
HAL Id: hal-02304453
https://hal.science/hal-02304453

Submitted on 7 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Capitalization and reuse with patterns in a Model-Based
Systems Engineering (MBSE) framework
Quentin Wu, David Gouyon, Sophie Boudau, Eric Levrat

To cite this version:
Quentin Wu, David Gouyon, Sophie Boudau, Eric Levrat. Capitalization and reuse with patterns
in a Model-Based Systems Engineering (MBSE) framework. 5th IEEE International Symposium on
Systems Engineering, ISSE 2019, Oct 2019, Edinburgh, United Kingdom. �hal-02304453�

https://hal.science/hal-02304453
https://hal.archives-ouvertes.fr

Capitalization and reuse with patterns in a Model-

Based Systems Engineering (MBSE) framework

Quentin Wu

Zodiac Aero Electric

Montreuil, France
quentin.wu@zodiacaerospace.com

Sophie Boudau

Zodiac Aero Electric

Montreuil, France

sophie.boudau@zodiacaerospace.com

David Gouyon

Université de Lorraine, CNRS, CRAN

Nancy, France
david.gouyon@univ-lorraine.fr

 Éric Levrat

Université de Lorraine, CNRS, CRAN

Nancy, France
eric.levrat@univ-lorraine.fr

Abstract— In order to promote capitalization and reuse

within a Model-Based System Engineering (MBSE) framework,

this paper proposes a methodological approach that relies on the

concept of pattern in order to encapsulate the know-how to be

capitalized and reused. Indeed, formalizing and maintaining

know-how within a company is essential in order to have a

common base of "good practices" available to all engineering

teams. To do this, it is necessary to undertake a capitalization

process in order to encapsulate these practices. However, it is

equally important to make this know-how available and to

facilitate its reuse so that engineers can adapt it to their needs.

The flexibility of patterns during reuse is an advantage that will

contribute to the efficiency of MBSE and where engineering

teams are able to rely on the company's know-how.

Keywords—Systems modelling, Systems analysis and design,

Systems architecture, Pattern recognition

I. INTRODUCTION

It is essential for each organization to capitalize and

maintain its know-how in order to create a common base of

key know-how to be shared among its engineering teams.

This allows a better understanding of the system to be

developed as well as the company's own processes and

methods. It improves engineering efficiency and presents

many advantages when tackling risks such as: departure of

experienced employees [1] (who possess know-how), "white

page" syndrome, copy and paste [2], deviation from needs

and requirements [3], repetition of the same mistakes,

"reinventing the wheel"... Moreover, key know-how should

be “dynamic” and not “static”. Instead of being stuck inside

individual, it must be shared amongst everyone to promote a

common database of developed Systems Of Interest and

System Engineering Activities [4]. However, the

implementation of a know-how reuse approach, in particular

within a Model-Based System Engineering (MBSE)

framework, must on the one hand meet needs of

capitalization, selection, reuse and update, and on the other

hand, answer the following questions:

 What should be capitalized?

 In what form should this key know-how be

capitalized?

 Which reuse approach should be undertaken

within a MBSE framework?

This article, which context is Model-Based System

Engineering, takes advantages of patterns [5]–[7] to facilitate

the reuse of models, and proposes a methodological

contribution in that sense. After a state of the art on patterns

in Systems Engineering and patterns in MBSE in section II,

section III proposes to characterize the levels of abstractions

that can be achieved upon capitalization, and introduces the

MMI approach which objective is to be an efficient

methodological guide for capitalization and reuse with

patterns. This approach is then applied on an electrical

distribution system in section IV. Advantages and current

limitations of the approach are then discussed in section V.

II. STATE OF THE ART

A. Patterns in Systems Engineering

Reuse know-how gathered by engineers from their past

experiences is an important challenge to tackle for

companies, as those "archives" are stuck in engineer’s mind,

making it difficult to share them to someone else [8], [9].

Research works have already been done for reusing

knowledge and know-how in Systems Engineering [6], [10]–

[15] and one way that looks particularly promising is

achieved through the adoption of patterns to systematize

complex systems engineering [16].

It appears that some recurrent characteristics of patterns

seem to be fruitful for Systems Engineering. First of all, it is

necessary to acknowledge the fact that similar designs can

emerge from independent engineering teams [17]. Those

similarities implies one of the first characteristic of patterns:

they “are not created from a blank page; they are mined” [18].

