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Figure 1: Left: A user drawing a spatial motion doodle (SMD) which is the six-dimensional trajectory of a moving frame
(position and orientation), here attached to the HTC Vive controller. Right: The SMD is parsed into a string of motion tokens,
allowing to recognize actions and extract the associated motion qualities. This information is transferred to an articulated
character to generate an expressive 3D animation sequence.

ABSTRACT
We present a method for easily drafting expressive character ani-
mation by playing with instrumented rigid objects. We parse the
input 6D trajectories (position and orientation over time) – called
spatial motion doodles – into sequences of actions and convert them
into detailed character animations using a dataset of parameterized
motion clips which are automatically fitted to the doodles in terms
of global trajectory and timing. Moreover, we capture the expres-
siveness of user-manipulation by analyzing Laban effort qualities
in the input spatial motion doodles and transferring them to the
synthetic motions we generate. We validate the ease of use of our
system and the expressiveness of the resulting animations through
a series of user studies, showing the interest of our approach for
interactive digital storytelling applications dedicated to children
and non-expert users, as well as for providing fast drafting tools
for animators.
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1 INTRODUCTION
Creating coordinated and expressive animation of multiple char-
acters is a difficult but necessary step in visual storytelling and
interactive game creation, and a bottleneck for novice storytellers
and independent game developers not trained in 3D animation. The
traditional 3D animation follows a strict pipeline: after the initial
storyboarding and character design phases, articulated characters
are modeled, rigged and roughly positioned in 3D, at which point
the layout of their relative poses can be established. Then, their
actions and movements are broken down into keyframes which
are interpolated to produce the final animation. Skilled animators
need to spend time and efforts carefully tuning animation curves
for each character’s degrees of freedom and each specific action to
be specified; they also need to consistently sequence these actions
over time in order to convey the desired character’s intentions and
personalities. Given the long learning curve of standard anima-
tion software, creating expressive animations with this pipeline is
clearly out of reach for non-expert users.

Creating character animation directly from storyboard-like sketches
or diagrams is a challenging task, and a promising research direction
for democratizing computer graphics and animation. Motion doo-
dles [Thorne et al. 2004] are interactive, hand-drawn sketches con-
trolling the full-body motion of a character, which can be learned,
parsed and interpreted to generate animations almost in real-time.
They are however limited to planar, side view sketches.
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Our research goal is to enable users to generate expressive 3D
animation sequences by playing with tangible rigid objects as freely
as in a child’s make-believe game. Therefore, we extend the motion
doodles paradigm to the context of spatial interaction with instru-
mented rigid objects. In this work, we use the HTC Vive controller
and Valve Lighthouse tracking system, which provides a 6D mo-
tion signal at 60 fps. We record the motion of the objects as spatial
motion doodles (SMD), ie. trajectories of 6D rigid frames over time,
and parse them into a sequence of actions which are translated
into animations of articulated characters. Taking advantage of the
natural embedding of SMDs in 3D space, we generate expressive
animations guided by the coarse space trajectories and timings of
the input gestures. Furthermore, we analyze the expressive qualities
of the input gestures (light/strong, sudden/sustained) and transfer
them to the corresponding character animations.

Three main challenges need to be solved for achieving our goals:
firstly, we need to parse SMDs into the desired sequence of character
actions, independently from position, orientation or scale of the
input gesture; secondly, we need to recognize expressive qualities
to be associated with each action; thirdly, we need to synthesize
character animation sequences displaying the required actions with
the corresponding qualities along the path of the input SMDs.

We solve these challenges for a pre-defined set of possible actions
for which neutral-style 3D animations have been provided 1. Our
method works as follows: We first read the SMD in temporal order
and transform it into a series of token indicating the changes of
direction of the linear and angular components of motion. This
enables us to search for regular expressions in terms of changes
of directions that correspond to our recognizable actions. Then,
each portion of the SMD corresponding to a detected action is
assigned motion qualities from Laban’s Effort classification, using a
Bayesian identification method. Finally, we automatically assemble
character animation sequences representing the selected actions
by retargeting them to the coarse trajectory of the SMD and the
desired motion qualities.

In summary, our three contributions are a new position, rotation
and scale invariant pattern extraction method used to detect actions
from spatial motion doodles (SMDs); a method for extracting Laban
effort features from SMDs using Bayesian classification with a
carefully selected set of geometrical features; and a new method
for assembling character animation sequences along the path of
the SMDs with suitable Laban motion qualities.

2 RELATEDWORK
Spatial motion doodles borrow ideas from several lines of previous
work, namely sketching animations, gesture recognition, spatial
interaction, expressive animation and motion qualities recognition.

2.1 Sketching animations
The idea of using sketches either to time or to create animations
is not new. Several existing methods deal with the problem of key
framing using 2D strokes. [Terra andMetoyer 2004] use 2D drawing
gestures to control and re-time the trajectories of 3D animated
characters. [Choi et al. 2012] matches stick figures with existing

1Our implementation contains 27 animations taken from the Mixamo repository
at https://www.mixamo.com/

animation clips from a database, allowing the creation of a key
frame animation sequence. [Bai et al. 2016] use dynamics to fill in
the details of low-dimensional keyframes, but their work is limited
to 2D cartoon animation. [Guay et al. 2013] and [Mahmudi et al.
2016] use 2D lines of action for posing 3D characters or animals
and creating keyframed animations. Going further, some methods
enable to create and time animation from a single stroke. [Guay et al.
2015] introduce a space-time curve to animate a character body
line in a single drawing gesture, while [Choi et al. 2016] proposes a
way to edit existing animations using the same kind of input. Lastly,
[Ciccone et al. 2017] proposes a new intuitive way of sketching and
editing space-time curves for motion cycles.

