . . ,K}, the condition Aji = A∗ij for all i, j holds when A is a Hermitian
matrix. In the JISA model, A is a covariance matrix, and hence is a real, symmetric
matrix, so it is Hermitian.

Recall that, for any matrix G, the four matrices G,G∗, GG∗, and G∗G all have the
same rank. Hence, when A is normal in the coupled sense, the matrices Aij and Aji
have the same rank. In particular, note that Aij is nonsingular if and only if Aji is
nonsingular.

Let C be a q×p matrix, let D be a p×q matrix, and let M be the (p+q)× (p+q)
matrix

M =

(
0 D
C 0

)
,

where the zero blocks are p× p and q × q. Then

MM∗ =

(
DD∗ 0

0 CC∗

)
and M∗M =

(
C∗C 0

0 D∗D

)
.

Hence, M is normal if and only if C∗C = DD∗ and D∗D = CC∗. The connection

with coupled normality is this: if we set Mij =

(
0 Aij
Aji 0

)
, then A = {Aij}i∈I is

normal in the coupled sense if and only if Mij is normal for all i, j ∈ I.
Suppose A is normal in the coupled sense and the subspaces {Ui}i∈I satisfy

Aij(Uj) ⊆ Ui for all i, j. Let di be the dimension of Ui. We use the fact that Mij is
normal to show that Aij(U⊥j ) ⊆ U⊥i for all i, j.

Proposition 6.5. Let C,D be matrices of sizes q×p and p×q, respectively, such
that C∗C = DD∗ and D∗D = CC∗. Suppose there are subspaces U of Cp, and W
of Cq, such that C(U) ⊆ W and D(W) ⊆ U . Then C(U⊥) ⊆ W⊥ and D(W⊥) ⊆ U⊥.
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Proof. Let M =

(
0 D
C 0

)
. For any x ∈ Cp and y ∈ Cq,

M

(
x
y

)
=

(
Dy
Cx

)
.

If x ∈ U and y ∈ W, then Dy ∈ U and Cx ∈ W. So U ⊕W, (which is a subspace
of Cp ⊕ Cq), is invariant under M . Since M is normal, the orthogonal complement
of U ⊕W in Cp ⊕ Cq must also be invariant under M . Hence, U⊥ ⊕W⊥ is invariant
under M . This means that, for x ∈ U⊥ and y ∈ W⊥, we have Dy ∈ U⊥ and
Cx ∈ W⊥. So C(U⊥) ⊆ W⊥ and D(W⊥) ⊆ U⊥.

Applying Proposition 6.5 to the normal matrix Mij =

(
0 Aij
Aji 0

)
, we obtain

Aij(U⊥j ) ⊆ U⊥i for all i, j. Hence, if A is normal in the coupled sense, and is re-
ducible in the coupled sense, then it is fully reducible in the coupled sense, because
we can form Tj using a basis for Uj for the first dj columns and a basis for U⊥j for the

remaining n − dj columns. If we use orthonormal bases for Uj and U⊥j , then Tj will
be unitary. Hence A is fully reducible in the coupled sense with a coupled unitary
similarity.

We will give three versions of Theorem 6.2 for A, B that are normal in the
coupled sense, corresponding to the three types of reducibility. The proofs depend
on the following proposition. The first two statements are a “coupled” version of
Proposition 6.1. Part 4 uses the digraphs D(A) and D(B).

Proposition 6.6. Assume the families A = {Aij}i,j∈I and B = {Bij}i,j∈I ,
where Aij and Bij are complex matrices, are normal in the coupled sense. Suppose
AijSj = SiBij for all i, j, where Si is ni × mi. For any i ∈ I, and any scalar α,
define

Ui(α) = {v
∣∣ SiS∗i v = αv} and Yi(α) = {w

∣∣ S∗i Siw = αw}.

Then the following hold.
1. If Si is nonsingular then SiS

∗
i commutes with Aii, and S∗i Si commutes

with Bii.
2. If Si and Sj are both nonsingular,

SiS
∗
i Aij = AijSjS

∗
j and S∗i SiBij = BijS

∗
j Sj .

3. If Si and Sj are both nonsingular,

Aij(Uj(α)) ⊆ Ui(α) and Bij(Yj(α)) ⊆ Yi(α).