The “mining” of pattern appears to be a scientific issues that

is essential to resolve as Systems Engineering patterns are

embedded in existing designs [4]. Some research works have

tried to classify mining’s processes such as [19] with three

categories of contributions: individual, second-hand and

workshops/meeting. Other works have tried to guide the

writing of patterns during mining’s process. In this way, some

works have extended the observation made that the core

meaning of a pattern is composed only of a “Minimal

Triangle” : {Context, Problem, Solution} [17], by creating a

specific format to describe a pattern for Systems Engineering

containing all the necessary information such as [13], [20].

The use of such patterns have therefore been studied, and

their value have also been studied. Works conducted in a

software community have shown that the larger a team size

was, the more patterns were used [21]. Indeed, it appears that

pattern has allowed to deliver at each level of the

development the correct information and thus has eased the

creation of a common lexicon between users fostering a

common understanding of the context, problems, and

solutions.

B. Patterns in Model-Based Systems Engineering

Research works have been made to investigate about the

concept of pattern in Systems Engineering. However, as the

interest for MBSE is increasing, the value of pattern in a

MBSE framework has not been fully explored. Yet, it appears

that introducing or reinforcing reuse capacity in MBSE

methodologies allows the design of a new project with much

less human effort, benefiting from the reuse of the already

existing system models [22], since no physical limitations get

in the way.

It is therefore interesting to examine current limitations

that slow the adoption of pattern as an introduction of reuse

capacity in MBSE. First, on the one hand, as [14] stated, the

"biggest problem is to transfer and manage the knowledge

[of] what is actually available for re-use". On the other hand,

the adoption of MBSE due to the steep learning curve induced

for organizations is an obstacle that prevent them to "quickly

identify not only valid architectural solutions, but optimal

value solutions for the mission need" [23]. As underlined in

those previous works, a reuse approach in MBSE needs to

efficiently identify, locate but also to allow to search, update

and especially reuse know-how. Thus, the creation of patterns

library is not sufficient, as the purpose is to allow engineers

to seamlessly reuse those patterns in their ongoing projects

[14]. In that sense, [24] do not focus on the creation of library

but proposes to semi-automatically create an activity diagram

from existing activity diagrams according to the input use

case diagram. The approach is adapting promising reusable

elements during a model reuse process thanks to know-how

that have been capitalized, with the aim of simplifying know-

how reuse.

In order to be efficiently used, it is necessary to clearly

define how to interlock a pattern-based approach to the

different phases of a design cycle. That is why, works have

been done to introduce patterns during various phases of the

engineering cycles. [3] described behavioural construct

patterns (Figure 1) to facilitate and systematize the modelling

of system behaviour. It helps engineers, by elevating the

abstraction level at which they can think from an atomic

graphical elements to a more structured elements called

behavioural constructs. This approach allows a higher

modelling level that will permit to work in an algorithmic

way of thinking: more design, less aesthetics.

Figure 1. Loop Exit Construct, extracted from [3]

Once a pattern is designed to be used at a certain phase of

a design cycle, it should help engineers to focus on what is

important. In that way, some research works assume that

patterns should guide the development to avoid deviation.

Indeed, adequate guidelines for modelling benefits the

development process by resulting on more mature models and

a certain modelling homogeneity. This is why [25] proposed

a process for the development of mechatronic systems based

on a SysML design pattern. By allowing an efficient

traceability of all information within the system model to

trace change influences more easily, this approach proves to

be particularly helpful for facilitating the impact analysis in

later lifecycle phases and for the reuse for future projects.

In the same spirit of guiding modelling, Pattern-Based

Systems Engineering (PBSE) [26] is an engineering

paradigm where patterns are re-usable models, which can be

configured or specialized into product lines or into product

systems. In this context, [27] apply patterns to requirements

and design. At a high-level, they constitute a generic system

pattern model that can be customized according to enterprise

needs, configuration, uses, so that engineers can benefit from

the concepts of MBSE without being an expert of modelling

methodologies.