While these methods can easily be used to create or edit selected
parts of animations, they do not tackle the problem of creating
an entire character animation sequence. Former methods such as
[Thorne et al. 2004] and [Hyun et al. 2016] focus on this issue. Specif-
ically, [Thorne et al. 2004] introduces the concept of motion doodle,
ie. a 2D curve in side-view, abstracting the main trajectory of the
motion sequence. This sketch is parsed into motion primitives and
translated into 3D animations stored in a library. Close-to-planar
motion is used, and retiming is inferred from the detection of sin-
gular points in the geometry of the curve. In contrast, [Hyun et al.
2016] address the design of 3D animations of basketball players
from 2D diagrams. The latter are drawn in a floor-plan view, allow-
ing complex multi-player actions to unfold in 3D. The technique
however requires an intensive labeling of the input motion-capture
dataset using an elaborate grammar of the basketball game. In this
work, we would like instead to investigate 3D animation from ex-
pressive hand-gestures, where the input position, orientation and
speed variations can be used for control.
2.2 Spatial interaction
Early attempts to use 3D interaction techniques for creating ani-
mated scenes have used space balls [Gobbetti and Balaguer 1995],
full-body motion capture suits [Sturman 1998] or instrumented
articulated puppets [Shin et al. 2001]. More recently, [Zhang et al.
2012] animated Chinese shadow characters with gestures recorded
by a Kinect camera , [Furukawa et al. 2014] animated 3D charac-
ters using a kinect camera and [Jacobson et al. 2014] animated 3D
characters using articulated physical puppets.

While such systems are useful for controlling the faces and ges-
tures of virtual characters, they provide little support for animating
virtual actors moving freely in large virtual spaces, which is the
focus of our paper.
2.3 Expressive animation
Creating stylized animation given a set of expressive parameters
such as emotions and attitudes has been explored for a long time
in computer graphics. We can distinguish two families of methods:
data-driven methods, which attempt to learn models of the chosen
emotions and attitudes from motion capture databases [Rose et al.
1998] and stylization methods, which directly modify an input an-
imation using aesthetic features [Neff and Fiume 2005] or more
abstract motion descriptors such as Laban motion qualities [Aris-
tidou et al. 2017; Chi et al. 2000; Durupinar et al. 2016; Masuda
et al. 2010]. In addition methods such as [Xia et al. 2015; Yumer
and Mitra 2016] allow stylization interpolation for heterogeneous
movement. Data-driven methods come with the inconvenient of
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Figure 2: Spatial motion doodle pipeline: We first segment the input curve (spatial component of the SMD) based on changes
on motion direction using a moving local frame, and label the segments with motion tokens. We then recognize actions as
regular expressions overmotion tokens, togetherwith theirmotion qualities. Finally, we synthesize corresponding animations
following the input SMD trajectory, timing and motion qualities.
relying on an animation database and cannot infer a style for a non
registered action. Stylization methods on the other hand make it
more difficult to ensure that the stylized motion remain plausible.

Our work belongs to the general family of motion graph meth-
ods, where existing character animations are re-targeted to user-
controlled actions and to the geometry of the scene [Furukawa
et al. 2014; Heck and Gleicher 2007; Kovar et al. 2002; Safonova
and Hodgins 2007]. Interestingly, motion graphs have been ex-
tended to include continuous style variations using a data-driven
approach [Min and Chai 2012]. We instead choose a stylization
method to change the Laban motion qualities of the animation clips
during retargeting.
2.4 Motion quality recognition
Motion qualities are recognizable features of a motion sequence,
which should be preserved while translating an input action into
an output animation. Motion qualities have been researched ex-
tensively in the 1940s by Rudolf Laban for the purpose of dance
notation [Laban 1950] and previous work in the computer graphics
community has attempted to recognize Laban motion qualities from
natural human motion [Bouchard and Badler 2007; Lorenzo Tor-
resani 2007] and to generate 3D character animation with rec-
ognizable Laban motion qualities [Bishko 2014; Chi et al. 2000],
or both [Aristidou et al. 2017]. In our work, we attempt to rec-
ognize Laban motion qualities of weight (light/strong) and time
(sudden/sustained) from spatial motion doodles - i.e. motions of a
rigid frame moving and rotating over time - and transfer them to
full character animation.

Extracting Laban effort qualities from low dimensional motion
was explored in the context of wrist motion data [Fdili Alaoui et al.
2017] where they used multi-modal input, including wrist position,
speed, acceleration and muscle activation. In contrast, we take as
input a single rigid body motion and extract a rich set of geometric
and kinematic features, such as Euclidean and equi-affine velocity,
acceleration, jerk, curvature and torsion.

3 OVERVIEW
In this paper, we focus on using the position and orientation of a
tangible object over time as input. Our system creates an expressive
animation sequence from the trajectory of the rigid body, or spatial
motion doodle (SMD).

