

Sport injury prevalence and risk by level of play and sports played among a representative population of French adolescents. A school-based study

Maxime Luiggi, Jean Griffet

▶ To cite this version:

Maxime Luiggi, Jean Griffet. Sport injury prevalence and risk by level of play and sports played among a representative population of French adolescents. A school-based study. Epidemiology and Public Health = Revue d'Epidémiologie et de Santé Publique, 2019, 10.1016/j.respe.2019.07.008. hal-02303560

HAL Id: hal-02303560 https://hal.science/hal-02303560

Submitted on 3 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

This is an Accepted Manuscript of an article published by Elsevier Masson SAS in Revue d'Epidémiologie et de Santé Publique [Epidemiology and Public Health] on September, 25, 2019, available online: https://doi.org/10.1016/j.respe.2019.07.008

Manuscript title: Sport injury prevalence and risk by level of play and sports played among a representative student population of French adolescents. A school-based study.

Authors: Maxime Luiggi^a, Jean Griffet^a ^aAix Marseille Univ, CNRS, ISM, Marseille, France

Luiggi M, Griffet J. Sport injury prevalence and risk by level of play and sports played among a representative student population of French adolescents. A school-based study. Rev Epidemiol Sante Publique 2019 [under press]. DOI: 10.1016/j.respe.2019.07.008

Sport injury prevalence and risk by level of play and sports played among a representative population of French adolescents. A school-based study

Prévalence et risque de blessure en sport par niveau de pratique et sport pratiqué auprès d'une population représentative d'adolescents Français. Une étude menée en milieu scolaire

ENGLISH ABSTRACT

Background: Sports practice has both benefits and physical risks. In France, data relating to adolescent sports injury are rare. The main purpose of this article is to study the prevalence and risk of injuries by level of play and sports in the south-east of France.

Methods: Data collection was conducted in French schools among adolescent in 2015 and 2017 (n=1849; aged 14-19). Only sports players were included (n=1366). Two level of play were created. Low level group included adolescents playing sport either outside or within a club, at or below the local level of competition. High level group included adolescents playing sport within a club at the state (regional) level of competition or higher. Odds-ratio and their 95% confidence interval adjusted for variables selected using stepwise regression procedures were calculated to determine the injury risk of high-level athletes compared with those at low-levels, for each sport. We also calculated the injury risk of each sport compared with the entire sample, by level of play.

Results: At the highest level, almost all sports activities presented a higher prevalence of injured athletes than at the lowest level of play. The increases in injury risk was highest on tennis, basket-ball, dance, athletics and volley-ball. When comparing sports, at the lowest level, handball, boxing, soccer and gymnastics practitioners were more at risk than the rest of the sample. At the highest level of play, only basket-ball players were more at-risk. Dancing is the less dangerous sport in terms of injury outcome, regardless the level.

Conclusion: From the state level of competition, injury risk increases significantly across the most sports. Meanwhile, differences appeared regarding prevalence, severity and nature of injuries sustained. It would be useful to perform such analysis on a greater sample size, ideally representative of the national population of adolescents.

Keywords: adolescent health; sports injury; athletic injuries; sports

FRENCH ABSTRACT

Position du problème: La pratique sportive comporte à la fois des bénéfices et des risques corporels. En France, les données concernant les blessures subies en sport par les adolescents sont rares. L'objectif principal de cet article est d'étudier la prévalence et les risques de blessures par niveau de pratique et sport dans le sud-est de la France.

Methode: Une collection de donnée a été réalisé dans des établissements scolaires Français auprès d'adolescents en 2015 et 2017 (n=1849; aged 14-19). Seuls les sportifs ont été inclus (n=1366). Deux niveaux de pratique ont été formés. Le groupe de faible niveau comportait les adolescents pratiquant leur sport soit en dehors d'un club ou dans un club, au niveau de compétition départemental ou inférieur. Le groupe de haut niveau comportait les adolescents pratiquant leur sport dans un club au niveau de compétition régional ou plus. Les odds-ratios et leurs intervalles de confiance à 95% ajustés avec des variables sélectionnées en utilisant des analyses de régressions par étapes ont été calculés pour déterminer le risque de blessure des sportifs de plus haut niveau par rapport à ceux de plus faible niveau, par sport. Nous avons aussi calculé le risque de blessure pour chaque activité sportive comparé à l'échantillon total, par niveau de pratique.

Resultats: Au plus haut niveau de pratique, presque toutes les activités sportives présentaient une plus importante prévalence d'athlètes blessés qu'au plus faible niveau. L'augmentation du risque de blessure était le plus important en tennis, basket-ball, danse, athlétisme et volley-ball. En comparant les sports, au plus faible niveau, les pratiquants de handball, boxe, football et gymnastique avait un risque plus élevé de blessure que les autres pratiquants. Au plus haut niveau de pratique, seuls les joueurs de basket-ball étaient plus à risque. La danse est l'activité sportive la moins dangereuse en terme de survenue de blessures, quelque soit le niveau de pratique.

Conclusion: A partir du niveau de compétition régional, le risque de blessure augmente significativement dans la plupart des activités sportives. Dans le même temps, des différences sont apparues concernant la prévalence, la sévérité et la nature des blessures subies. Il pourrait être utile de réaliser des analyses similaires sur des échantillons plus important, idéalement représentatif de la population adolescente nationale.

Keywords: santé de l'adolescent; blessures sportives; blessures athlétiques; sports

Introduction

Sports-related injuries limit, hinder and/or prevent sustained sport activity. These injuries may also be a health risks for adolescent [1,2]. In many countries (for e. g. Canada, United States of America, Sweden), the adolescents groups most vulnerable to injury have been identified [3-5]. The more (i) the total amount of practise (ii) the level of play and (iii) the frequency and the strength of impact (involved in team and contact sports) the higher the injury prevalence [6]. In contrast, age, sex and body mass index, 'BMI', are not consistently related to injury [7-11].

In France, national population-based epidemiologic studies of sports injury are rare. Their rarity points to « a lack of social concern » [12] (p. 21) to a phenomenon which accounted for one half of the non-road and non-work related accidents for 0-24 years olds in 1998. They mainly measure the use of emergency units related to sex, age and the sport played [13-15] or the accidents reported by a global population without considering specifically adolescents [15]. No data are available on the number, severity and nature of sport injuries among a representative population of adolescents. The international literature is very informative about this research subject but scientific advances, no matter how successful they may be in one context, cannot be fully transposed to other countries. As Wiese-Bjornstal said, the risk of injury could vary according to sport cultures, largely determined by sport specificities, countries and local particularities [16].

Although French national population-based studies are lacking, however, regionally, a data collection was carried out among the school adolescent population in the south-eastern region of France. Initial published analysis [17] showed that age and sex were not related to injuries whereas hours of playing per week and collective sports were risks factors. Originally, the results showed that club sports did not uniformly expose adolescents to

injury. Injury prevalence was similar among adolescents playing outside-clubs and those playing in clubs at the local level of competition or below. However, at the state (or regional) level, the risk of injury increased significantly. This study highlighted the general influence of the level of competition and a threshold effect in injury risk (number and severity) at the state level of competition. However, it is still unclear whether this effect is observable in each specific sport activity. Previous findings showed that increases in level of competition did not increase adolescent injury risk in all sports. For example, the risk of injury for experts and novice in taekwondo were similar [18]. In judo, a study showed an increases in injury risk with the level of play [19] but results are different across the studied samples [20]. The risk is also greater for high level practitioners in soccer [21], gymnastics [22-23], mixedmartial arts [24], baseball [25], netball [26] and rugby football [27,28]. However, these studies used different definitions of high-level and low-level athletes. Some studies compared adolescents playing in Olympic teams [22] or professional teams [21] with those playing at the national level or one division below, or in a recreational context. Others studies compared the injury risk at a national level of competition with those playing at a lower level [28]. To our knowledge, no school-based studies have measured the injury risk using the state level and higher as a "high-level" population. It would be interesting for public health officials to know in which sports the injury risk is greater at these levels of competition compared to the lowest level of play. Results could help the development of sports injury prevention programs, as well as help physicians in sports medicine and parents to influence the commitment of adolescents in sport.

The main purpose of the present study was to conduct secondary analysis on this sample [17] to determine the injury prevalence by level of play (low/high) and by sport. Firstly, we aimed to identify sports in which a high-level of play (state level and higher) implied a

greater injury risk. Secondly, we estimated the odds-ratio for injury by sports (i) at low-level and (ii) at high-level.

Methods

Participants and Procedure

Comparing with 2015 (n=1343), the sample size has increased in 2017 by 506 students who answered the same survey in the same schools as in the original survey. The final sample included 1424 high-school students and 425 first-year university students. Only adolescents who agreed to participate and returned signed parental informed consent forms, or those aged 18 years and over, answered the survey (overall response rate: 98.7%). Participants responded to the survey under the supervision of a physical education teacher and a researcher. The data collection was approved by the Aix-Marseille University Ethics Committee (n°2019-23-05-003) and authorized by the Superintendent of Schools. Adolescents were asked to report sociodemographic, anthropomorphic variables (age, sex, height, weight), and informations related to their preferred sport participation (hours of play per week, context of participation and level of competition). For a detailed protocol, see Luiggi et al. [17]. In the present study, among all the participants, only those who declared (i) to play sport outside of mandatory physical education classes at school for at least one hour per week, (ii) what sport they preferred to practice, (iii) their level of competition, were included in the analysis (n=1366).

This sample included 611 girls et 755 boys with a mean age of 17.0 (SD=1.7). 424 participants declared to not play sport at least one hour a week. 17 participants did not report their level of competition. 42 participants play sport but did not report sport they practice. The body mass index 'BMI' was calculated by dividing weight (kg) by height squared (m)². Boys and girls were classified as 'not overweight', 'overweight' or 'obese' according to the

International Obesity Task Force cut-offs for girls and boys and as a function of their age [29]. This sample included respectively 2.3% of underweight and 6.0% of obese adolescents.