As a main issue for system engineers is to shorten

engineering cycle period, MBSE and pattern appears to be a

great combination to face this challenge. However, this state

of the art has highlighted the strong methodological need to

capitalize on previous projects to reuse know-how. It is only

once this step has been completed that it becomes possible to

focus on sharing know-how and foster its reuse for future

MBSE projects. This is why the concept of patterns appears

to be an answer to tackle this challenge, as it offers the

possibility to make information dynamic between

stakeholders during the development of complex systems

III. METHODOLOGICAL PROPOSITION

This section proposes first to characterize the levels of

abstractions that can be achieved upon capitalization. Based

on these levels, it then introduces the MMI approach which

objective is to be an efficient methodological guide for

capitalization and reuse through the concept of patterns.

A. Levels of abstraction

During the design of a complex system, it is important to

take a step back in order to see the big picture and ensure

high-level consistency, as promoted by Systems Thinking

principles [28]. This can be achieved by increasing the level

of abstraction of the modelling objects on which engineers

usually work. In that way, the formalization of patterns is

possible on several levels of abstraction. This paper proposes

a classification in four levels (Figure 2), ranging from

"models" developed by the engineer at the lowest level of

abstraction to "abstract patterns" at the highest level of

abstraction.

Figure 2. Levels of abstraction (Model - Pattern)

This makes it possible to describe a top-down and a

bottom-up flows, corresponding respectively to a mining

ABSTRACT PATTERNS

DESIGN PATTERNS

GENERIC MODELS

MODELS

Abstraction

Metamodelization

Generalization

Realization

Projection

InstantiationIM
P

L
E

M
E

N
T

A
T

IO
N

M
IN

IN
G

process ([18], [19], [29]) and an implementation process,

presented in section III.B.

1) Models

Models are the result of engineering processes and rely on

engineering know-how. Each project has its own models,

expressed in specific engineering languages. These sets of

models, specific to each project, can therefore be isolated into

"silos". Their characteristics are that they potentially have

different syntaxes and semantics if there are no common

modelling rules. Similarly, naming rules can be specific to

each project, as can be the project structure and interactions

with the engineering environment.

2) Generic models

At this level, generic models are also expressed in a

modelling language specific to the engineering domain.

However, unlike the lower level models, generic models are

intended to highlight the similarities and recurrent design in

systems and projects, which can be of different types:

requirements, design, interfaces, functions... The idea is to

generalize models with a higher level of abstraction to

systematize design, and improve the readability and

understanding of models. Generic models can be instantiated

to build models.

3) Design patterns

At this level, the description of the pattern is done

independently of the engineering modelling language. The

purpose of this pattern is to describe the elements to be reused

in a modelling process. The objective is therefore to capture

know-how, in a formalism that is independent of the context

of each engineering team (metamodelization), in order to

facilitate its promotion and reuse. However, these patterns

remain described and adapted to a specific field. Design

patterns can be projected on specific engineering languages

to build generic models.

4) Abstract patterns

Abstract patterns are domain independent abstractions of

design patterns. This conceptual level, which is not

mandatory, makes it possible to explain system at a very high

level of abstraction such as general structuring principles.

Abstract patterns can be realized into design patterns.

5) Transitions between levels of abstraction

Every transition needs to focus on one engineering

artefact at the same time such as: use case, function,

component… It is also necessary to focus on one point of

view of the system model to ensure consistency at the higher

level of abstraction.

For the transition “generalization”, it is important to

check repetition of modelling artefact or group of them.

Sometimes, it can be a sequence (functional chain for

example) that needs to be highlighted. However, it is also

necessary to pay attention to informal “signature” of

modelling. For instance, engineers can create diagrams in

which separations between elements are modeled but not

formalized.

For the transition “metamodelization”, it is necessary to

isolate the concept of the modelling language that needs to be

capitalized. For instance, inside a functional architecture it is

possible to capitalize the structure (functional breakdown),

but also function (in and out flows, interfaces) or a specific

functional chain… It may be necessary to capitalize those

three aspects, however, it will be necessary to create one

pattern for each concept.

For the transition “abstraction”, the objective is to free

oneself from strict syntax and semantic rules in order to create

a medium that makes it easier to convey the chosen concept.

Creativity is the key here.

B. MMI Methodological approach

The objective being to provide a method for the

formalization and effective reuse of patterns, this paper

proposes a methodological approach to meet this need, that

consists in the search for patterns (“Mining” process), the

maturation of these patterns for reuse (“Maturation” process),

and finally the concrete reuse of these capitalized patterns at

different levels of abstraction for modeling

(“Implementation” process). This approach is therefore

called Mining-Maturation-Implementation (MMI).