In practice, capturing a SMD ie. tracking the moving frame of a
manipulated object can be done using a variety of available devices,
including video and Kinect cameras, inertial measurement units
(IMU), magnetic sensors or optical tracking systems [Gupta et al.
2014; LaViola and Keefe 2011]. In this work, we used the SteamVR
Lighthouse tracking systemwith HTC Vive trackers and controllers.

The processing pipeline from the SMD to the final animation
consists of several steps, depicted in Figure 2. We first process the
SMD in sequential order in order to assign each point over time
to a direction token, using a local frame that moves and orients
itself according to the 6D SMD position and orientation data. We
switch to a new token when either the direction of the frame’s
translation or the direction of the frame’s rotation changes. The
resulting token list is then read in temporal order and analyzed by
a state machine. The latter runs an approximate string matching
algorithm that recognizes actions from a library of stored patterns.
When an action match is found, the state machine transfers the
corresponding portion of the SMD to an animation state machine
able to convert it into a detailed animation sequence.

In contrast with previous work, our system also extracts La-
ban effort qualities such as weight (light/strong) and time (sud-
den/sustained) from the input spatial motion, and transfers them to
the detailed animation sequence, enabling us to make it expressive.

The following sections present the three main components of
our system, namely the method for parsing spatial motion doodles
into sequences of actions (Section 4), the extraction of Laban effort
qualities (Section 5), and the assembly of a 3D animation sequence
matching the trajectory, timing and qualities of the input spatial
motion doodle (Section 6).

4 ACTION RECOGNITION
In this section, we propose a solution for segmenting a continuous
motion sequence into a discrete sequence of actions. The latter
are represented as regular expressions over a set of spatial motion
tokens, defined in the space of all possible local velocity directions
in the character’s frame.

Figure 3: Controller and Character Moving frames. Z axis
points towards the front direction, Y points axis up and X
points left.
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4.1 Tokenization
The input spatial motion doodle (or SMD) {pi },pi = (xi ,yi , zi ,θi ,ϕi ,γi ),
stores the position of the center of mass and the orientation over
time of the tangible object in a global world frame, where y denotes
the vertical direction. To be able to consistently recognize actions
(eg. jump versus side-step), we need to evaluate velocity directions
with respect to the character’s frame. Figure 3 shows how the tan-
gible object and the character frame relate to each other where
x , y and z axis respectively represent the LEFT, UP and FRONT
directions.

After each capture, the SMD is first de-noised (in our implemen-
tation, we use a third order Savitzky-Gole method [Savitzky and
Golay 1964]). We then segment it into spatial motion tokens. The
latter represent short snippets of 6D motion where velocity remains
in the same bin in terms of velocity direction with respect to the
character’s frame. More precisely, token values represent bins par-
titioning the 6D space of linear and angular velocity directions. For
instance, theT_Z token corresponds to a forward character motion
(positive z direction) while T_N_Z token corresponds to a back-
ward motion. In our implementation, we use 27 bins in translation
and 27 bins in rotation.

For each pi , we compute the signs of the six linear and an-
gular velocities with respect to each axis, to identify the right
bin. This is done in the local character’s frame, defined by the
current rotation matrix Ri = Rz (γi )Ry (ϕi )Rx (θi ) at each point
pi = (xi ,yi , zi ,θi ,ϕi ,γi ) of the SMD. The local linear velocity di-
rection ®v relative to the character’s orientation is then given by:

®v = Ri (pi − pi−1). (1)

Similarly, we compute the angular velocity relative to the charac-
ter’s orientation ®ω = (θi − θi−1,ϕi − ϕi−1,γi − γi−1). Evaluating
these velocities enables us to partition the SMD into segments with
constant velocity directions.

Finally, we identify segments along the SMDwhere


®v

2+

 ®ω

2 ≤

ϵ (ϵ = 0.05 in our case) and assign them to the T_ST ILL token
symbolizing immobility.

4.2 Approximate matching
Once the SMD is converted into a sequence of tokens, we use a
state machine for approximate matching of the regular expressions
associated with actions in our database. Each action is represented
as a regular expression of spatial motion tokens containing only
∗, + and | operators, where ∗ means zero or more occurrences, +
means one or more occurrences and | is the logical or operator. We
provide as supplementary material, a figure showing a subset of
actions in our library together with their spatial motion doodles,
regular expressions and animation keyframes.

We use approximate matching, rather than exact matching, to
allow small errors in the spatial motion tokens drawn by the user.
This is done by searching for the action with the smallest Lev-
enshtein distance to the current token string, using a variant of
Levenshtein automata [Schulz and Mihov 2002]. Noting that reg-
ular expressions in our database are insensitive to repetitions of
atomic tokens, we remove all + from action regular expressions.
Then, we enumerate all possible sub-expressions of non-repeating
tokens by traversing all ∗ and | symbols in the regular expressions.

This allows us to customize very compact and efficient Levenshtein
automata suitable to actions in our database.

Our action detection method brings several benefits. It is trans-
lation and rotation invariant as all computations are performed in
a moving frame (in contrast with [Thorne et al. 2004] where the
drawing plane frame had to be used). In addition, the method is
also scale invariant in space as each token of regular expression
is followed by a + or a ∗ making them infinitely repeatable. These
properties give more freedom to users: whatever the current po-
sition and rotation of the prop, they will be able to execute any
recognizable action; furthermore each action can be executed at
their preferred size, ie. either within a small or a wide area.
4.3 Learning Regular Expression
We propose a heuristic approach to learn user dependent action
regular expressions from a small number of spatial motion doodle
examples. Usually, three examples are sufficient. Learning a regular
expression from examples is an ill-posed problem which can accept
the composition (or operator) of all the examples as a solution.
In our approach, we build a compact regular expression which
recognizes both examples as well as inputs that are very similar to
them.