If Aij is also nonsingular, then dim(Ui(α)) = dim(Uj(α)).
If Bij is also nonsingular, then dim(Yi(α)) = dim(Yj(α)).

4. Assume Si is nonsingular for all i ∈ I. Then the following hold.
If vi and vj are strongly connected in D(A), then Ui(α) and Uj(α) have the
same dimension.
If vi and vj are strongly connected in D(B), then Yi(α) and Yj(α) have the
same dimension.

5. If α 6= 0 then Ui(α) and Yi(α) have the same dimension.
6. Assume Si is nonsingular for all i ∈ I. Then if vi and vj are connected in
G(A, B), and α 6= 0, we have

dim(Ui(α)) = dim(Uj(α)) = dim(Yi(α)) = dim(Yj(α)).
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Proof. Suppose Si is nonsingular. Since S−1i AiiSi = Bii, and Aii and Bii are both
normal, Proposition 6.1 tells us that SiS

∗
i commutes with Aii and S∗i Si commutes

with Bii.

Now suppose i 6= j, and Si and Sj are both nonsingular. Set Mij =

(
0 Aij
Aji 0

)
.

Then

Mij

(
Si 0
0 Sj

)
=

(
0 Aij
Aji 0

)(
Si 0
0 Sj

)
=

(
0 AijSj

AjiSi 0

)
=

(
0 SiBij

SjBji 0

)
=

(
Si 0
0 Sj

)(
0 Bij
Bji 0

)
.

So, (
Si 0
0 Sj

)−1
Mij

(
Si 0
0 Sj

)
=

(
0 Bij
Bji 0

)
.

Since A and B are both normal in the coupled sense, Mij and

(
0 Bij
Bji 0

)
are both

normal. Set S =

(
Si 0
0 Sj

)
. Proposition 6.1 tells us that SS∗ commutes with Mij .

Hence, (
SiS

∗
i 0

0 SjS
∗
j

)(
0 Aij
Aji 0

)
=

(
0 Aij
Aji 0

)(
SiS

∗
i 0

0 SjS
∗
j

)
,

and SiS
∗
i Aij = AijSjS

∗
j . Use the fact that S∗S commutes with

(
0 Bij
Bji 0

)
to show

S∗i SiBij = BijS
∗
j Sj for all i, j.

For part 3, assume Si and Sj are nonsingular. Let v ∈ Uj(α). By part 2,
SiS

∗
i (Aijv) = Aij(SjS

∗
j v) = α(Aijv). This shows Aij(Uj(α)) ⊆ Ui(α). If Aij is

nonsingular, dim(Aij(Uj(α))) = dim(Uj(α)), so dim(Uj(α)) ≤ dim(Ui(α)). Since A is
coupled normal, Aji is also nonsingular, giving the reverse inequality, so dim(Uj(α)) =
dim(Ui(α)). The corresponding facts for B come from the same argument, using
S∗i SiBij = BijS

∗
j Sj .

For part 4, assume vi and vj are strongly connected in D(A). Proposition 5.3,
together with part 3, gives dim(Ui(α)) = dim(Uj(α)). The same argument applies
when vi and vj are strongly connected in D(B).

Part 5 comes from the fact that S∗j Sj and SjS
∗
j have the same nonzero eigenvalues

with the same multiplicities.
For part 6, suppose vi and vj are connected in G(A, B). Then there is a se-

quence of vertices, vi = vi1 , vi2 , vi3 , . . . , vip−1
, vip = vj , such that {vik , vik+1

} is an
edge of G(A,B) for k = 1, . . . , p−1. This means vik and vik+1

are either strongly con-
nected in D(A) or strongly connected in D(B) (or both). If vik and vik+1

are strongly
connected in D(A), then dim(Uik(α)) = dim(Uik+1

(α)) by part 4. If vik and vik+1

are strongly connected in D(B), then part 4 tells us dim(Yik(α)) = dim(Yik+1
(α)).

But, since α is nonzero, Ui(α) and Yi(α) have the same dimension. So, in either
case, dim(Uik(α)) = dim(Uik+1

(α)) and dim(Yik(α)) = dim(Yik+1
(α)) both hold for



SCHUR’S LEMMA FOR COUPLED REDUCIBILITY AND COUPLED NORMALITY 19

1 ≤ k ≤ p− 1. Hence the four spaces Ui(α),Uj(α),Yi(α) and Yj(α) all have the same
dimension.