1) High-level view of MMI

At a high level, the MMI approach aims at producing a

system model compliant to the customer needs and

requirements by reusing existing models. First, the

implementation of a capitalization approach is not trivial and

requires a significant investment that is sometimes difficult

to reconcile with the life of a project and its multiple

constraints (deadlines, costs, staff, etc.). Indeed, the decision

to initiate the process of capitalization is not self-evident and

is an important step in continuing the approach.

As represented in Figure 3, after the decision of

capitalization, two processes must take place, they are

complementary and iterative. Indeed, one concerns the

operational side of the approach (“MMI_OP”), while the

Figure 3. High-level MMI

other one is dedicated to defining the strategic rules

governing the operational aspect (“MMI_STRAT”).

2) Strategic MMI (“MMI_STRAT”)

From a library of abstract patterns, design patterns, and

generic models, the “Strategic MMI” (Figure 4) process aims

at two main objectives.

The first one concerns the implementation of those

libraries in a modelling tool, which means to comply with a

specific modelling language. Indeed, it is necessary to

implement those libraries in a tool in order to allow a

seamless reuse of know-how by engineers. Once

implemented in a tool, those libraries feed the “Operational

MMI” process.

The second objective is dedicated to the definition of the

transition from one level of abstraction to another, in order to

stay consistent during the application of the approach. Due to

the possibility of divergence between different engineers, it

is necessary to agree on a common strategy. Once again those

strategies will feed the “Operational MMI” process.

3) Operational MMI (“MMI_OP”)

The operational MMI Process (Figure 5Erreur ! Source du

renvoi introuvable.) aims in the search for patterns

(“Mining” process), the maturation of these patterns for reuse

(“Maturation” process), and finally the concrete reuse of

these capitalized patterns at different levels of abstraction for

modelling (“Implementation” process).

a) Mining

The mining process requires an analysis of previous

projects and, if possible, ongoing projects. The analysis of

these models will make it possible to start the mining process

Figure 4. Strategic MMI process

Figure 5. Operational MMI process

by identifying, locating, isolating similarities of System

Engineering that are reused in several places in the same

project or in different projects, in order to propose generic

models. These generic models are then metamodelized into

design patterns, which can be abstracted into abstract

patterns.

These elements will then be used in the “Maturation”

process.

b) Maturation

Maturation is a crucial process of the methodological

approach because it has a very strong impact on the

"implementation" process. Indeed, it will be necessary to

evaluate the identified generic models, design and abstract

patterns so that their level of maturity (level of confidence)

corresponds to a level that allows them to be reused on new

projects. Once they have reached a sufficient level of

maturity, they can be stored and classified into a library. The

goal of this library is to ease the update, search and reuse of

patterns, by fostering capitalized know-how towards

engineers.

These libraries are then used in the “Strategic MMI”

process.

c) Implementation

During this process, when a reuse opportunity is

identified, strategies identified in the “Strategic MMI”

process allow either the realization of an abstract or the

projections of a design pattern or the instantiation of a generic

model to model the system. The ‘Implementation’ process

leaves an active part to the user who will integrate reusable

elements into his model, depending on the requirements to be

met. This integration is not automatic in the sense that the

engineer must be able to modify his model according to the

operational, functional, logical and organic groupings he

wishes to make.

IV. CASE STUDY

In the aeronautics field, an electrical power distribution

system is a subsystem which purpose is to generate, regulate

and distribute electrical power throughout the airplane.

Design evolutions of these systems have allowed to benefit

from significant advantages such as the routing of power

around localized faults to maintain airworthiness. However,

this has resulted in a significant increase in the complexity of

these systems in such a way that it becomes difficult for one

person to understand the entire system.

This article conducts a case study on such a complex

system in order to explore the capacity of the proposed

methodology. However, due to the large perimeter covered

by the MMI approach, only the “MMI_OP” process (Figure

5) will be illustrated. Moreover, for confidentiality reasons,

figures will be blurred in order to protect the data inside. This

will not prevent the example from being understood in the

sense that the focus will be on the approach implemented

rather than on the processed models.