Given n examples representing the same action, we compute
an average space time doodle using dynamic time warping with l2
norm as distance function, following an approach first proposed
by [Ciccone et al. 2017]. Using this technique, we find point cor-
respondences between the input examples and then compute the
average doodle by taking the mean of each correspondences. We
then convert the n input doodles and the average doodle into n + 1
token sequences {Xi }.

Our learning algorithm is aimed to align tokens that are repeated
more than twice for each sequences, considering them asmandatory
in the final learned results (translated as a + in a regular expression).
Other tokens are considered as optional or unintentional gestures
from the user (translated as a ∗ in a regular expression). Thus, from
each sequence Xi = T0i ...Tni we extract two subsequences :Mi =

m0i ...mpi composed of mandatory tokens (preserving the original
order) and Oi = o0i ...ol i composed of optional tokens. For each oi ,
we store the index of the next mandatory token in the Xi sequence
as well. Then, our system parses mandatory sequences in parallel
and build the first part of the final regular expression R = r0+ ...rn+
where ri = (mi0 |...|min ). Note that each mandatory sequence may
have different length, consequently if i ≥ min

j
lenдth(Mj ), ri will be

treated as optional and ri+ is replaced by ri∗. Finally, we add the re-
maining optional tokens into the final sequence using the following
method: before each token ri we insert the optional sequence õi =
((oki 0...o(ki+pi )0)|...|((okin ...o(ki+pi )n ))∗ where (oki j ...o(ki+pi )j ) is
the subsequence ofX j composed of optional tokens located between
them(i−1)j andmi j mandatory token. Note that if all subsequences
are equal then this optional token sequence is treated as a quick
intentional (mandatory) gesture. Finally, we emphasize that, by con-
struction, each training example is contained in the final regular
expression R.

5 MOTION QUALITY RECOGNITION
For each detected action, we also extract motion qualities from

the corresponding part of the user’s input gesture. This is done
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(a) Sinking Shape (b) Rising Shape (c) Enclosing Shape (d) Spreading Shape (e) Advancing Shape (f) Retreating Shape

Figure 4: Illustration of Laban’s Shape category descriptors.

Figure 5: Laban’s Effort verbs (drives) projected in the time
and weight axes.

using Laban Movement Analysis. After presenting the necessary
background, we explain how we select features from a spatial mo-
tion doodle and train a classifier to recognize some of the main
Laban qualities from them.

5.1 Laban movement analysis
Laban Movement Analysis (LMA) [Laban 1950] is a method for
characterizing quality in human movements in terms of timing,
space used, posture and intention. The full LMA uses five descrip-
tion categories, namely Effort, Shape, Phrasing, Body and Space, to
classify motion. In this work, we focus on the first three categories
of Effort, Shape and Phrasing, which we now proceed to define
briefly.

Effort describes the dynamic quality of motion and is based on
the 4 following dimensions (with the associated extreme values):
Space (direct - indirect), Time (sustained - sudden), Weight (light -
strong) and Flow (bound - free) making the Effort category isomor-
phic to [−1; 1]4. Expert studies on Laban effort expression [Bishko
2014] observed that Space, Time and Weight are often sufficient
to describe actions, either two or three of them being active at the
same time. Motions involving two descriptors are defined as States
and those involving three of them as Drives. Figure 5 illustrates
the Laban Effort space of Time and Weight, omitting the Space
and Flow dimensions. In this work, we restrict our analysis to the
two dimensions of Time and Weight, which best capture the input
gesture styles. This section explains how we recognize those styles
and transfer them to the corresponding animations.

Shape characterizes body posture during motion. This feature
directly influences the movement’s convex hull. Similarly to Effort,
it is isomorphic to a [−1; 1]3 cube and evolves according to 3 factors:
Horizontal (enclosing - spreading), Vertical (sinking - rising) and
Sagittal (retreating - advancing) as shown in Figure 4.

As reported in [Durupinar et al. 2016] and [Bishko 2014], Ef-
fort and Shape can be combined together, as each feature from
the first category has expressiveness affinity with the second. For
maximal expressiveness, Bishko [Bishko 2014] suggests to associate
light effort with a rising shape, strong effort with a sinking shape,
sustained effort with an advancing shape and sudden effort with
a retreating shape. In Section 6.4, we use this coupling between
Effort and Shape to emphasize weight (strong/light) and time (sus-
tained/sudden) qualities by changing the shapes of the 3D character
in the corresponding animations.

Phrasing describes the relative durations of the five main stages
in human movements (Figure 6, see [Bishko 2014] for details).
Among them, Preparation is when the character mentally prepares
to execute the movement; Anticipation is an energy accumulation
phase during which the character moves in the opposite direction
from the main, subsequent motion; Execution corresponds to this
main motion; Follow-through represents all the extra movements
at the end of the main action; Transition is the end stage, which
leads either to a rest pose or to another action. In practice, some of
these stages may be removed or masked depending on the current
motion and its context.