Independent Variables

Level of play (low/high)

According to the previous study conducted on the influence of level of competition on injury risk among this adolescent population in 2015, two groups were created. The first one included adolescents with a low injury risk (adolescents playing outside-clubs or within clubs below the departmental level of competition) (n=876). The second included adolescents with a high injury risk (adolescents playing in clubs above the state level of competition) (n=442). Adolescents who declared to play sport outside-clubs and take part in competition were excluded from the level of competition analysis (n=48).

Sports

A total of 83 different sports activities were reported by adolescents. We reduced the number of sport from 83 to 24. The least practiced sports (n<15) were combined into more general categories. For example, a "Boxing" category was created which included adolescents who declared to practice "Boxing", "Thaï boxing" or "French boxing". The 24 sports and sports categories identified were athletics, badminton, basket-ball, bodybuilding, boxing, climbing, cycling activities, dancing activities, fitness activities, gymnastics, handball, horse riding, judo, martial arts, rugby football, running activities, skiing activities, soccer, surfing/windsurfing, tennis, urban activities, and volley-ball. A category « Others » was also created. For the detailed sports activities included in each category, see additional file 1.

Outcomes

Adolescents were asked to report how many injuries they sustained during the past 12 months while playing their favorite sport. They were also asked to report the nature (sprain, overuse, tendon strain, muscle strain, fracture, dislocation) and the severity of injuries (minor, moderate, severe). Two outcomes were used. The first was (i) All Sport Injury 'ASI', irrespective of the need for medical attention or time loss from adolescents' activity. The second outcome used was (ii) injury treated by a medical practitioner –Medically Treated Injury 'MTI'.

Data Analysis

Data analyses were performed with R 3.5.0. First, anthropomorphic and sociodemographic characteristics were given by sports and levels of play. Second, we calculated injury prevalence for ASI, and for MTI, by level of play. Third, we calculated odds-ratios 'OR' for ASI and for MTI, and their 95% confidence interval '95% CI' by sports (injury odds of high-level players / injury odds of low-level players). Fourth, we calculated ORs and 95% CI measuring ASI and MTI injury odds by sports compared to injury odds of all the other sports. These analyses were conducted twice. At the lowest level of play, then at the highest. As recommended by Peduzzi et al. [30], these analyses were performed only when the two compared groups have had a minimum size of 10. Otherwise, not applicable 'NA' was entered into the results table. Finally, additional file 4 details the nature and number of injuries by sports with ORs and 95% CI describing odds of specific injury (sprain, tendon strain, etc) by sports comparing with odds of the rest of sample.

Adjustment variables

For the step three, analysis were performed separately for each sport. Given the relative low number of participants in some sports (between 19 and 197), we decided to limit the number of adjustment variables using a stepwise regression with the Akaike Information Criterion

(AIC) as the elimination criterion (for detailed procedures of variable selection see [31]). This procedure helps to avoid over-adjustment bias -or unnecessary adjustment- of the models [32]. The package stepAIC in R was used. Firstly, for each model (by sport), we selected candidates variables based on univariate analysis. The variables were the sex, age, BMI and hours of play per week 'HP' of participants.

These four variables were selected as adjustment variables candidates because some previous findings showed an association between them and injury. However, associations remained inconsistent. Only variables with a p-value <= 0.15 were selected for the next procedure. Second, we performed full models including all variables previously selected. Finally, we performed stepwise regressions. The adjusted ORs obtained from these final steps were used to estimate injury risk of adolescents playing at the highest level compared to those playing at the lowest.

For the step four, analyses were performed on the entire sample. Adjustment variables were the same for each model. They were selected based on univariate analysis between potential adjustment variables and each outcome. Only variables with p-value ≤ 0.15 were selected in the final models.

Selection of variables format

Age

No differences were observed in ASI or MTI prevalence between high-school and 1st year university students (ASI: respectively, 46.6% and 45.4%, Chi-square=0.062, p-value=0.804; MTI: respectively, 13.7% and 15.0%, Chi-square=0.293, p-value=0.588). These absences of effects suggested no threshold effect of age on the injury risk. Thus, further analysis were neither conducted separately between these two subgroups of students nor conducted using different age classes.

Body mass index

In addition, contrary with previous studies [7-9], no effect of an overweight BMI status was observed for ASI (OR_{overweight}: 0.81, p-value=0.35; OR_{obese}: 0.72, p-value=0.38) and MTI (OR_{overweight}: 1.21, p-value=0.53; OR_{obese}: 0.87, p-value=0.80) compared to sports players with a normal weight. Thus, BMI variable was kept continuous in the further models.

Hours of Play per week

After the model's comparison using 'HP' as categorical or continuous, no significant changes in the models' adjustments were found. Thus, the 'HP' was used as continuous in the further models.

Results

Sociodemographic and anthropomorphic characteristics of the studied sample by sport and level of play are provided in Table 1. The most practiced sports were soccer (14.9%), dancing (12.7%), basket-ball (6.8%), tennis (6.1%) and boxing (5.8%). Some activities were almost exclusively practiced by boys (for example, soccer and rugby football) whilst others by girls (for example, dancing and horse riding).

With respect to injury, 46.5% of adolescents declared to have had an injury within the past 12 months. More precisely, 14.6% had sustained a medically treated injury and only 2% had been treated in hospital. Prevalence of injured athletes by sport and level of play are detailed in Table 2. In Table 2, are also provided the injury risk (ASI and MTI) for high level players compared to low level players. Figure 1 and 2 gave a visual overview of these results. In general, adolescents playing at the highest level were 1.8 (95% CI: 1.4-2.3) and 2.5 (95% CI: 1.8-3.5) times more likely to have had respectively, an ASI or a MTI. For ASI, the increasing risk was significant and pronounced in athletics (OR:10.0, 95% CI: 1.98-77.92),

volley-ball (OR:11.0, 95% CI: 1.50-229.91), judo (OR:9.6, 95% CI: 1.58-86.91), basket-ball (OR:5.1, 95% CI: 2.08-13.33), and others martial arts (OR:4.8, 95% CI: 1.29-20.66). For MTI, the increasing risk was significant in tennis (OR:9.0, 95% CI: 1.42-94.50), basket-ball (OR:5.0, 95% CI: 1.63-18.94) and dancing (OR:3.7, 95% CI: 1.12-11.60). Although a greater prevalence of injured athletes was observed in the others sports, the odds-ratios were not significantly higher between high-level and low-level players.

In additional file 2, Table 1 and Table 2 are available results of all univariate analysis between predictors and injury, followed by models including only variables with a p-value <= 0.15, followed by results of final models using stepwise regression procedures. ASI and MTI ORs from these last models were those presented in the last paragraph.

Table 3 provides the odds of injury of each sport compared with the odds for all the other sports by level of play. Figure 3 and 4 gave a visual overview of ORs and 95% CI, for ASI and MTI, at the lowest level of play. At the low level of play, swimmers were 2.5 times less likely to have sustained an injury in the past 12 months (95% CI: 1.25-7.14). At the other extreme, those who preferred boxing, gymnastics and handball reported a higher risk of ASI. In gymnastics, they were 4.0 times more likely to have had an ASI compared to all the other sports (95% CI: 1.27-14.78). A greater risk was also observed, for MTI, in handball (OR:3.2, 95% CI: 1.10-7.95) and soccer (OR:1.8, 95% CI: 1.03-3.14). At the highest level of play, injury risk was similar for all activities. However, as in low level of play, we observed that swimmers (OR:0.4, 95% CI: 0.15-0.88) and skiers (OR:0.3, 95% CI: 0.07-0.93) were significantly less at risk of ASI compared to all the other sports. Contrary with these activities, at the highest level of play, basket-ball players were the most at risk compared to all the other sports. They were at 2.4 greater risk of ASI (95% CI: 1.20-5.29). In additional file 3, Table 1 to 4 are available results of the full models including adjustment variables effects.

Finally and for information, Table 1 in additional file 4 presented the numbers and nature of injuries for each sport. Table 2 showed the ORs for each nature of injury by sport compared to all the other sports. To sum up, 1180 injuries have been reported. Sprain is the most common injury (38.8%), followed by muscle strain (18.3%), overuse symptoms (15.9%), tendon strain (14.8%), then fractures (8.6%) and dislocations (3.6%). Once again significant differences appeared between sports. With regards to injury severity, we observed that horse riders, rugby football players and soccer players were at greater risk of fractures (respectively, OR:2.5, 95% CI: 1.53-4.22; OR:2.2, 95% CI: 1.6-3.01; OR:1.3, 95% CI: 1.16-1.48). While dancing activities were significantly less at-risk (around 2 times less fractures reported). Regarding dislocations, they were more frequent in cycling (OR:3.0, 95% CI: 1.66-5.45), judo (OR:2.8, 95% CI: 1.3-6.05), martial arts (OR:2.6, 95% CI: 1.22-5.63), rugby football (OR:4.7, 95% CI: 3.25-6.92), skiing (OR:6.0, 95% CI: 1.73-20.94) and volley-ball (OR:3.0, 95% CI: 1.66-5.45).

Discussion

This study aimed to investigate the level of play effects in sport injury risk among a French adolescent population representative of the third biggest area of France. Results showed that prevalence of injured athletes increased notably at the highest level of play –state level of competition or higher- compared with the lower level. Meanwhile, the increases in risk were not significant in many sports. We observed that injury risk for ASI was significantly higher with the increases in level for 5 sports out of 24. Results also never showed a significantly lower injury risk –ASI or MTI- at the highest level compared with the lowest, except in gymnastic. This surprising effect in gymnastic was like those of Kolt and Kirkby [22] who observed that elite gymnasts were at a lower risk than sub-elites when controlling for the hours of play. Concerning MTI, tennis, basket-ball, and dance practitioners presented a significant higher risk at the highest level of play. For ASI, a greater risk also appeared in

athletics, basket-ball, volley-ball, judo and others martial arts activities. Mixed-martial arts [24] practiced at the highest level have already been shown to put adolescents at greater risk of injury than when played at low level. Concerning rugby football, previous studies have shown that players at the highest level were at greater risk than those at the lowest level [27,28]. Our study shows that when controlling for hours of play per week, the ASI risk was similar between high-level and low-level players. However, the risk of moderate to severe injury was greater and highlight the high-intensity of contact presents in rugby football at the highest level of play [33].