As stated in Figure 3, the first step towards reuse, is to

take the decision of capitalizing know-how. This implies

being able to recognize a situation where the reuse of know-

how can take place. Concerning the case study of this article,

the situation appeared when analyzing the functional

breakdown structure of different systems. As represented in

the left of Figure 6Erreur ! Source du renvoi introuvable.,

it appears that some functions and their sub-functions were

identical in various locations inside a system functional

breakdown structure, or at the same location inside the

various systems at stake.

Figure 6. Example of criteria to start a capitalization process

Engineering iterations on this breakdown structure have

made it possible to factorize functions. The breakdown

structure then became simpler to read (right of Figure

6Erreur ! Source du renvoi introuvable.). Indeed, from a

first draft of 700+ functions divided on 8 hierarchical levels,

it appears that the core functions represents around 120

functions on 6 hierarchical levels. This means that the ratio

of functions being reused is around 6, and therefore it appears

relevant and valuable to start a capitalization process.

The functional breakdown structure is linked to a

description of a functional architecture as presented in Figure

7 with IBM Rhapsody in SysML language. The analysis of

this model puts in evidence similarities which are repeated at

various locations, as highlighted on the Figure 7. The mining

of previous projects also shown that those similarities are

being used at the same location on other models.

Figure 7. Similarities at the “Models” level (SysML)

The functional architecture of Figure 7 is currently at the

first level of abstraction defined in Figure 2. However, after

the analysis has been performed, it is possible to generalize

the model into a generic functional architecture (Figure 8)

that corresponds to the second level of abstraction of Figure

2.

Figure 8. Similarity at the “Generic Models” level (SysML)

This generic model shows a generic architecture of

generic functions characterized by their inputs and outputs, in

terms of numbers (use of cardinality) and flow types

(physical, information, command…). Those generic elements

can be capitalized into a library (Figure 9). It is also possible

to characterize those generic functions with other engineering

artefacts like requirements, functional modes… This choice

is not exclusive and depends on the desired methodology to

be implemented.

Figure 9. Library of generic functions models in IBM Rhapsody

The big black frame on Figure 8 and Figure 9 corresponds

to the perimeter of a function F1, one of the main function of

the system. It is possible to metamodelize this function to

reach the third level of capitalization defined in Figure 2. As

represented in Figure 10, it is possible to describe, for

example, the functional breakdown design pattern of the

function F1 in UML, which is independent from the

engineering modelling language SysML used at “Models”

and “Generic Models” level.

Figure 10. Description of the functional breakdown structure of

function F1 at the “Design Patterns” level (UML)

After mining and capitalizing in library the “MMI_OP”

process aims at facilitating the implementation of the know-

how for future projects. It means help the user to identify

reuse opportunities and to search for capitalized know-how

from library.

During the design of another project, if the function F1 is

identified to be reused, then the implementation process of

the operational MMI process (Figure 5) can start. From the

design patterns library constructed before, it is possible to

project those patterns into a tool using another engineering

language than SysML, for example, the tool Capella. This

illustrates one of the interest of the approach, which is that

various modelling tools and engineering languages can be

used for the mining and implementation processes. The result

for the library of generic functions models is shown in Figure

11.

Figure 11. Library of generic functions models in Capella

From those generic functions models, it is possible to

construct a generic functional architecture (Figure 12).

Figure 12. Generic model constructed from the generic functions

Figure 13. Models constructed from generic models (in Capella)

The generic functional architecture is then instantiated

into a project-specific architecture model (Figure 13).

V. DISCUSSION

The use of an object oriented approach implies that

system engineers can easily loose the level of abstraction at

which they are modelling and therefore spend time improving

the aesthetics of their diagrams instead of the expected design

[3]. The purpose of the MMI approach is to guide users to

optimize the capitalization and reuse processes and to allow

them to focus on their design and not on aesthetic. Indeed, on

one hand, definitions of levels of abstraction and on the other

hand definitions of transitions between these levels are

providing consistency. These are not clear cut categories but

the MMI approach is formalizing a methodological pattern to

supervise each step of the process.