With these preliminaries completed, we state and prove a version of Schur’s
Lemma for A, B that are normal in the coupled sense. The three cases correspond to
the three types of coupled reducibility.

Theorem 6.7. Let A = {Aij}i,j∈I and B = {Bij}i,j∈I where Aij is ni × nj
and Bij is mi ×mj. Assume A and B are normal in the coupled sense. Suppose Si
is ni ×mi and AijSj = SiBij for all i, j.

1. If A and B are both irreducible in the coupled sense, then either Si = 0 for
all i, or there is a scalar α such that every Si is α times a unitary matrix;
i.e., Si = αUi, where Ui is unitary. In the latter case, mi = ni for all i.
Furthermore, if A = B, then there is a scalar β such that Si = βIni

for all i.
2. If neither A nor B is properly reducible in the coupled sense, then, for each i,

either Si = 0 or Si is a scalar multiple of a unitary matrix. In the latter
case, mi = ni. Furthermore, if A = B, then every Si is a scalar matrix.

3. Suppose neither A nor B is strongly reducible in the coupled sense. Assume
also that ni = n and mi = m for all i ∈ I, and that the graph G(A,B) is
connected. Then either Si = 0 for all i, or there is a scalar α such that
each Si is α times a unitary matrix; i.e., Si = αUi, where Ui is unitary. In
the latter case we must have m = n. Furthermore, if A = B, then there is
some scalar β such that Si = βIn for all i.

Proof. The proofs are similar to those of Theorems 4.2 and 5.5.
Suppose A and B are both irreducible in the coupled sense. Part 1 of Theorem 4.2

tells us that, either Si = 0 for all i, or Si is nonsingular for all i. In the latter case
we must have mi = ni for all i. Suppose Si is nonsingular for all i. Fix p and
let λ be an eigenvalue of SpS

∗
p . Proposition 6.6 gives Aij(Uj(λ)) ⊆ Ui(λ) for all i, j.

Since A is irreducible in the coupled sense, either all of the subspaces Ui(λ) are zero,
or Ui(λ) = Vi for all i ∈ I. Since λ is an eigenvalue of SpS

∗
p , the space Up(λ) is

nonzero. Therefore, Ui(λ) = Vi for all i, and SiS
∗
i = λIni for all i. Since SiS

∗
i is

positive definite, λ is a positive real number and Ui = 1√
λ
Si is a unitary matrix. Set

α =
√
λ.

For the second version, assume neitherA nor B is properly reducible in the coupled
sense. From part 2 of Theorem 4.2, we know that, for each i, either Si = 0 or Si is
nonsingular. If Si is nonsingular we must have mi = ni. Suppose Sp is nonsingular
for some p. Let λp be an eigenvalue of SpS

∗
p . Since Sp is nonsingular, λp 6= 0. Let N

denote the set of all q such that Sq is nonsingular. Consider the statement

(6.1) Aij(Uj(λp)) ⊆ Ui(λp).

If i, j are both in N , then Si, Sj are both nonsingular and Proposition 6.6 tells us (6.1)
holds. If j /∈ N , then Sj = 0, and hence, since λp is nonzero, Uj(λp) = {0}, so (6.1)
holds. Finally, if i /∈ N but j ∈ N , then Si = 0 and Sj is nonsingular. In this case,
AijSj = SiBij tells us Aij = 0, and (6.1) holds. Hence, (6.1) holds for all i, j. Since A
is not properly reducible in the coupled sense, there are only two possibilities for
each Ui(λp): it is either zero or the whole space Vi. Since λp is an eigenvalue of SpS

∗
p ,

we know Up(λp) is nonzero; therefore it must be the whole space and SpS
∗
p = λpInp

.

Since SpS
∗
p is positive definite, λp is a positive real number and Up = 1√

λp

Sp is a

unitary matrix. So Sp =
√
λpUp, where Up is unitary.
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Finally, consider the third version, where we assume neither A nor B is strongly
reducible in the coupled sense and G(A,B) is connected. From Theorem 5.9, either
Si = 0 for all i, or Si is nonsingular for all i. In the latter case, m = n.