Others results from our study should be compared with studies measuring how the level of play influences the risk of injury for different sports. To our knowledge, such studies do not exist for all sports. It would be interesting to develop systematic studies measuring this influence in order to inform public health officials and sports federations regarding to the hypothetical increasing health risks of competition in each sport. This need is even more important considering that improving knowledge about injury in adolescent elite sport is a major issue [34]. However, at present, sports injury studies have been mainly performed among professional, semi-professional or athletes playing at Olympic level. It could be interesting to determine at which level of competition adolescent athletes are at greater risk of injury, in each sport activity. Such findings would be especially interesting with focusing on injuries with long-term implications [2]. It would help to initiate appropriate injury prevention programs [1,35,36], surveillance [37] and research.

Regarding the odds of injury by sports at each level of play, we observed that at the highest level, injury prevalence and risk were similar between sports. Only volley-ball and basketball players were at a significantly greater risk. Meanwhile, and consistent with previous findings, non-contact sports such as dance and swimming activities were the less dangerous sports. Surprisingly, at this level of play, skiers were also at less risk than other

sports players. That contradicts a previous study that showed the high prevalence of severe injury in winter sports [14]. This result may be explained by the area of our surveys. Adolescents lived in the department of Bouches-du-Rhône and in this area ski resort are at approximatively 2 to 3 hours of driving. It is likely that their amount of participation is lower than one of adolescents living near mountains. That could explain their low injury risk observed in the present study. At the lowest level of play, we also observed that non-contact sports activities were health protective, whilst contact sports exposed adolescents to injury. For example, swimming and badminton were sport activities with significantly less proportions of adolescents sustaining at least one injury in the past 12 months. On the other hand, and still consistent with previous findings, we observed that handball [38], gymnastics [5] and boxing activities presented significantly higher proportions of injured adolescents. These sports are commonly classified as contact sports and these activities have already been identified to put adolescents at greater risk of injury. This observation was confirmed by the nature of injuries by sports. Fractures and dislocations were clearly more frequent in contact sports. Significant differences were observed in rugby, martial arts, skiing, soccer and horse riding compared with the rest of the sample. Once again, appropriate interventions on adolescent participation such as proper self-protection equipment [39], or changes in rules, could reduce such risks.

Limitations

Firstly, these results must be interpreted with caution. The present study offered a relatively low statistical power in some activities (low sample size) which could have been a source of type II (false negative) errors. In addition, the relative important numbers of statistical analyses conducted may have increased the type I (false positive) errors. In addition, sample size was too small to perform complete analyses for all sports. For example, the martial arts category included different combat sports which may have different injury risk [18,20,24].

It would be useful to increase sample size in order (i) to reduce likelihood of type II errors and (ii) to assess precisely the injury risk in each specific sport activity across levels of competition.

Secondly, in this sample we excluded all adolescents that reported to not play sport at least one hour a week. Some adolescents who play sport but that are currently injured may have been excluded of the sample due to our selection criteria. Thus, prevalence of injury may have been underestimated in some sports. Further studies should consider this issue and develop a survey that could consider currently injured sports players.

Thirdly, following prior analyses that showed no increased risk for overweight/obese adolescents compared to those with a normal weight, we decided to enter BMI variable in a linear form. This choice assumes a linear effect of BMI whilst previous findings showed a threshold effect [7,10]. Even if models' sensibility analysis showed no differences between BMI in a linear form or non-linear, it is likely that model adequation would be different sport by sport. Further studies could investigate systematically BMI effects in linear and non-linear form to deepen understanding his role in injury risk by sports participation of adolescents.

Fourthly, adolescents were asked to self-report numbers and severity of injury they have had in the past 12 months. This methodology is common in retrospective studies in sport injury [4-11]. Severity is measured through the type of medical attending that have been provided. However, seeking medical attention could have been influenced by adolescents or parents' perceptions of the severity of the injury, as well, as the sport specific risk culture [16]. It has been shown that some activities emphasize the importance of pain and injury. In results, some athletes continue to play despite pain or injury. These influences could have both either minimized or accentuated the objective severity of the injury. Not in terms of

medical attention but in terms of physical damages. Further studies in adolescent sport injury would be more precise with investigating severity of injury with the help of a medical staff.

Fifthly, our results should be considered as specific to the study location. They do not necessarily relate to activities more often practiced elsewhere in France, such as skiing or sailing. It could be interesting to develop national studies measuring adolescent sport injuries. Such information would be useful to develop more appropriate injury prevention programs.

Finally, the 12-month retrospective report is a potential bias for this study. Although it offers a representative view of the injury phenomenon, this study design suffers from injury recall bias [40]. Further studies should measure the influence of level of competition on injury risk with longitudinal methodology.

Conclusions

Our study offers a picture of adolescents injury risk and prevalence in sports in the third biggest department of France (Bouches-du-Rhône). Sport injury prevention programs should be developed across all sports activities when played at the state level of competition and higher. This increasing risk was especially high in tennis and basket-ball. Finally, contact sports present a high injury risk even at the lowest level of play: a continued attention on the adolescent injury risk should be done toward them. In contrast, for physicians, non-contact sports could be efficiently promoted for adolescents with health fragilities, especially those at greater risk of injury due to their intrinsic characteristics (see [1]). Others activities due to their higher injury risk should be promoted with cautious. The Committee of Sports Medicine and Fitness [41] provided important decision elements regarding high-intensity and contact sports activities.

Acknowledgements

We wish to thanks all the schools, teachers and students who took part in the surveys. We also thank the superintendent of schools for having approved this study. We thank Dr. Thelma Coyle and Ms. Penelope Tilsley for proofreading the manuscript.

References

- Caine D, Maffulli N, Caine C. Epidemiology of injury in child and adolescent sports: Injury rates, risk factors, and prevention. Clinics Sp Med 2008; 27: 19-50.
- Maffulli N, Longo UG, Gougoulias N, Caine D, Denaro V. Sport injuries: a review of outcomes. Br Med Bull 2011; 97: 47–80.
- Hootman JM, Dick R, Agel J. Epidemiology of Collegiate Injuries for 15 Sports: Summary and Recommendations for Injury Prevention Initiatives. J Athl Train 2007; 42: 311–9.
- Rose MS, Emery CA, Meeuwisse WH. Sociodemographic Predictors of Sport Injury in Adolescents. Med Sci Sports Exerc 2008 40: 444-50.
- Emery C, Tyreman H. Sport participation, sport injury, risk factors and sport safety practices in Calgary and area junior high schools. Paediatr Child Health 2009; 14: 439-44.
- Emery CA. Risk factors for injury in child and adolescent sport: a systematic review of the literature. Clin J Sport Med 2003; 13: 256–68.
- Richmond SA, Kang J, Emery CA. Is body mass index a risk factor for sport injury in adolescents? J Sci Med Sport 2013; 16: 401–5.
- Jespersen E, Verhagen E, Holst R, Klakk H, Heidemann M, Rexen CT, et al. Total body fat percentage and body mass index and the association with lower extremity injuries in children: a 2.5-year longitudinal study. Br J Sports Med 2014; 48: 1497-502.
- Yard E, Comstock D. Injury patterns by body mass index in US high school athletes. J Phy Act Health 2011; 8: 182-91.

- Warsh J, Pickett W, Janssen I. Are Overweight and Obese Youth at Increased Risk for Physical Activity Injuries? Obes Facts 2010; 3: 225–30.
- 11. Kemler E, Vriend I, Paulis WD, Schoots W, van Middelkoop M, Koes B. Is overweight a risk factor for sports injuries in children, adolescents, and young adults? Scand J Med Sci Sports 2015; 25: 259–64.
- 12. Thélot B, Darlot JP, Nectoux M, Isnard H. Epidémiologie des accidents de sport et de loisirs chez les enfants et les adolescents. La santé de l'homme 2001; 354: 21-3.
- Ricard C, Rigou A, Thélot B. Description et incidence des recours aux urgences pour accidents de sport, en France. Enquête permanente sur les accidents de la vie courante, 2004-2005. Bull Epidemiol Hebd 2008; 33: 293-5.
- Thélot B, Pédrono G, Perrine AL, Richard JB, Ricard C, Rigou A, et al. Epidémiologie des accidents traumatiques en pratique sportive en France. Bull Epidemiol Hebd 2015; 30-31: 580-9.
- 15. Lefèvre B, El Feki Mhiri S. Facteurs sociodémographiques et pratiques associés aux accidents liés à la pratique physique et sportive. Sci Sports 2015; 30: 126-33.
- 16. Wiese-Bjornstal DM. Psychology and socioculture affect injury risk, response, and recovery in high-intensity athletes: a consensus statement. Scand J Med Sci Sports 2010: 20: 103-11.
- 17. Luiggi M, Rindler V, Griffet J. From which level of competition in clubs are adolescents at greater risk of injury compared with outside-of-clubs athletes? A school-based study. Phys Sportsmed 2018; 46: 66-72.
- Lystad RP, Pollard H, Graham PL. Epidemiology of injuries in competition taekwondo: A meta-analysis of observational studies. J Sci Med Sport 2009; 12: 614-21
- Frey A, Rousseau D, Vesselle B, Hervouet Des Forges Y, Egoumenides M. Neuf saisons de surveillance médicale de compétitions de judo. J Traumatol Sport 2004; 21: 100-9.