5.2 Feature extraction
We train classifiers for Effort qualities of Time and Weight in seg-
ments of the SMD corresponding to each detected action. To do so,
the first step is to choose candidate features to be computed from
those SMD segments.

We use the first three derivatives (velocities, acceleration and
jerk) of the six components of the SMD for a total of 18 features.
Those can be computed efficiently using finite differences. As for
the SMD segmentation into tokens, these features are expressed
in the local frame of the character (with the up - down, left - right,
and front - back axes) for them to be independent to the orientation
if the input gesture.

In addition, we compute the curvature and torsion of the trajec-
tory of the center of the moving frame, as well as its Euclidean and
equi-affine velocities and their derivatives (accelerations). Let us
explain the concept of equi-affine velocity.

In 2D, the equi-affine velocity of a point moving along a planar
trajectory is defined as Va = | Ûr , Ür |

1
3 and is related to the Euclidean

velocity with the formula Va = Veκ
1
3 , where κ = | Ûr, Ür |

∥ Ûr ∥3 is the cur-
vature of the trajectory. Equi-affine velocity is an important in
movement studies because is has been shown that human sub-
jects spontaneously draw with constant equi-affine velocity. This
is known as the 1/3 power law [Pollick and Sapiro 1997].

In 3D, equi-affine velocity is defined in a similar fashion using
the triple scalar product Va = | Ûr , Ür ,Ýr |

1
6 which is again related to
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the Euclidean velocity with the formula Va = Veκ
1
3 τ

1
6 where κ

is the curvature of the stroke as before and τ = | Ûr, Ür, Ür |
∥ Ûr×Ür ∥2 is the

torsion of the stroke. Similarly to the 2D case, recent work has
shown that human subjects describe spatial movements performed
with equi-affine velocity as uniform [Pollick et al. 2009] and this is
known as the 1/6 power law. Those findingsmake spatial equi-affine
velocity a likely candidate to measure subjective motion qualitites
and we therefore include it in our feature set. We also compute equi-
affine acceleration as the first derivative ofVa . In total, we measure
18 features in moving frame coordinates and 7 features in world
coordinates (Euclidean velocity, acceleration and jerk, curvature,
torsion, equi-affine velocity, and equi-affine acceleration). We then
take the mean values and standard deviations for all of them over
the duration of an action to obtain a total number of 50 candidate
features.

5.3 Feature selection
In order to validate our choice of features, we created a dataset of
spatial motion doodles labeled with Laban weight and time qual-
ities, and computed the intra-class and inter-class variances for
all features. We used a total of 200 training examples, captured by
asking 5 users to move a rigid object in four different combination
of the Time andWeight qualities, namely strong and sudden, strong
and sustained, light and sudden, light and sustained. This was done
ten times for each combination. The resulting examples were then
used to train the two classifiers as follows.

Considering n classes (n = 2 in our case) andmi examples in the
ith class, we computed for each feature f :

f =

∑
i ∈[1:n]

∑
j ∈[1:mi ]

fi j∑
i
mi

(2)

∀i ∈ [1,n], fi =

∑
j ∈[1:mi ]

fi j

mi
(3)

followed by the corresponding inter-variance and intra-variance:

σinter (f )2 =

∑
i ∈[1:n]

mi (fi − f )2∑
i
mi

(4)

σintra (f )2 =

∑
i ∈[1:n]

∑
j ∈[1:mi ]

(fi j − f i )2∑
i
mi

(5)

The relevance of each feature f was then computed as the ra-
tio σinter (f )2

σintra (f )2 (the higher the better). Using our training data, this
enabled us to evaluate which features of the SMD are the most
relevant for Laban classification.

Experimentally, we found that the most relevant features for
recognizing sudden from sustained along the Time dimension are
local up speed, acceleration, jerk, global Euclidean acceleration and
local left and right speed . Remarkably, we also found that the most
relevant features for classifying light from strong along the Weight
dimension were equi-affine speed, equi-affine acceleration, Euclidean
acceleration, speed, jerk and torsion, which confirmed our intuition

that equi-affine speed was an important perceptual feature of the
spatial motion doodles.

5.4 Bayesian classification
Using the above features and examples, we trained two naive Bayes
classifiers to recognize Laban Effort qualities along the Time axis
(sudden - sustained) and theWeight axis (light - strong).

Next, we compute the mean fi and the standard deviation σ 2
fi
of

feature f for the i-th class. We then define, for an input SMD u:

P(u ∈ classi |u) =
∏
f

N (fu , fi ,σ 2
fi
)

where fu is the value of the f -th feature for spatial motion u.
Finally, in order to classify the input SMD u we select:

Class(u) = argmaxi (
∏
f

N (fu , fi ,σ 2
fi
))

where the classes are chosen along either the Time axis (sudden
- sustained) or theWeight axis (light - strong).

We computed all 50 features for all labeled training examples,
and incrementally trained classifiers for each task using the M
most relevant features for that task with M ranging between 1
and 50. We then chose the classifier with the best accuracy for
each task, resulting in 4 features for recognizing Time (local UP
speed, acceleration and jerk and global Euclidean acceleration) and
2 features for recognizing Weight (equi-affine speed and equi-affine
acceleration). The best classification accuracy for each task are
reported in Section 7.
6 ANIMATION TRANSFER
Once all actions have been extracted from the input SMD together
with their corresponding trajectories, our system classifies each of
them into Laban Effort categories and computes an environment
adapted trajectory for the animated character. Both trajectory and
Laban qualities transfer rely on phrasing principles for expressive
animation. In particular, we build on this decomposition for transfer-
ring Laban effort values in different ways according to the stage of
motion among preparation, anticipation, execution, follow through,
and transition (see Figure 6). This decomposition also enables us
to process differently in place from the moving stages during the
trajectory run through.