Suppose Si is nonsingular for all i. Fix p and let λ be an eigenvalue of SpS
∗
p .

Since Sp is nonsingular, λ 6= 0. From Proposition 6.6, we have Aij(Uj(λ)) ⊆ Ui(λ), for
all i, j, and the subspaces Ui(λ) all have the same dimension. Let f be the dimension
of these subspaces. Since λ is an eigenvalue of SpS

∗
p , the eigenspace Up(λ) is nonzero.

Hence, f > 0. Since A is not strongly reducible in the coupled sense we must have
f = n. Therefore SiS

∗
i = λIn for all i, the number λ must be a positive real number,

and Ui = 1√
λ
Si is a unitary matrix.

Appendix A. Examples. We construct examples to establish the claims made
in Section 3.

Let I be the index set; let {ni}i∈I be a family of positive integers. If ni = 1, set
Ni = (0). If ni ≥ 2, let Ni be the ni×ni matrix with a 1 in each superdiagonal entry
and zeroes elsewhere. This is the standard nilpotent matrix used in the blocks of the
Jordan canonical form. For any x ∈ Fni ,

Nix =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0




x1
x2
...

xni−1
xni

 =


x2
x3
...
xni

0

 .

Multiplying x on the left by Ni moves the coordinates up one position and puts a 0 in
the last entry. Let eij denote the vector with ni coordinates that has a 1 in entry j and

zeroes in all other positions. Thus, ei1, . . . , e
i
ni

are the unit coordinate vectors for Fni .
Then Nie

i
j = eij−1. Henceforth, we omit the superscript i on ej , as the number of

coordinates will be clear from the context. For example, if we write Aijv, then it is
understood that v has nj coordinates.

Here is the key fact used in the examples.

Proposition A.1. For n ≥ 2, let N be the n × n matrix with a 1 in each su-
perdiagonal entry and zeroes elsewhere. Suppose U is a nonzero, proper invariant
subspace of N . Then e1 ∈ U and en /∈ U .

Proof. Let x be a nonzero vector in U , and let xk be the last nonzero coordinate
of x, i.e., xk+1 = · · · = xn = 0. Then Nk−1x = xke1, so e1 ∈ U .

For the second part, note that Nn−1en, N
n−2en, . . . , Nen, en are the unit coor-

dinate vectors e1, . . . , en. Hence, if en ∈ U , then U is the whole space V. Since U is
a proper subspace of V, the vector en cannot be in U .

Remark A.2. Let Yj be the j-dimensional subspace spanned by e1, . . . , ej , i.e.,
the set of all vectors with zeroes in the last n− j entries. A similar argument shows
that the nonzero invariant subspaces of N are the subspaces Y1, . . . ,Yn.

We now construct some examples.

Example A.3. Assume |I| ≥ 2 and that np ≥ 2 for some p ∈ I. Define A as
follows.

1. Aii = Ni for all i ∈ I.
2. If j 6= p, set Apj = 0.
3. If i 6= p let Aip be any matrix which has eni

in the first column.
4. If i 6= p, and j 6= p, and i 6= j, then Aij can be any ni × nj matrix.
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Set Ui = Vi for i 6= p, and let Up be the line spanned by e1. Since np ≥ 2, the
subspace Up is a nonzero, proper subspace of Vp. One can easily check that the
subspaces {Ui}i∈I properly reduce A.

We now show A is not strongly reducible in the coupled sense. Suppose there
were nonzero, proper subspaces {Ui}i∈I that reduced A. (Note we must then have
ni ≥ 2 for all i.) Each Ui is a nonzero, proper invariant subspace of Ni, so e1 ∈ Ui
and eni

/∈ Ui. Choose i 6= p. Then Aip has eni
in its first column, so Aipe1 = eni

.
But e1 ∈ Up and eni

/∈ Ui, so Aip(Up) 6⊆ Ui. Hence, we have a contradiction, and A is
not strongly reducible in the coupled sense.

Example A.3 shows A can be properly reducible in the coupled sense without
being strongly reducible in the coupled sense. Thus, for any field F, when |I| ≥ 2 and
ni ≥ 2 for at least one i, we have StrRed(F, {ni}i∈I) ⊂ PropRed(F, {ni}i∈I).