- 20. Pocecco E, Ruedl G, Stankovic N, Sterkowicz S, Del Vecchio FB, Gutiérrez-Garcia C, et al. Injuries in judo: a systematic literature review including suggestions for prevention. Br J Sports Med 2013; 47: 1139-43.
- 21. van Beijsterveldt AMC, Stubbe JH, Schmikli SL, van de Port IG, Backx FJG. Differences in injury risk and characteristics between Dutch amateur and professional soccer players. J Sci Med Sport 2015; 18: 145-9.
- 22. Kolt GS, Kirkby RJ. Epidemiology of injury in elite and subelite female gymnasts: a comparison of retrospective and prospective findings. Br J Sports Med 1999; 33: 312–8.
- Bak K, Kalms SB, Olesen S, Jargensen U. Epidemiology of injuries in gymnastics. Scand J Med Sci Sports 2007; 4: 148-54.
- 24. McClain R, Wassermen J, Mayfield C, Berry AC, Grenier G, Suminski RR. Injury profile of mixed martial arts competitors. Clin J Sport Med 2014; 24: 497-501.
- 25. Chambless KM, Knudtson J, Eck JC, Covington LA. Rate of injury in minor league baseball by level of play. Am J Orthop 2000; 29: 869-72.
- 26. Hopper D, Elliott B, Lalor J. A descriptive epidemiology of netball injuries during competition: a five year study. Br J Sports Med 1995; 29: 223-8.
- 27. King DA, Hume P, Milburn PD. Match and training injuries in rugby league. A review of published studies. Sports Med 2010; 40: 163-78.
- 28. Roberts SP, Trewartha G, England M, Shaddick G, Stokes KA. Epidemiology of timeloss injuries in English community-level rugby union. BMJ Open 2013; 3: e003998.
- 29. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000;320:1240–3.

- Peduzzi P, Concato J, Kelper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996; 49: 1373-9.
- Heinze G, Wallisch C, Dunkler D. Variable selection A review and recommendations for the practicing statistician. Biom J. 2018; 60: 431-49.
- 32. Cole EF, Robert W. Overadjustment Bias and Unnecessary Adjustment in Epidemiologic Studies. Epidemiology. 2009; 20: 488-95.
- 33. Preatoni E, Stokes KA, England ME, Trewartha G. The influence of playing level on the biomechanical demands experienced by rugby union forwards during machine scrummaging. Scand J Med Sci Sports. 2013; 23: e178–e184.
- 34. Steffen K, Engebretsen L. More data needed on injury risk among youth elite athletes.Br J Sports Med 2010; 44: 485-9.
- 35. Abernethy L, Bleakley C. Strategies to prevent injury in adolescent sport: a systematic review. Br J Sports Med. 2007; 41: 627–38.
- 36. Soomro N, Sanders R, Hackett D, Hubka T, Ebrahimi S, Freeston J, et al. The efficacy of injury prevention programs in adolescent team sports: a meta-analysis. Am J Sports Med 2015; 44: 2415-24.
- 37. Ekegren CL, Gabbe BJ, Finch CF. Sports injury surveillance systems: a review of methods and data quality. Sports Med 2016; 46: 49-65.
- 38. Åman M, Forssblad M, Henriksson-Larsén K. Incidence and severity of reported acute sports injuries in 35 sports using insurance registry data: incidence of acute sports injuries. Scand J Med Sci Sports 2015; 26: 451–462.
- 39. Daneshvar DH, Baugh CM, Nowinski CJ, McKee AC, Stern RA, Cantu RC. Helmet and mouth guards: the role of personal equipment in preventing sport-related

concussions. Clin Sports Med; 30: 145-63.Lystad RP. Epidemiology of injuries in fullcontact combat sports. Australasion Epidemiologist 2015; 22: 14-8.

- 40. Johansen B, Wedderkopp N. Comparison between data obtained through real-time data capture by SMS and a retrospective telephone interview. Chiropr Osteopat 2010; 18: 10.
- 41. Rice SG, Council of Sports Medicine and Fitness. Medical conditions affecting sports participation. Pediatrics 2008; 121: 841-8.

Table 1 Anthropomorphics a		10 401110		el of play		iieu sui	iipie oj	High-leve	•		
	n	Age	Girls (%)	Height	Weight	n	Age	Girls (%)	1 2	Weight	All
ATHLETICS	12	16.3	66.7%	166.5	54.8	21	17.8	34.8%	175.0	63.5	33
BADMINTON	26	16.5	38.5%	169.1	59.1	5	17.8	33.3%	177.0	66.2	31
BASKETBALL	45	16.9	28.9%	174.4	61.6	45	16.6	23.9%	175.7	66.1	90
BODYBUILDING	54	17.7	22.2%	175.5	67.3	1	18.0	0.0%	178.0	53.0	55
BOXING	61	16.7	34.4%	171.8	62.7	15	16.7	25.0%	172.6	62.4	76
CLIMBING	14	16.6	78.6%	163.1	56.1	3	17.3	50.0%	163.3	55.7	17
CYCLING	26	17.6	15.4%	175.9	64.8	10	18.6	18.2%	171.4	63.0	36
DANCING	135	16.4	97.0%	163.7	53.6	32	16.7	93.9%	162.9	49.9	167
FITNESS	25	17.1	80.0%	168.7	58.6	1	19.0	50.0%	169.0	72.0	26
GYMNASTICS	14	17.1	71.4%	164.1	57.2	20	16.8	86.4%	163.0	52.7	34
HANDBALL	23	18.2	65.2%	171.4	60.7	31	17.7	45.2%	174.7	65.7	54
HORSE RIDING	36	17.2	100.0%	165.6	53.7	15	16.9	100.0%	167.7	55.3	51
JUDO	9	17.2	22.2%	173.9	61.2	15	17.1	26.7%	170.9	61.7	24
MARTIAL ARTS	30	16.6	30.0%	172.7	61.9	15	16.9	13.3%	175.2	65.1	45
OTHERS	28	16.6	32.1%	171.1	61.7	25	17.2	21.9%	175.7	69.7	53
RUGBY FOOTBALL	19	17.5	5.3%	179.9	77.8	30	17.2	9.4%	177.4	76.0	49
RUNNING	37	17.5	62.2%	170.8	59.4	9	18.1	33.3%	171.9	59.8	46
SKIING	13	18.2	76.9%	170.0	64.8	12	18.4	58.3%	170.8	61.2	25
SOCCER	126	17.0	9.5%	175.6	66.6	71	16.8	10.8%	172.0	64.3	197
SURFING/WINDSURFING	16	17.6	43.8%	171.9	57.7	6	17.5	50.0%	171.3	63.0	22
SWIMMING	38	16.8	57.9%	172.9	60.1	24	17.0	45.8%	172.6	61.0	62
TENNIS	59	17.1	35.6%	171.9	61.5	21	17.5	18.2%	177.0	67.0	80
URBAN ACTIVITIES	16	15.4	12.5%	168.3	56.8	3	17.0	40.0%	171.7	58.3	19
VOLLEYBALL	14	17.4	57.1%	170.4	60.7	12	17.2	53.8%	170.0	58.7	26
ALL	876	17.0	47.6%	170.9	61.0	442	17.2	36.3%	172.3	63.2	1318

Table 1 Anthropomorphics and sociodemographic characteristics of the studied sample by sport and level of play

Note. Low level of play: outside-club, no competition; club, local level or below. High-level of play: club, state level and higher

containin / HDJASI and / HDJMII	Low-leve	l of play	High-leve	el of play	(OR (High-level	/ Low-le	evel)		
	ASI	MTI	ASI	MTI	OR _{ASI}	95% CI	OR _{MTI}	95% CI	ADJASI	ADJ _{MTI}
ATHLETICS	16.7% (2)	0.0% (0)	66.7% (14)	19.0% (4)	10.0**	1.98-77.92	NA	NA	Ν	
BADMINTON	23.1% (6)	3.8% (1)	60.0% (3)	40.0% (2)	NA	NA	NA	NA		
BASKETBALL	40.0% (18)	8.9% (4)	75.6% (34)	33.3% (15)	5.1***	2.08-13.33	5.0**	1.63-18.94	Ν	Ν
BODYBUILDING	37.0% (20)	9.3% (5)	100.0% (1)	0.0% (0)	NA	NA	NA	NA		
BOXING	55.7% (34)	3.3% (2)	66.7% (10)	13.3% (2)	1.5	0.47-5.58	3.0	0.30-29.03	В	HP
CLIMBING	57.1% (8)	7.1% (1)	33.3% (1)	0.0% (0)	NA	NA	NA	NA		
CYCLING	50.0% (13)	15.4% (4)	70.0% (7)	30.0% (3)	0.3	0.01-3.39	2.4	0.39-13.48	HP	Ν
DANCING	35.6% (48)	6.7% (9)	50.0% (16)	18.8% (6)	1.2	0.49-2.80	3.7*	1.12-11.60	B;HP	А
FITNESS	36.0% (9)	16.0% (4)	0.0% (0)	0.0% (0)	NA	NA	NA	NA		
GYMNASTICS	64.3% (9)	21.4% (3)	70.0% (14)	30.0% (6)	1.3	0.29-5.63	0.0	0.00-0.70	Ν	A;HP
HANDBALL	60.9% (14)	26.1% (6)	64.5% (20)	25.8% (8)	0.7	0.18-2.43	0.8	0.20-2.94	HP	HP
HORSE RIDING	38.9% (14)	11.1% (4)	60.0% (9)	26.7% (4)	1.7	0.45-6.39	2.9	0.60-14.33	HP	Ν
JUDO	22.2% (2)	11.1% (1)	73.3% (11)	33.3% (5)	9.6*	1.58-86.91	4.0	0.50-85.06	Ν	Ν
MARTIAL ARTS	36.7% (11)	6.7% (2)	73.3% (11)	20.0% (3)	4.8*	1.29-20.66	3.5	0.52-29.27	Ν	Ν
OTHERS	28.6% (8)	3.6% (1)	60.0% (15)	8.0% (2)	3.8*	1.23-12.32	1.1	0.06-28.24	Ν	В
RUGBY FOOTBALL	42.1% (8)	21.1% (4)	56.7% (17)	43.3% (13)	0.9	0.21-3.68	2.0	0.43-11.40	HP	HP
RUNNING	29.7% (11)	5.4% (2)	22.2% (2)	11.1% (1)	NA	NA	NA	NA		
SKIING	23.1% (3)	7.7% (1)	33.3% (4)	0.0% (0)	1.7	0.29-10.66	NA	NA		
SOCCER	48.4% (61)	15.9% (20)	56.3% (40)	26.8% (19)	1.1	0.57-2.01	1.6	0.74-3.40	HP	HP
SURFING/WINDSURFING	25.0% (4)	0.0% (0)	33.3% (2)	33.3% (2)	NA	NA	NA	NA		
SWIMMING	18.4% (7)	7.9% (3)	41.7% (10)	16.7% (4)	1.0	0.18-4.91	0.2	0.01-2.87	HP	A;HP
TENNIS	30.5% (18)	3.4% (2)	61.9% (13)	33.3% (7)	2.2	0.69-6.93	9.0*	1.42-94.50	HP	HP
URBAN ACTIVITIES	68.8% (11)	18.8% (3)	100.0% (3)	33.3% (1)	NA	NA	NA	NA		
VOLLEYBALL	50.0% (7)	14.3% (2)	91.7% (11)	25.0% (3)	11.0*	1.50-229.91	2.0	0.28-17.74	Ν	
ALL	39.5% (346)	9.6% (84)	60.6% (268)	24.9% (110)	1.8***	1.4-2.3	2.5***	1.8-3.5	A;HP	B;HP