We first describe the pre-computation we use for segmenting
the animation clips in our database according to phrasing, before
describing how our system creates an adapted character trajectory
as well as our operators for transferring expressive motion features.

6.1 Phrasing detection
The key for segmenting an animation clip, representing an action,
is the fact that the end of each animation stage is highlighted by an
extreme pose where speed and acceleration both vanish [Bishko
2014]. This enables us to use a semi-automatic method for prepro-
cessing the animations in our database: We apply segmentation at
each frame for which both speed and acceleration are null. Then
depending on the number of segments, we either use manual or
automatic labeling, based on the fact that the five motion stages
presented in Figure 6 always take place in the same order.

In practice, some motion stages may not be present for some of
the actions: we solve situations where only two extreme poses are
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(a) Preparation step (b) Anticipation step (c) Execution step (d) Follow-Through step (e) Transition step

Figure 6: The five main steps of motion: preparation (intention of action), anticipation (energy gathering), execution (energy
release throughmain action), follow-through (follow-upmotion induced by the execution), transition (movement either back
to hold pose or to connect to next action).
detected between the first and last key-frames by selecting either
(anticipation, execution) or (execution, follow-through) for these
extreme poses, depending on whether the main direction of motion
changes or not between the animation segments ending at these
extreme poses. Indeed, anticipation is an energy accumulation stage
that makes thewhole bodymove in the opposite direction compared
to the execution of the action; in contrast, there is no major change
of direction between the execution and the follow-through stages.
6.2 Trajectory transfer
Transforming the sketched doodle into a plausible trajectory for
the 3D character is not straightforward. We take care of doing it
while preserving the user intent as much as possible.

The initial SMD is firstly projected into the ground so that the
character does not perform actions above or under the terrain. We
then need to remove unused parts of the trajectory (such as vertical
displacements) for actions that are to be performed in place. To do
so, during the whole transfer, our system applies and increments
a spatial offset sof f which account for the parts of the transferred
doodle that are removed for in-place actions. For an action Ai and
its corresponding trajectory {Pi j }, we apply the spatial offset to
each p ∈ {Pi j }. Then, if the current action is an in-place action, our
system increments the spatial offset sof f by ∥pin − pi0∥ and merge
all the points of its trajectory into its first point.

Each animation clip corresponding to a detected action is then
extracted from the data-base and modified to an expressive anima-
tion using the desired Laban qualities (as detailed in Section 6.4). It
is then re-timed so that it lasts as long as its corresponding chunk
of the character’s trajectory. While doing so, we treat cyclic actions
such as walking as a special case, in order to prevent artifacts such
as foot skating:

Each cyclic animationCi is subdivided intom cycles {Pi jk }k=1...m
where ∥pink − pi0k ∥ = Clenдth , with Clenдth , the travelled dis-
tance during one animation cycle.

Additionally, our systems re-times each non-cyclic trajectory
chunks such that the character’s root node moves and follows the
trajectory during execution, but stays in place during preparation,
anticipation, follow-through and transition.It is especially the case
for Jumpswhich are generally composed of in place anticipation and
follow through phases as well as a moving execution phase. For a
Jump animation Ji whose duration last as much as its corresponding
trajectory {Pi j } ,ensuring that the character stays in place during
the anticipation and follow through phases (ending respectively
at tai and tfi ), our system applies the following process: ∀p ∈
{Pi j }, tp ≤ tai ⇒ p = pi0 and ∀p ∈ {Pi j }, tp ≥ tfi ⇒ p = pin

Finally, we use well established motion graph techniques to
compute smooth animation transitions between sequences corre-
sponding to different actions. Additionally, we detect collisions

between the character’s feet and the ground and perform simple IK
corrections to prevent penetration.

6.3 Transfer operators
Let us now detail how the extracted Laban Effort features (Time and
Weight dimensions) are re-targeted to the selected animation clips.
Based on the segmentation of each clip into phases, we transfer the
extracted qualities using a combination of three operators, namely
retiming, rescaling and reshaping. We introduce these operators
before explaining how they are used.

Retiming consists in reparametrizing and modifying an anima-
tion overall timing ϕ(t) which takes as input the time t ∈ [start :
end] and returns the time tr eparam at which the animation will be
computed. Additionally, this operator can extend or shorten anima-
tion phases using linear time scale. In order to preserve consistency
between the animation phases, we use recursive functions to define
the new time parameterization:

fi (t) = fi−1(endi−1) + ai .(t − starti )bi (6)
where i (from 1 to 5) relates to the animation phase, f0 is the con-
stant function returning time t0 when the action starts, and a, b
are parameters computed from the effort values to be transferred.
We use this to apply parameterization different retimings strate-
gies for each of the animation stages while maintaining consistent
transitions.