The next example shows that if |I| ≥ 4, and ni ≥ 2 for at least one value of i, we
have PropRed(F, {ni}i∈I) ⊂ Red(F, {ni}i∈I).

Example A.4. Assume |I| ≥ 4 and that np ≥ 2 for some p ∈ I. Choose any q ∈ I,
with q 6= p, and define A as follows.

1. Aii = Ni for all i ∈ I.
2. For all i with i 6= p and i 6= q, set Aip = 0 and Aiq = 0.
3. For all other choices of i, j with i 6= j, let Aij be any matrix with en1 in the

first column.
We illustrate for I = {1, 2, . . . ,K}, with p = 1 and q = 2.

A =



N1 ∗
∣∣∣ ∗ ∗ · · · ∗

∗ N2

∣∣∣ ∗ ∗ · · · ∗

0 0
∣∣∣ N3 ∗ · · · ∗

0 0
∣∣∣ ∗ N4 · · · ∗

...
...

∣∣∣∣∣ ...
...

. . .
...

0 0
∣∣∣ ∗ ∗ · · · NK


,

where each asterisk (∗) represents an ni × nj matrix with eni in the first column.
Set Up = Vp, and Uq = Vq. For all other values of i, set Ui = 0. One can check

that A is coupled reducible via {Ui}i∈I .
We now show A is not properly reducible. Suppose A could be properly reduced

by subspaces {Ui}i∈I . At least one Ui must be a nonzero, proper subspace; we first
show this holds for at most one value of i. Suppose Ui and Uj were both nonzero,
proper subspaces, with i 6= j. We must then have ni ≥ 2 and nj ≥ 2. Since Ui
is a nonzero, proper invariant subspace of Ni, and Uj is a nonzero, proper invariant
subspace of Nj , we know e1 is in both Ui and Uj , and eni

/∈ Ui and enj
/∈ Uj . If i = p

and j = q, use the matrix Apq. Since Apqe1 = enp
, we see Apq(Uq) 6⊆ Up. The same

argument, using Aqp, applies when i = q and j = p. Suppose then that at least one
of i, j is different from p and q. Without loss of generality, assume j 6∈ {p, q}. Then
use Aij , which has eni

in its first column. So Aij(Uj) 6⊆ Ui.
So, at most one Ui is a proper, nonzero subspace; each of the other subspaces

is either the whole space Vi or the zero subspace. Assume Ui is the nonzero, proper
subspace; note ni ≥ 2. We claim we can then choose j 6= i so that Aij has eni

in
the first column and Aji has enj in the first column. If i = p, choose j = q, and
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if i = q, choose j = p. If i 6= p and i 6= q, choose any j which is different from i, p
and q. (This is where we use the fact that |I| ≥ 4.) The subspace Uj is either the full
space Vj , or it is the zero subspace. If Uj = Vj , then Aij(Vj) contains Aije1 = eni

,
which is not in Ui. So Aij(Uj) 6⊆ Ui. If Uj = {0}, then, since e1 ∈ Ui, we have
Ajie1 = enj ∈ Aji(Ui). So Aji(Ui) 6⊆ Uj . Hence, A is not properly reducible in the
coupled sense.

In the example above, we needed |I| ≥ 4. What can we say when K = 2 or K = 3?
In these cases, the field F must be considered. The reason is, that for A to be properly
reducible in the coupled sense, at least one Aii must have a nonzero, proper invariant
subspace. If F is algebraically closed and n ≥ 2, then any n × n matrix over F has
an eigenvalue in F, and the line spanned by a corresponding eigenvector is a nonzero,
proper invariant subspace. But if F is not algebraically closed, there may be n × n
matrices over F which have no nonzero proper invariant subspaces. We shall give an
example for the real numbers later, but first we show that if F is an algebraically closed
field, then PropRed(F, n, 2) = Red(F, n, 2) and PropRed(F, n, 3) = Red(F, n, 3) for
all n ≥ 2.

We use the following lemma to deal with the cases K = 2 and K = 3.

Lemma A.5. Let A = {Aij}i,j∈I where Aij is ni × nj. Suppose A is coupled
reducible with {Ui}i∈I satisfying one of the following.

1. Up = Vp for exactly one index value p, and Ui = {0} when i 6= p.
2. Up = {0} for exactly one index value p and Ui = Vi when i 6= p.