Table 2 Injury prevalence and odds-ratios describing the relationship between level of play and injury adjusted for variables in column ADJ_{ASI} and ADJ_{MTI}

Note. OR_{ASI}: Odds-ratio for all sports injury; OR_{MTI}: Odds-ratio for medically treated injury; ADJ_{ASI}: Adjustment variables for ASI; ADJ_{MTI}: Adjustment variables for MTI. A: Age; B: Body Mass Index; HP: Hours of Play per Week; S: Sexe; N: No adjustment variables kept. Reading: At the low-level of play, 40.0% of basket-ball players reported to have sustain at least one injury in the past 12 months. **Bold values** indicate a significate higher injury risk –ASI or MTI- for high-level players compared with low-level players.

the other sports by lever of pla	Low-level	of play	High-leve	el of play
-	ASI ^a	MTI ^b	ASI ^b	MTI ^c
ATHLETICS	0.3 (0.05-1.18)	NA	1.2 (0.49-3.27)	0.6 (0.18-1.78)
BADMINTON	0.4 (0.14-1.02)	0.4 (0.02-1.79)	NA	NA
BASKETBALL	0.9 (0.46-1.61)	0.9 (0.25-2.19)	2.4* (1.20-5.29)	1.6 (0.81-3.20)
BODYBUILDING	0.8 (0.45-1.48)	0.9 (0.30-2.12)	NA	NA
BOXING	1.9* (1.13-3.32)	0.3 (0.05-0.99)	1.4 (0.47-4.46)	0.5 (0.07-1.81)
CLIMBING	2.2 (0.75-6.82)	0.8 (0.04-4.05)	NA	NA
CYCLING	1.4 (0.61-3.15)	1.5 (0.42-4.16)	1.2 (0.32-5.93)	0.9 (0.19-3.53)
DANCING	0.9 (0.58-1.38)	0.7 (0.33-1.42)	0.7 (0.32-1.41)	1.0 (0.36-2.51)
FITNESS	0.9 (0.36-2.03)	1.9 (0.53-5.14)	NA	NA
GYMNASTICS	4.0* (1.27-14.78)	3.2 (0.70-10.72)	1.5 (0.60-4.42)	1.6 (0.54-4.19)
HANDBALL	2.5* (1.06-6.26)	3.2* (1.10-7.95)	1.1 (0.54-2.56)	1.0 (0.42-2.38)
HORSE RIDING	1.2 (0.55-2.36)	1.3 (0.37-3.37)	1.0 (0.36-3.11)	1.3 (0.36-4.10)
JUDO	0.5 (0.07-2.08)	NA	1.9 (0.64-7.05)	1.7 (0.50-4.84)
MARTIAL ARTS	1.0 (0.43-2.07)	0.7 (0.12-2.57)	1.8 (0.59-6.48)	0.7 (0.15-2.31)
OTHERS	0.6 (0.26-1.48)	0.4 (0.02-1.82)	1.0 (0.43-2.30)	0.2* (0.03-0.72)
RUGBY FOOTBALL	1.1 (0.37-2.86)	2.1 (0.47-6.56)	0.9 (0.41-1.94)	2.1 (0.88-4.77)
RUNNING	0.8 (0.36-1.59)	0.6 (0.10-2.07)	NA	NA
SKIING	0.4 (0.07-1.52)	NA	0.3* (0.07-0.93)	NA
SOCCER	1.3 (0.87-1.98)	1.8* (1.03-3.14)	0.8 (0.48-1.36)	1.2 (0.63-2.11)
SURFING/WINDSURFING	0.6 (0.16-1.77)	NA	NA	1.3 (0.17-6.80)
SWIMMING	0.4* (0.14-0.80)	0.9 (0.22-2.67)	0.4* (0.15-0.88)	0.5 (0.14-1.44)
TENNIS	0.7 (0.38-1.22)	0.3 (0.06-1.13)	1.1 (0.46-2.88)	1.6 (0.60-4.07)
URBAN ACTIVITIES	2.2 (0.76-7.33)	1.7 (0.38-5.69)	NA	NA
VOLLEYBALL	1.8 (0.58-5.59)	1.7 (0.26-6.51)	7.4 (1.42-135.89)	1.1 (0.23-3.74)

Table 3 Odds-ratio and 95% confidence interval describing the injury odds of each sport compared to all the other sports by level of play

Note. At a high-level of play, rugby players were 2.3 more likely to report a medically treated injury than the rest of sample. **Bold values** indicate a significate higher injury risk –ASI or MTI- for a specific sport compared to all the other sports. *p<0.05; **p<0.01; **p<0.001. a : Adjusted for age, sex and hours of play per week; b : Adjusted for hours of play per week; c : Adjusted for age, body mass index and hours of player per week.

Sport categories	Sport declared	n by categories	n by sports
ATHLETICS	ATHLETICS	34	34
BADMINTON	BADMINTON	32	32
BASKETBALL	BASKET-BALL	94	94
BODYBUILDING	BODYBUILDING	56	56
BOXING	BOXING		51
BOXING	FRENCH BOXING		8
BOXING	KRAV MAGA	70	3
BOXING	MIXED-MARTIAL ARTS	78	4
BOXING	SAMBO BOXING		1
BOXING	THAI BOXING		11
CLIMBING	CLIMBING	17	17
CYCLING	BIKING		7
CYCLING	CROSS-COUNTRY CYCLING	38	22
CYCLING	CYCLING		9
DANCING	BALLET DANCE		5
DANCING	DANCING		149
DANCING	HIP-HOP DANCE	172	10
DANCING	MODERN JAZZ DANCE	172	3
DANCING	ORIENTAL DANCE		1
DANCING	ZUMBA DANCE		4
FITNESS	AEROBIC		3
FITNESS	FITNESS	27	20
FITNESS	STRENGHT TRAINING	21	1
FITNESS	YOGA		3
GYMNASTICS	ARTISTIC GYMNASTIC		8
GYMNASTICS	GYMNASTIC	37	27
GYMNASTICS	RYTHMIC GYMNASTIC		2
HANDBALL	HANDBALL	55	55
HORSE RIDING	HORSE RIDING	52	52
JUDO	JUDO	24	24
MARTIAL ARTS	AIKIDO		3
MARTIAL ARTS	JUJITSU		4
MARTIAL ARTS	KARATE		16
MARTIAL ARTS	KENDO		1
MARTIAL ARTS	KUNG FU	45	1
MARTIAL ARTS	MARTIAL ARTS		6
MARTIAL ARTS	SELF DEFENSE		5
MARTIAL ARTS	TAEKWONDO		8
MARTIAL ARTS	YOSEIKAN BUDO		1
OTHERS	AIRSOFT		1
OTHERS	AMERICAN FOOTBALL		5
OTHERS	BASEBALL	53	0
OTHERS	FENCING		4
OTHERS	FIGURE SKATING		3

Additional File 1. Sport categories according to sport declared by adolescents

OTHERS	GOLF		3
OTHERS	HIKING		1
OTHERS	ICE HOCKEY		2
OTHERS	ICE SKATING		1
OTHERS	КАҮАК		1
OTHERS	MOTOCROSS RIDING		5
OTHERS	ROLLER HOCKEY		1
OTHERS	ROWING		4
OTHERS	SAILING		8
OTHERS	SCUBA DIVING		1
OTHERS	SHOOTING SPORT		1
OTHERS	SQUASH		5
OTHERS	TABLE TENNIS		3
OTHERS	TRAMPOLINING		2
OTHERS	WATERPOLO		2
RUGBY FOOTBALL	RUGBY FOOTBALL	52	52
RUNNING	ORIENTEERING RACE		3
RUNNING	RUNNING	50	45
RUNNING	TRAIL RUNNING		2
SKIING	CROSS-COUNTRY SKIING		2
SKIING	FREESTYLE SKIING	25	1
SKIING	SKIING		22
SOCCER	SOCCER	207	207
SURFING/WINDSURFING	KITESURFING		1
SURFING/WINDSURFING	SURFING	22	9
SURFING/WINDSURFING	WINDSURFING		12
SWIMMING	RESCUE SWIMMING		1
SWIMMING	SWIMMING	65	57
SWIMMING	SYNCHRONIZED SWIMMING		7
TENNIS	TENNIS	81	81
URBAN ACTIVITIES	BMX		5
URBAN ACTIVITIES	BMX BICROSS		1
URBAN ACTIVITIES	LONGBOARDING		2
URBAN ACTIVITIES	PARKOUR	21	5
URBAN ACTIVITIES	ROLLER DANCE		1
URBAN ACTIVITIES	ROLLER SKATING		1
URBAN ACTIVITIES	SKATEBOARDING		6
VOLLEYBALL	VOLLEY-BALL	29	29
N 24	83	1366	1366