By formalizing “Design Patterns” in a modelling

language independent from engineering modelling language,

the MMI approach is also answering a recurrent problem

faced by current tools on the market, which is, that no

standard exchange format for model exist at the moment. It

means that models developed in one tools cannot be

transferred in another one except by manually reconstructing

it. Therefore, by describing at an abstraction level higher than

tools on the market, it is possible to project capitalized know-

how contained in design patterns in any tools (Figure 14), on

the condition that the necessary concepts are defined in the

tool.

Figure 14. “Design Patterns” are tools agnostic

Current limitations of the approach are linked to the

definition of concepts inside tools and the maturity of

patterns.

On the latter, as n architects can provide p different

patterns, the difficulty is to succeed at rapidly converging

toward a mature pattern, accepted by all the stakeholders.

Moreover, costs are high at the start of the MMI approach as

the libraries have to be constructed. Therefore, it is necessary

to set up an agile framework during which it is necessary to

focus on short cycles in order to quickly converge on patterns

(defined in a tool and not only in a document). This will allow

their effective use in order to assess their maturity in a real

project.

However, the capacity to formalize libraries inside tools

may be a lock. It implies that the concept of library exists,

otherwise, it will be necessary to make a detour to reach the

goal but this will be at the expense of the tool's ergonomics

or the user's autonomy.

VI. CONCLUSION & PERSPECTIVES

In the context of Model-Based Systems Engineering, this

paper aims at proposing a methodological contribution based

on the use of patterns to facilitate the reuse of models. The

proposed MMI approach can be used iteratively to enrich a

know-how repository made of System Of Interest patterns.

However, pattern reuse requires the ability to identify,

select, and apply patterns in a fluid manner so that the user

can focus on the needs during development. An agile

approach must be considered in order to initiate short mining,

maturation and implementation cycles.

Thus, in future works on pattern reuse, a scale will be

developed to identify maturity levels of a company's reuse

process and target efforts. This scale will be multiaxial in

order to cover the different aspects of the process (models,

capitalization...). This will allow quantifying, on the one

hand, degrees of maturity that will be specific to certain

activities, and on the other hand, an overall level of maturity

at the level of the process that will depend on the level on

each axis.

Other ongoing works are focusing on the integration of

the MMI approach in the V cycle by proposing an Y cycle, as

shown in Figure 15. The objective is to define how patterns

libraries elements will support Systems Engineering

activities during the design phase.

Figure 15. Integration of patterns in the V Cycle

Currently, all the processes of the MMI approach can be

done by hand on modelling tools. A last key step to enable

seamless capitalization and reuse of patterns is the

implementation, in a software tool, of artificial intelligence

algorithms to automate MMI processes such as patterns

mining or reuse opportunities identification.

REFERENCES

[1] R. J. Cloutier, “Toward the Application of Patterns to

Systems Engineering,” Syst. Eng., no. January 2005,

pp. 73–80, 2005.

[2] R. Darimont, W. Zhao, C. Ponsard, and A. Michot,

“Deploying a Template and Pattern Library for

Improved Reuse of Requirements Across Projects,”

Proc. - 2017 IEEE 25th Int. Requir. Eng. Conf. RE

2017, pp. 456–457, 2017.

[3] L. Gasser, “Structuring activity diagrams,” in 14th

IFAC Symposium on Information Control Problems

in Manufacturing, Bucharest, Romania, 2012.

[4] F. Pfister, V. Chapurlat, M. Huchard, C. Nebut, and

J.-L. Wippler, “A Proposed Meta-Model for

Formalizing Systems Engineering Knowledge,

Based on Functional Architecture Patterns,” Syst.

Eng., vol. 15, no. 3, 2012.

[5] Q. Wu, D. Gouyon, É. Levrat, and S. Boudau, “A

Review of Know-How Reuse with Patterns in Model-

Based Systems Engineering,” in Proceedings of the

Ninth International Conference on Complex Systems

Design & Management, CSD&M Paris 2018, 2018,

pp. 219–229.

[6] D. Cook and W. Schindel, “Utilizing Mbse Patterns

To Accelerate System Verification,” Insight, vol. 20,

no. 1, pp. 32–41, 2017.

[7] R. S. Kalawsky, D. Joannou, Y. Tian, and A.

Fayoumi, “Using architecture patterns to architect

and analyze systems of systems,” Procedia Comput.

Sci., vol. 16, no. March 2015, pp. 283–292, 2013.