Suppose Wp is a nonzero, proper invariant subspace of App. Then A is properly
reducible by coupled similarity via the subspaces obtained by replacing Up by Wp, and
leaving the other Ui’s unchanged.

Proof. Since Up is the only subspace that is changed, we continue to have
Aij(Uj) ⊆ Ui whenever i and j are both different from p. Also, Wp is chosen to
satisfy App(Wp) ⊆ Wp. It remains to consider Aip and Api for i 6= p.

In case 1, we have Ui = {0} for i 6= p, so Api(Ui) = {0} ⊆ Wp. We also have
Aip(Up) ⊆ Ui = {0}. Since Up = Vp, we must have Aip(Wp) = {0} = Ui.

In case 2, we have Ui = Vi for i 6= p, and Up = {0}. So Api(Ui) = {0} ⊆ Wp. We
also have Aip(Wp) ⊆ Vi = Ui for i 6= p.

Now suppose F is algebraically closed, and n ≥ 2. Any n × n matrix over F has
a nonzero, proper invariant subspace. For K = 2, Lemma A.5 immediately tells us A
is coupled reducible if and only if it is properly reducible, i.e., PropRed(F, n, 2) =
Red(F, n, 2). For the case K = 3, suppose A is reduced by U1,U2,U3. If none of
the Ui’s is a nonzero proper subspace, then each is either V or {0}, so either two
of them are V, with the third being zero, or vice versa, two of them are zero, with
the third being V. Lemma A.5 then tells us A is properly reducible. Hence, for
algebraically closed F and n ≥ 2 we have PropRed(F, n, 3) = Red(F, n, 3).

If F is not algebraically closed, then a matrix over F need not have a proper
invariant subspace. Consider the case F = R, the field of real numbers. Let A be
a real n × n matrix, where n ≥ 2. The eigenvalues of A are in C, and the non-real
eigenvalues occur in conjugate pairs. If λ is a real eigenvalue of A then there is a
corresponding real eigenvector, v, and the line spanned by v is a proper, nonzero
invariant subspace of A. For a pair of complex conjugate, non-real eigenvalues, λ, λ,
there is a corresponding two dimensional invariant subspace.

Consider the following example for K ≥ 2 and 2× 2 real matrices.
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Example A.6. Choose an angle θ with 0 < θ < π. For 1 ≤ i ≤ K, set

Aii =

(
cos θ − sin θ
sin θ cos θ

)
.

This is the matrix for rotation of the plane R2 by angle θ. Since no line through the
origin is mapped to itself by this rotation, this map has no nonzero, proper invariant
subspace. Hence, for any choice of the Aij ’s when i 6= j, the set A is not properly
reducible in the coupled sense. It is, however, possible to find Aij ’s such that A is
reducible in the coupled sense. Choose a positive integer s with 1 ≤ s < K and set
Aij = 0 whenever i > s and j ≤ s. Set Ui = R2 for 1 ≤ i ≤ s and Ui = {0} for
s + 1 ≤ i ≤ K. It is easy to check that the subspaces U1, . . . ,UK reduce A. For,
when i and j are both less than or equal to s, we have Ui = Uj = R2, and hence
Aij(Uj) ⊆ Ui. If i and j are both greater than s, then Ui = Uj = {0}, so Aij(Uj) ⊆ Ui.
If i > s and j ≤ s, then Aij = 0; hence Aij(Uj) = {0} ⊆ Ui. Finally, if i ≤ s and
j > s, then Uj = {0} so Aij(Uj) = {0} ⊆ Ui. So A is reducible in the coupled sense,
but not properly reducible.

So for K ≥ 2, we have PropRed(R, 2,K) ⊂ Red(R, 2,K). From Example A.4,
we already knew this for K ≥ 4; the new information is that PropRed(R, 2, 2) ⊂
Red(R, 2, 2) and PropRed(R, 2, 3) ⊂ Red(R, 2, 3).

However, for n ≥ 3, any n × n real matrix has a nonzero proper invariant sub-
space. Lemma A.5 then gives PropRed(R, n, 2) = Red(R, n, 2) and PropRed(R, n, 3) =
Red(R, n, 3) when n ≥ 3.
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