Rescaling enables us to re-scale motion in an adapted way for each
of the animation stages: parts of motion may be enhanced or made
less salient depending on the needs. This is used for instance to
down scale the anticipation part of sudden and sustained actions.
Applying a spatial scale to a segment of the animation clip is done
as follows: given the start and end keyframes s and e of an anima-
tion stage, we compute for each bone Bi its rotation qi (s) and its
translation ti (s) at the start of the stage. Then we apply scaling
using:


qi (t) = scale(qi (s)qi (t)−1, c)−1qi (s)
scale(qi (t), c) = Slerp(qunit , qi (t), c)
ti (t) = ti (s) + c(ti (t) − ti (s))

(7)

where c is a parameter depending on the Effort values Lt and Lw ,
and qunit is the unit quaternion whose angle is null. Note that an
additional contact preserving step is performed after scaling using
inverse kinematic constraint on contact effectors.

Reshaping enables us to visually enhance the weight dimension of
efforts by applying an adequate tuning of the body posture during
motion. We do this based on the relation between Laban Effort
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and Shape categories, which states that a light motion is better
expressed with a rising body posture, and a strong motion with a
sinking posture.

6.4 Transferring Laban efforts
All the input animation clips in the database are chosen to represent
neutral versions of the corresponding actions, with uniform key-
frames sampling in time.We transfer the extracted Time Lt ∈ [−1, 1]
andWeight Lw ∈ [−1, 1] features as follows.

6.4.1 Transferring Time. The aim is to give a feeling of impulse for
sudden motions (Lt > 0), respectively a feeling of pose and control
for sustained ones (Lt < 0). In both cases, this implies changing
the relative duration of some of the action stages as well as their
space amplitude. Preparation and anticipation phases are down-
scaled by a factor c = 1

3 |Lt |+1.0 using Equation (7) for sustained
and sudden motions. Indeed, sudden motions feel unprecedented
and should not display the intention of preparing an action while
sustained motions do not need anticipation as their execution needs
less effort. With respect to the feature selection results we obtained
in section 5.3, we apply our retiming operator on both sustained
and sudden motion making sustained motions execution longer and
anticipation shorter while sudden motions have shorter execution
phases and longer anticipations. Our retiming operator also induces
an important acceleration phase at the beginning of suddenmotions
execution phase while inducing a deceleration for sustained motion
executions.

Therefore, we use the following implementation of Equation (6.3):



fant (t + endprep ) =
{
fprep (tprep ) + t

−0.5Lt+1 if Lt ≥ 0
fprep (tprep ) + (Lt 0.5 + 1)t otherwise

fexec (t + endant ) =


fant (tant ) + 1

2Lt+1 t
−0.4Lt+1 if Lt ≥ 0

fant (tant ) + (−2Lt + 1)t−0.4Lt+1

otherwise

where tprep , tant , and texec are respectively the end times of the
preparation, anticipation, execution, and follow-up stage. Note that
for each stage reparametrization t ∈ [0 : endi ].

6.4.2 Transferring Weight. When transferring Weight, we would
like to make light motions (Lw ≤ 0) feel more uniform and more
subtle against more powerful (Lw ≥ 0) for strong motions. To
achieve this effect, we first re-time neutral animations in order to
amplify (for strong motions) or flatten (for light motions) speed
variations. Thus, we proceed to an arc length reparametrization
γ (l) of an input animation modifying its speeds.

At each frame i we compute the arc length Li =
(
V i
e

)αLw
(ti −

ti−1) + Li−1 (α = 1.5 in our case) where V i
e is the average joint

velocity. Note that for light motions, as Lw is negative we clamp
values between 0 and 1 to avoid divergence of the speed when
it comes near 0. Finally, we define the Weight reparametrization
function in the time domain ϕ(t) = γ ( t∗LT ) where L is the total
arc length and T the total duration of the animation. The resulting
effect amplifies speed variations for strong motions and flatten
them between 0 and 1 for light motions, making the computed

speed more uniform. For neutral animation, Lw = 0, V i
e = 1 and

the initial timing is maintained.
Next, the scaling operator is applied to the overall animation,

enhancing strong motions and restraining Light motions. In our
implementation, we use c = 1

−Lw+1 for light motions and c = Lw +1
for Strong motion in Equation (8).

Lastly, we improve Weight transfer by making use of the Shape
operator: an adequate rotation is applied to the spine of the charac-
ter while contact with the ground is maintained. This is done by first
classifying the bones of the character into spine bones, intermediate
bones and end-effectors. We parse the input skeleton starting at the
root and find a chain linking it to the chest and the head. All bones
belonging to this chain are labeled as spine bones. Then unlabeled
children of spine bones are labeled as intermediate bones. Finally,
bones without children are labeled as end effectors. Using this label-
ing, the Shape operator is applied by shifting spine bone rotations
along their local x axis by δθ = 0.1 ∗ Lw , depending of the Weight
value θspine = θspine + δθ , so that light motions use an uprising
body posture while strong motions use down body-postures.

7 RESULTS AND DISCUSSION
We present results of objective user studies to respectively evaluate
our action detector, our Laban extraction method and our method
for transferring Laban features to input animations. We also present
results of a subjective user study to evaluate how expressive the
produced animations are and how well to correspond to the user’s
intents.

7.1 Action detection
We asked users to execute predefined action patterns 10 times, after
showing them the recorded controller motion of a typical example.
We computed the success rate per action category, measured as the
percentage of executions that indeed matched the target regular
expression. Results are summarized in Figure 7.