	Univariates ORs	95% CI	p-value	Full models ORs	95% CI	p-value	Final models ORs	95% CI	p-value
ATHLETICS									
Intercept	NA			0.29	0.04-1.56	0.177	0.20*	0.03-0.76	0.038
Age	0.98	0.66-1.45	0.923						
Sex ^a	1.61	0.42-6.44	0.493		C				
BMI	1.18	0.85-1.7	0.339						
HP	1.18	0.97-1.48	0.110	0.88	0.62-1.23	0.466			
High level	10.00**	1.98-77.92	0.011	21.24*	1.65-450.81	0.029	10.00**	1.98-77.92	0.011
BADMINTON									
Intercept									
Age									
Sex ^a					NA				
BMI					INA				
HP									
High level	0								
BASKETBALL									
Intercept				0.61	0.23-1.57	0.317	0.67	0.36-1.20	0.183
Age	0.88	0.70-1.10							
Sex ^a	1.50	0.59-3.84							
BMI	1.08	0.93-1.26							
HP	1.13	0.99-1.32	0.086	1.02	0.87-1.20	0.829			
High level	4.64***	1.92-11.83	0.0009	4.93**	1.91-13.60	0.001	5.10***	2.08-13.33	0.0005
BODYBUILDING									
Intercept									
Age					NA				
Sex ^a					147 1				
BMI									
									29

Additional file 2. Table 1. Results of ASI univariate analysis, full models, and final models following stepwise regression procedures

	HP									
	High level ^b									
BOXING										
	Intercept		0.00.4.4.		130.89*	2.23-17271.32	0.031	130.89*	2.23-17271.32	0.031
	Age	0.90	0.68-1.17	0.434						
	Sex ^a	0.57	0.21-1.49	0.261						
	BMI	0.83	0.67-0.99	0.061	0.80*	0.64-0.97	0.039	0.80*	0.64-0.97	0.039
	HP	1.02	0.87-1.21	0.780						
	High level ^b	1.59	0.5-5.61	0.445	1.54	0.47-5.58	0.488	1.5	0.47-5.58	0.488
CLIMBING										
	Intercept									
	Age									
	Sex ^a					NA				
	BMI					INA				
	HP									
	High level ^b									
CYCLING	-									
	Intercept				0.27	0.06-1.02	0.074	0.27	0.06-1.02	0.074
	Age	0.93	0.59-1.44	0.753						
	Sex ^a	1.29	0.21-7.91	0.778						
	BMI	0.85	0.62-1.16	0.315						
	HP	1.21*	1.04-1.47	0.025	1.34	1.05-1.93	0.055	1.34	1.05-1.93	0.055
	High level ^b	2.33	0.52-12.73	0.286	0.27	0.01-3.39	0.362	0.28	0.01-3.39	0.362
DANCING	C									
	Intercept				8.82	0.46-245.51	0.177	8.82	0.46-245.51	0.177
	Age	0.95	0.79-1.15	0.626						
	Sex ^a	2.61	0.42-20.2	0.301						
	BMI	0.86*	0.73-0.99	0.053	0.86	0.72-1.00	0.062	0.86	0.72-1.00	0.062
										30

	HP	1.11	0.96-1.28	0.150	1.12	0.96-1.33	0.157	1.12	0.96-1.33	0.157
	High level ^b	1.81	0.83-3.97	0.134	1.17	0.49-2.80	0.719	1.17	0.49-2.80	0.719
FITNESS	ingn iever									
	Intercept									
	Age									
	Sex ^a									
	BMI					NA				
	HP									
	High level ^b									
GYMNAST										
	Intercept				1.80	0.62-5.86	0.292	1.80	0.62-5.86	0.292
	Age	0.98	0.65-1.45	0.905						
	Sex ^a	2.40	0.31-49.91	0.457						
	BMI	1.10	0.87-1.42	0.440						
	HP	1.12	0.85-1.51	0.434						
	High level ^b	1.30	0.29-5.63	0.726	1.30	0.29-5.63	0.726	1.30	0.29-5.63	0.726
HANDBAL										
	Intercept				0.00	0.00-1.34	0.086	0.28	0.05-1.27	0.124
	Age	1.52*	1.07-2.32	0.030	1.25	0.83-2.01	0.312			
	Sex ^a	1.42	0.47-4.43	0.540						
	BMI	1.26		0.054	1.15	0.89-1.52	0.298			
	HP		1.11-2.04	0.018	1.32	1.01-1.93	0.090	1.46*	1.11-2.17	0.026
	High level ^b	1.17	0.38-3.58	0.784	0.79	0.19-3.05	0.731	0.69	0.18-2.43	0.574
HORSE RII						0.1.0.000	0.050			0.070
	Intercept	1.07	0.70.1.60	0.752	0.38	0.13-0.99	0.058	0.38	0.13-0.99	0.058
	Age	1.07		0.752						
	Sex ^a	NA	NA	NA						
	BMI	0.81	0.57-1.12	0.216						
										31

	HP	1.20	1-1.51	0.070	1.17	0.97-1.47	0.132	1.17	0.97-1.47	0.132
		2.36		0.172	1.68	0.45-6.39	0.132	1.68	0.45-6.39	0.132
JUDO	High level ^b	2.30	0.7-0.45	0.172	1.00	0.45-0.57	0.441	1.00	0.45-0.57	0.441
3000	Intercept				0.29	0.04-1.18	0.118	0.29	0.04-1.18	0.118
	Age	0.99	0.53-1.80	0.960	0.27	0.04 1.10	0.110	0.27	0.04 1.10	0.110
	Sex ^a	1.25	0.19-8.48	0.813						
	BMI	1.11	0.75-1.7	0.601						
	HP	0.95	0.65-1.37	0.778						
			1.58-86.91	0.022	9.63*	1.58-86.91	0.022	9.63*	1.58-86.91	0.022
MARTIAL A	High level ^b	2.05	1.50-00.71	0.022	2.05	1.50-00.71	0.022	2.05	1.50-00.71	0.022
WARTAL I	Intercept				0.58	0.27-1.20	0.149	0.58	0.27-1.20	0.149
	Age	0.92	0.58-1.44	0.709	0.50	0.27-1.20	0.14)	0.50	0.27-1.20	0.149
	Sex ^a	1.20	0.3-4.89	0.793						
	BMI	0.99	0.8-1.23	0.955						
	HP	1.06		0.435						
	High level ^b		1.29-20.66	0.022	4.75*	1.29-20.66	0.022	4.75*	1.29-20.66	0.022
OTHERS	nigli level		1.22 20100	01022	ine	112/ 20100	01022		1.2/ 20100	01022
OTTLIG	Intercept				0.40*	0.17-0.88	0.029	0.40*	0.17-0.88	0.029
	Age	0.90	0.63-1.28	0.555						
	Sex ^a	1.42	0.43-4.93	0.570						
	BMI	1.08		0.414						
	HP	1.08		0.325						
	High level ^b		1.23-12.32	0.024	3.75*	1.23-12.32	0.024	3.75*	1.23-12.32	0.024
RUGBY FO	<u> </u>									
	Intercept				0.003	0.00-2.22	0.107	0.15*	0.02-0.69	0.023
	Age	0.99	0.71-1.39	0.953						
	Sex ^a	0.50	0.06-2.83	0.449						
	BMI	1.20	0.97-1.51	0.103	1.18	0.89-1.61	0.264			
										32

	HP	1.39*	1.08-1.86	0.017	1.37	0.99-1.96	0.067	1.46*	1.09-2.07
	High level ^b	1.80	0.57-5.91	0.323	1.21	0.26-5.78	0.807	0.9	0.21-3.68
JNNING									
	Intercept								
	Age								
	Sex ^a								
	BMI					NA			
	HP								
	High level ^b								
IING									
	Intercept				0.30	0.07-0.98	0.067	0.30	0.07-0.98
	Age	1.24	0.43-3.75	0.686					
	Sex ^a	0.80	0.09-5.07	0.819					
	BMI	0.92	0.64-1.31	0.652					
	HP	1.02	0.85-1.24	0.794					
	High level ^b	1.67	0.29-10.66	0.570	1.67	0.29-10.66	0.570	1.67	0.29-10.66
CCER									
	Intercept				0.49*	0.25-0.92	0.030	0.49*	0.25-0.92
	Age	0.95	0.82-1.09	0.438					
	Sex ^a	0.82	0.33-2	0.670					
	BMI	0.98		0.711					
	HP	1.14*	1.02-1.27	0.020	1.15*	1.03-1.30	0.018	1.15*	1.03-1.30
	High level ^b	1.37	0.77-2.48	0.286	1.07	0.57-2.01	0.829	1.07	0.57-2.01
RFING/V	VINDSURFING								
	Intercept								
	Age					NA			
	Sex ^a								
	BMI								

	HP									
	High level ^b									
SWIMMING	3									
	Intercept				0.13***	0.04-0.36	0.0002	0.13***	0.04-0.36	0.0002
	Age	0.97	0.72-1.33	0.868						
	Sex ^a	0.72	0.23-2.16	0.566						
	BMI	0.87	0.67-1.11	0.276						
	HP	1.18*	1.05-1.36	0.012	1.18	1.01-1.44	0.060	1.18	1.01-1.444	0.060
	High level ^b	3.16*	1.01-10.43	0.050	1.01	0.18-4.91	0.988	1.01	0.18-4.91	0.988
TENNIS										
	Intercept				0.16***	0.05-0.42	0.0006	0.16***	0.05-0.42	0.0006
	Age	0.93	0.71-1.23	0.625						
	Sex ^a	0.78	0.3-2.05	0.608						
	BMI	0.87	0.71-1.06	0.183						
	HP	1.42***	1.14-1.84	0.004	1.35*	1.07-1.76	0.017	1.35*	1.07-1.76	0.017
	High level ^b	3.7*	1.33-10.88	0.014	2.18	0.69-6.93	0.180	2.18	0.69-6.93	0.180
URBAN AC										
	Intercept									
	Age									
	Sex ^a					NA				
	BMI					1 17 1				
	HP									
	High level ^b									
VOLLEYBA										
	Intercept				0.55	0.12-2.14	0.404	1.00	0.34-2.92	1.000
	Age	0.75		0.324						
	Sex ^a	4.28	0.8-33.84	0.114	4.11	0.57-42.55	0.185			
	BMI	1.21	0.86-1.81	0.299						
										34
	~									

HP	1.21	0.86-1.95	0.353						
High level ^b	11*	1.5-229.91	0.041	13.34*	1.66-300.70	0.035	11.00*	1.50-229.91	0.040

Note. ^areference category: Girls; ^breference category: Low-level of play. **Bold values** indicate a significate different injury risk. *p<0.05; **p<0.01; ***p<0.001.