[8] D. Mourtzis, M. Doukas, and C. Giannoulis, “An

Inference-based Knowledge Reuse Framework for

Historical Product and Production Information

Retrieval,” Procedia CIRP, vol. 41, pp. 472–477,

2016.

[9] P. Demian and R. Fruchter, “An ethnographic study

of design knowledge reuse in the architecture,

engineering, and construction industry,” Res. Eng.

Des., vol. 16, no. 4, pp. 184–195, 2006.

[10] L. Gzara, D. Rieu, and M. Tollenaere, “Product

information systems engineering: An approach for

building product models by reuse of patterns,” Robot.

Comput. Integr. Manuf., vol. 19, no. 3, pp. 239–261,

2003.

[11] R. H. Barter, “A Systems Engineering Pattern

Language,” in INCOSE International Symposium,

1998, pp. 350–353.

[12] R. J. Cloutier, “Model Driven Architecture for

Systems Engineering,” INCOSE Int. Work., no.

September, 2008.

[13] C. Haskins, “Application of patterns and pattern

languages to systems engineering,” in INCOSE

International Symposium, 2005, pp. 1619–1627.

[14] A. Korff, “Re-using sysml system architectures,” in

Proceedings of the 4th International Conference on

Complex Systems Design and Management, 2013,

pp. 257–266.

[15] G. Wang, R. Valerdi, and J. Fortune, “Reuse in

systems engineering,” IEEE Syst. J., vol. 4, no. 3, pp.

376–384, 2010.

[16] T. Cochard, “Contribution à la génération de

séquences pour la conduite de systèmes complexes

critiques,” Université de Lorraine, 2017.

[17] A. Gaffar and N. Moha, “Semantics of a Pattern

System,” Proc. STEP Int. Work. Des. Pattern Theory

Pract. IWDPTP05, 2005.

[18] R. S. Hanmer and K. F. Kocan, “Documenting

architectures with patterns,” Bell Labs Tech. J., vol.

9, no. 1, pp. 143–163, 2004.

[19] D. E. DeLano, “Patterns mining,” in The Pattern

Handbook: Techniques, Strategies, and Applications,

1998, pp. 87–96.

[20] R. J. Cloutier and D. Verma, “Applying the concept

of patterns to systems architecture,” Syst. Eng., vol.

10, no. 2, pp. 138–154, 2007.

[21] M. Hahsler, “A quantitative study of the adoption of

design patterns by open source software developers,”

in Free/Open Source Software Development, Igi

Global, 2005, pp. 103–124.

[22] U. Shani and H. Broodney, “Reuse in model-based

systems engineering,” 9th Annu. IEEE Int. Syst. Conf.

SysCon 2015 - Proc., pp. 77–83, 2015.

[23] C. Oster, M. Kaiser, J. Kruse, J. Wade, and R.

Cloutier, “Applying Composable Architectures to the

Design and Development of a Product Line of

Complex Systems,” Syst. Eng., vol. 19, no. 6, pp.

522–534, Nov. 2016.

[24] S. Paydar and M. Kahani, “A semi-automated

approach to adapt activity diagrams for new use

cases,” Inf. Softw. Technol., vol. 57, no. 1, pp. 543–

570, 2015.

[25] G. Barbieri, K. Kernschmidt, C. Fantuzzi, and B.

Vogel-Heuser, “A SysML based design pattern for

the high-level development of mechatronic systems

to enhance re-usability,” in IFAC Proceedings

Volumes (IFAC-PapersOnline), 2014, vol. 19, no. 3,

pp. 3431–3437.

[26] W. Schindel, “Requirements Statements Are

Transfer Functions: An Insight from Model-Based

Systems Engineering,” in INCOSE International

Symposium, 2005, pp. 1604–1618.

[27] W. Schindel and T. Peterson, “Introduction to

Pattern-Based Systems Engineering (PBSE):

Leveraging MBSE Techniques,” INCOSE Int. Symp.,

vol. 23, no. 1, p. 1639, 2013.

[28] J. Boardman, B. Sauser, L. John, and R. Edson, “The

Conceptagon A Framework for Systems Thinking

and Systems Practice,” pp. 3299–3304, 2009.

[29] C. Haskins, “Using Patterns to Transition Systems

Engineering from a Technological to Social

Context,” Syst. Eng., 2007.