These results show that our system achieves good recognition
results with respect to the user intent. Moreover, walking and jump-
ing actions were always recognized as intended. More interestingly
the Punch and Throw, which were the actions with the most recog-
nition failures, still have more than 75% of recognition rate. Given
that the regular expression for Throw is a sub sequence of the regu-
lar expression for Punch, this shows that our system is not so much
confused by similarity.

In addition, we evaluated the efficiency of our regular expression
learning algorithm by asking 5 users to train our system for 3
different actions (each user had a different action set to train). Users
were then asked to test the system thrice with short tests (2 or
3 actions) doodles and several times with longer sequences (at
least more than 5 actions). On simple doodles, our system achieved
94% of correct recognition rate. This number decrease to 90% on
longer sequence which remains acceptable. The study revealed
that motion involving rotations were more difficult to recognize,
especially when users rotate the controllers away from their center
of gravity, which induces unintended translations.

7.2 Laban weight and time recognition
As explained in Section 5.4, we trained two Bayesian classifiers for
the two Laban dimensions Time and Weight, using 40 examples per
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Figure 7: Percentage of actions correctly recognized during
our user study.
class in each case and tested it on 20 labeled input curves not belong-
ing to the training set. Figure 8 shows the classification accuracy
for recognizing Laban qualities separately in the Time and Weight
dimensions, and for recognizing combinations (states) of the two
dimensions. We notice that feature selection significantly improves
the recognition rates of individual features as well as combined
feature (states), but the latter task remains difficult. As described in
Section 5.3, we selected 4 features for the Time dimension and 2
features for the Weight dimension.

Sudden Sustained Light Strong States
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80

100
No Selection With Selection

Figure 8: Laban effort classification accuracy in percentage
before and after feature selection.

This allows us to independently recognize Laban qualities of
Time and Weight with a precision above 80%, even with simple
naive Bayes classifiers. Our results also confirm the findings of
[Fdili Alaoui et al. 2017] that identifying Laban states combining
multiple Laban dimensions is a more difficult task. Feature selection
improves the recognition rate for that task by 13% to just above the
50% threshold.

7.3 Laban transfer
We conducted a series of experiments to evaluate the plausibility
of our Laban Effort transfer method by testing if non-expert users
were able to recognize the motion qualities of the resulting syn-
thetic animations. To achieve this, we showed to 8 users 8 modified
animations towards the 4 possible efforts (twice per effort) and
asked them, for each animation, to label them among these four
efforts. Results in terms of classification accuracy (percentage of
correct recognition) are depicted in Figure 9. Those experiments
demonstrate recognition rates well above chance level in all cases.
We observed that for some cases users mistook strong animations
as sudden and light animations as sustained which is also likely to
be cause of State classification confusion in our recognition rates.
7.4 Freestyle animation
We tested the ease of use and expressiveness of our method by
asking 5 users to freely create 3 complex animations in different

Sudden Sustained Light Strong
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Figure 9: Accuracy of subjective recognition of transferred
Laban effort qualities. Users were asked to recognize Laban
effort qualities after viewing the transferred animations. Re-
sults are reported in percentage.

styles, and asking them to subjectively evaluate the resulting ani-
mations. All users first trained our system to use their own gestures
during their recordings. The training sessions lasted five minutes
on average. Users then created three free-style animations, for a
total running time of three minutes each on average. The anima-
tions were then presented to them in a subjective view in the HTC
Vive headset. Users recognized their intended actions in most of
the cases and were generally satisfied with the transferred motion
styles. They found the system easy to use. In some cases, false
detections occurred while users were pausing or gesturing non
intentionally. Transferred animation results created by these users
(like the one shown in figure 10) are shown in the accompanying
video.

Figure 10: Example of freestyle SMD and animation created
by a user during evaluation.

7.5 Limitations
Our method comes with several limitations. Some gestures may
be ambiguous, leading to multiple equivalent action sequences.
We give priority to actions corresponding to the largest token se-
quences, which can lead to problems when the number of actions
increases.

Another limitation of our system comes from the discomfort
caused by the HTC Vive controlers. In future work, we would like
to replace them with figurines equipped with HTC Vive trackers,
which would make it easier to rest the figurines on the floor and
change hands to perform more complex gestures and generating
animation for scenes with more than two characters.
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Future work is also needed for better recognition and transfer of
combined motion qualities. While our system is able to recognize
and transfer weight and time qualities separately, it performs poorly
with subtle combinations such as light and sustained (as in gliding
or floating) or strong and sudden (as in thrusting or slashing).

8 CONCLUSION
In this paper, we introduced a new way of creating expressive char-
acter animation sequences by playing with a tangible object. Our
system parses the input spatial motion doodle into a sequence of ac-
tions, which are automatically translated into character animations
with suitable motion qualities. Results show that our system can
be used to create simple sequences of playful animations suitable
for children and young adults.

This opens up several new directions of research. First of all, we
would like to further extend two-handed manipulation for creating
stories with coordinated motions of two characters, by learning to
recognize two-handed gestures, rather than parallel singled-handed
gestures. This would also us to quickly draft multi-character anima-
tions involving close interaction and contact. Secondly, dynamics
simulation could be combined with our framework to improve the
quality and expressiveness of the generated animations. Finally,
our method is well suited for quickly drafting animations in immer-
sive environments, and it would be interesting to integrate it with
existing virtual reality painting systems.
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