	Univariates ORs	95% CI	p-value	Full models ORs	95% CI	p-value	Final models ORs	95% CI	p-value
ATHLETICS									
Intercept						\sim			
Age									
Sex ^a					NA				
BMI									
HP									
High level ^b									
BADMINTON									
Intercept									
Age					,				
Sex ^a					NA				
BMI HP									
High level ^b BASKETBALL									
Intercept				0.01*	0.00-0.58	0.031	0.10***	0.03-0.25	0.000
Age	0.93	0.71-1.22	0.590	0.01	0.00-0.50	0.031	0.10	0.05-0.25	0.000
Sex ^a	1.04	0.35-3.53	0.951						
BMI	1.19	0.99-1.45		1.11	0.92-1.35	0.280			
HP	1.11	0.95-1.29	0.203		0.92 1.88	0.200			
High level ^b	5.13**	1.67-19.4	0.008	4.49*	1.42-17.23	0.024	5.00**	1.63-18.94	0.009
BODYBUILDING									
Intercept									
Age									
Sex ^a					NA				
BMI									
								36	5
X									

Additional file 2. Table 2. Results of MTI univariate analysis, full models, and final models following stepwise regression procedures

	HP									
	High level ^b									
BOXING										0.000
	Intercept	1.40	076206	0.212	0.01****	0.00-0.08	0.000	0.01***	0.00-0.08	0.000
	Age	1.42	0.76-3.06	0.312						
	Sex ^a	1.53	0.19-31.81	0.718						
	BMI	0.80	0.41-1.22	0.435						
	HP	1.32	0.98-1.8	0.059	1.27	0.93-1.76	0.124	1.27	0.93-1.76	0.117
	High level ^b	4.54	0.51-40.79	0.148	3.02	0.30-29.03	0.307	3.02	0.30-29.03	0.313
CLIMBING										
	Intercept									
	Age									
	Sex ^a					NA				
	BMI					NA				
	HP									
	High level ^b									
CYCLING	-									
	Intercept				0.18	0.05-0.48	0.002	0.18	0.05-0.48	0.002
	Age	0.95	0.57-1.64	0.834						
	S ex ^a	1.40	0.18-29.14	0.775						
	BMI	1.05	0.72-1.51	0.787						
	HP	1.10	0.95-1.28	0.197						
	High level ^b	2.36	0.39-13.48	0.329	2.36	0.39-13.48	0.329	2.36	0.39-13.48	0.329
DANCING	0									
	Intercept				13.81	0.07-3021.18	0.330	13.81	0.07-3021.18	0.330
	Age	0.74	0.53-1.02	0.068	0.72	0.51-1.00	0.054	0.72	0.51-1.00	0.054
	Sex ^a	2.73	0.13-20.12	0.383						
	BMI	0.83	0.61-1.06	0.192						
									3	7
	X									

	HP	1.07	0.83-1.32	0.575						
	High level ^b	3.23*	1.01-9.77	0.039	3.68*	1.12-11.60	0.026	3.68*	1.12-11.60	0.02
ITNESS	T									
	Intercept									
	Age									
	Sex ^a BMI					NA				
	HP									
	High level ^b									
YMNAST	-									
	Intercept				0.00*	0-0.02	0.022	0.00*	0-0.02	0.022
	Age	1.47	0.92-2.56	0.130	1.71	0.93-3.6	0.106	1.71	0.93-3.6	0.10
	Sex ^a	0.75	0.04-6.07	0.809						
	BMI	1.08	0.84-1.39	0.527						
	HP	1.38	1.01-2.01	0.062	3.56*	1.5-16.56	0.022	3.56*	1.5-16.56	0.022
	High level ^b	1.57	0.33-8.8	0.579	0.02	0.00-0.7	0.075	0.02	0.00-0.70	0.07
ANDBAI	L									
	Intercept				0.00	0-4.01	0.151	0.12	0.02-0.43	0.00
	Age	1.46	0.95-2.56	0.130	1.35	0.82-2.54	0.291			
	Sex ^a	1.88	0.56-6.69	0.312						
	BMI	1.19	0.93-1.55	0.174						
	HP	1.21	1.03-1.49	0.034	1.18	0.99-1.46	0.085	1.22	1.04-1.51	0.029
	High level ^b	0.99	0.29-3.49	0.981	0.96	0.24-4.02	0.956	0.77	0.20-2.94	0.693
ORSE RI					0 1 0 4 4 4	0.04.0.22	0.000	0.10***	0.04.0.22	0.00
	Intercept	0.98	056192	0.045	0.13***	0.04-0.32	0.000	0.13***	0.04-0.32	0.00
	Age	0.98 NA	0.56-1.82	0.945						
	Sex ^a		NA	NA						
	BMI	0.99	0.63-1.52	0.965						

	HP	1.13	0.91-1.38	0.235	2.01	0 60 14 62	0.176		0.60.14.20	0.15
UDO	High level ^b	2.91	0.6-14.33	0.176	2.91	0.60-14.33	0.176	2.91	0.60-14.33	0.17
	Intercept				0.13	0.01-0.68	0.050	0.13	0.01-0.68	0.05
	Age	1.13	0.58-2.54	0.732						
	Sex ^a	NA	NA	NA						
	BMI	0.85	0.51-1.35	0.502						
	HP	1.04	0.67-1.5	0.819						
ARTIAL	High level ^b	4.00	0.5-85.06	0.246	4	0.50-85.06	0.246	4	0.50-85.06	0.24
ANTIAL	Intercept				0.07	0.01-0.24	0.000	0.07	0.01-0.24	0.00
	Age	1.06	0.54-2.41	0.872			0.000		0.01 0.2	0.00
	Sex ^a	0.44	0.06-3.69	0.400						
	BMI	0.87	0.59-1.22	0.446						
	HP	0.95	0.64-1.18	0.709						
	High level ^b	3.50	0.52-29.27	0.199	3.5	0.52-29.27	0.199	3.5	0.52-29.27	0.19
THERS	C									
	Intercept				0.00	0-0.13	0.017	0.00	0-0.13	0.01
	Age	1.05	0.49-2.32	0.896						
	Sex ^a	0.86	0.08-19.27	0.903						
	BMI	1.32	0.98-1.89	0.070	1.31	0.96-1.92	0.092	1.31	0.96-1.92	0.09
	HP	1.04	0.75-1.24	0.704						
	High level ^b	2.35	0.21-52.46	0.497	1.11	0.06-28.24	0.938	1.11	0.06-28.24	0.93
UGBY FO	DOTBALL									
	Intercept				0.07***	0.01-0.38	0.005	0.07***	0.01-0.38	0.00
	Age	0.93	0.66-1.33	0.692						
	Sex ^a	0.48	0.08-2.88	0.407						
	BMI	1.06	0.86-1.32	0.588						

	UD	1.32	1.03-1.73	0.037	1.30	0.98-1.80	0.090	1.30	0.98-1.80	0.090
	HP	1.32 2.87	0.81-11.94	0.037	2.03	0.98-1.80	0.090	2.03	0.98-1.80	0.090
RUNNING	High level ^b	2.07	0.01-11.94	0.117	2.03	0.45-11.40	0.390	2.03	0.45-11.40	0.390
KUININU	Intercept									
	Age									
	Sex ^a									
	BMI					NA				
	HP									
	High level ^b									
SKIING										
	Intercept									
	Age									
	Sex ^a					NA				
	BMI									
	HP									
SOCCER	High level ^b				0.09***	0.03-0.20	0.000	0.09***	0.03-0.20	0.000
SOUCER	Intercept				0.09****	0.05-0.20	0.000	0.09****	0.03-0.20	0.000
	Age	1.10	0.92-1.32	0.297						
	Sex ^a	0.82	0.3-2.63	0.717						
	BMI	1.05	0.93-1.17	0.400						
	HP	1.17*	1.03-1.34	0.019	1.16*	1.01-1.34	0.036	1.16*	1.01-1.34	0.036
	High level ^b	1.94	0.95-3.95	0.068	1.59	0.74-3.40	0.231	1.59	0.74-3.40	0.231
SURFING/W	WINDSURFING									
	Intercept									
	Age					NA				
	Sex ^a					1111				
	BMI									
									40	

French adol	lescents sports inju	ry by level of pl	ay and sports							
	HP							\sim		
	High level ^b									
SWIMMIN										
	Intercept				0.00	0-0.38	0.051	0.00	0-0.38	0.051
	Age	1.48	0.95-2.5	0.105	1.45	0.87-2.67	0.180	1.45	0.87-2.67	0.180
	Sex ^a	1.28	0.28-5.9	0.744						
	BMI	0.89	0.61-1.24	0.513						
	HP	1.17*	1.03-1.37	0.022	1.32*	1.06-1.77	0.031	1.32*	1.06-1.77	0.031
	High level ^b	2.33	0.47-12.86	0.298	0.23	0.01-2.87	0.298	0.23	0.01-2.87	0.298
TENNIS										
	Intercept				0.00	0-3.09	0.102	0.00	0.00-0.02	0.000
	Age	1.30	0.84-2.19	0.276						
	Sex ^a	1.75	0.39-12.35	0.505						
	BMI	1.22	0.91-1.64	0.189	1.16	0.69-1.97	0.556			
	HP	1.89***	1.37-2.9	0.001	1.85**	1.28-3	0.004	1.86**	1.29-3.00	0.003
	High level ^b	14.25**	3.06-103.04	0.002	8.71*	1.38-90.97	0.033	8.99*	1.42-94.50	0.032
URBAN AG	CTIVITIES									
	Intercept									
	Age									
	Sex ^a					NA				
	BMI									
	HP									
	High level ^b									
VOLLEY-E	BALL									
	Intercept				0.17*	0.03-0.61	0.019	0.17*	0.03-0.61	0.019
	Age	1.29	0.7-2.99	0.476						
	Sex ^a	0.79	0.09-5.61	0.812						
	BMI	1.16	0.76-1.82	0.499						
									41	

HP	0.87	0.51-1.27	0.538						
High level ^b	2.00	0.28-17.74	0.494	2.00	0.28-17.74	0.494	2.00	0.28-17.74	0.494

Note. ^areference category: Girls; ^breference category: Low-level of play. **Bold values** indicate a significate different injury risk. *p<0.05; **p<0.01; ***p<0.001.

Additional file 3. Table 1. Odds-ratio and	95% confidence	interval adjusted	d for age,
sex and HP, describing the ASI odds of eac	ch sport compared	d to all the other	sports, at
the lowest level of play			_
	ORs	95% CI	p-value

		ORs	95% CI	p-value
ATHLETI	CS			
	Intercept	2.53	0.62-10.41	0.197
	Age	0.90*	0.82-0.97	0.011
	Sex ^a	1.11	0.83-1.48	0.468
	HP	1.13***	1.07-1.2	0.000
	ATHLETICS	0.30	0.05-1.18	0.128
BADMINT	TON			
	Intercept	2.54	0.62-10.43	0.194
	Age	0.90*	0.82-0.97	0.011
	Sex ^a	1.14	0.85-1.51	0.384
	HP	1.13***	1.07-1.2	0.000
	BADMINTON	0.41	0.14-1.02	0.073
BASKETB	ALL			
	Intercept	2.36	0.58-9.66	0.230
	Age	0.90*	0.83-0.98	0.013
	Sex ^a	1.13	0.85-1.5	0.415
	HP	1.14***	1.07-1.2	0.000
	BASKETBALL	0.87	0.46-1.61	0.653
BODYBUI	ILDING			
	Intercept	2.23	0.55-9.18	0.264
	Age	0.90*	0.83-0.98	0.017
	Sex ^a	1.13	0.85-1.51	0.394
	HP	1.14***	1.07-1.2	0.000
	BODYBUILDING	0.83	0.45-1.48	0.532
BOXING				
	Intercept	2.05	0.5-8.44	0.319
	Age	0.90*	0.83-0.98	0.020
	Sex ^a	1.09	0.82-1.46	0.538
	HP	1.13***	1.07-1.2	0.000
	BOXING	1.93*	1.13-3.32	0.017
CLIMBING	G			
	Intercept	2.23	0.55-9.1	0.265
	Age	0.90*	0.83-0.98	0.015
	Sex ^a	1.14	0.85-1.52	0.374
	HP	1.14***	1.07-1.2	0.000
	CLIMBING	2.21	0.75-6.82	0.151
CYCLING				
	Intercept	2.40	0.59-9.84	0.222
	Age	0.90*	0.82-0.98	0.012
		1 1 1	0.83-1.48	0.485
	Sex ^a	1.11	0.85-1.48	0.405

8)

		CYCLING	1.39	0.61-3.15	0.429
	DANCING				
		Intercept	2.53	0.6-10.71	0.207
		Age	0.90*	0.82-0.98	0.012
		Sex ^a	1.08	0.79-1.49	0.611
		HP	1.13***	1.07-1.2	0.000
		DANCING	0.90	0.58-1.38	0.622
	FITNESS				
		Intercept	2.34	0.57-9.55	0.236
		Age	0.90*	0.83-0.98	0.014
		Sex ^a	1.12	0.84-1.49	0.456
		HP	1.13***	1.07-1.2	0.000
		FITNESS	0.89	0.36-2.03	0.781
	GYMNAST	TICS			
		Intercept	2.34	0.57-9.58	0.236
		Age	0.90*	0.82-0.98	0.011
		Sex ^a	1.15	0.86-1.53	0.342
		HP	1.14***	1.07-1.2	0.000
		GYMNASTICS	3.95*	1.27-14.78	0.024
	HANDBAL	L			
		Intercept	2.72	0.66-11.21	0.166
		Age	0.89**	0.82-0.97	0.007
		Sex ^a	1.15	0.86-1.53	0.342
		НР	1.13***	1.07-1.2	0.000
		HANDBALL	2.52*	1.06-6.26	0.039
	HORSE RII	DING			
		Intercept	2.33	0.57-9.53	0.237
		Age	0.90*	0.83-0.98	0.013
		Sex ^a	1.14	0.85-1.52	0.396
		НР	1.13***	1.07-1.2	0.000
		HORSE RIDING	1.16	0.55-2.36	0.687
	JUDO				
		Intercept	2.32	0.57-9.49	0.239
		Age	0.90*	0.83-0.98	0.014
		Sex ^a	1.13	0.85-1.5	0.413
		НР	1.13***	1.07-1.2	0.000
		JUDO	0.47	0.07-2.08	0.360
	MARTIAL	ARTS			
		Intercept	2.34	0.57-9.56	0.236
		Age	0.90*	0.83-0.98	0.013
•		Sex ^a	1.12	0.84-1.5	0.431
		HP	1.13***	1.07-1.2	0.000
		MARTIAL ARTS	0.96	0.43-2.07	0.927
	OTHERS				
		Intercept	2.41	0.59-9.84	0.221

Ś

	Age	0.90*	0.83-0.98	0.012
	Sex ^a	1.13	0.85-1.51	0.403
	HP	1.13***	1.07-1.2	0.000
	OTHERS	0.65	0.26-1.48	0.320
RUGBY FO	DOTBALL			
	Intercept	2.35	0.57-9.6	0.235
	Age	0.90*	0.83-0.98	0.013
	Sex ^a	1.12	0.84-1.49	0.448
	HP	1.13***	1.07-1.2	0.000
	RUGBY FOOTBALL	1.06	0.37-2.86	0.905
RUNNING				
	Intercept	2.28	0.56-9.33	0.249
	Age	0.90*	0.83-0.98	0.016
	Sex ^a	1.12	0.84-1.49	0.455
	HP	1.13***	1.07-1.2	0.000
	RUNNING	0.78	0.36-1.59	0.509
SKIING				
	Intercept	2.20	0.54-8.99	0.273
	Age	0.90*	0.83-0.98	0.016
	Sex ^a	1.10	0.82-1.46	0.534
	HP	1.14***	1.08-1.21	0.000
	SKIING	0.37	0.07-1.52	0.191
SOCCER				
	Intercept	2.28	0.56-9.33	0.249
	Age	0.90*	0.83-0.98	0.014
	Sex ^a	1.06	0.78-1.43	0.716
	HP	1.13***	1.07-1.2	0.000
	SOCCER	1.31	0.87-1.98	0.198
SURFING/	WINDSURFING	2 20	0.56.0.25	0.040
	Intercept	2.29 0.90 *	0.56-9.35	0.248
	Age		0.83-0.98	0.015
	Sex ^a	1.12	0.84-1.5	0.422
	HP	1.13***	1.07-1.2	0.000
SWIMMIN	SURFING/WINDSURFING	0.59	0.16-1.77	0.379
S w IIVIIVIIIN		2.58	0.63-10.59	0.190
	Intercept	2.38 0.90 *	0.03-10.39 0.82-0.98	0.189 0.011
	Age	1.10	0.83-1.47	
	Sex ^a	1.10 1.13***		0.497
	HP	0.36*	1.07-1.2	0.000
TENNIS	SWIMMING	0.30*	0.14-0.80	0.018
I L'ININIO	Intercent	2.33	0.57-9.54	0.237
	Intercept Age	2.33 0.90 *	0.57-9.54 0.83-0.98	0.237 0.015
	-	1.14	0.85-1.52	0.376
	Sex ^a	1.14 1.13***	1.07-1.2	
	HP	1.13	1.0/-1.2	0.000

TENNIS	0.69	0.38-1.22	0.212
URBAN ACTIVITIES			
Intercept	2.01	0.48-8.32	0.337
Age	0.91*	0.83-0.99	0.026
Sex ^a	1.10	0.83-1.47	0.504
HP	1.13***	1.07-1.2	0.000
URBAN ACTIVITIES	2.22	0.76-7.33	0.159
VOLLEY-BALL			
Intercept	2.36	0.58-9.66	0.230
Age	0.90*	0.83-0.98	0.012
Sex ^a	1.12	0.84-1.5	0.422
HP	1.13***	1.07-1.2	0.000
VOLLEY-BALL	1.77	0.58-5.59	0.312

Note. ^areference category: Girls. **Bold values** indicate a significate different injury risk. *p<0.05; **p<0.01; ***p<0.001.

level of pla	~)			
_		ORs	95% CI	p-valu
ATHLETI	CS			
	Intercept	0.07***	0.05-0.1	0.00
	SP.HEB	1.11**	1.03-1.18	0.004
	ATHLETICS	NA	NA	NA
BADMIN	ΓΟΝ			
	Intercept	0.07***	0.05-0.1	0.00
	HP	1.11**	1.03-1.19	0.00
	BADMINTON	0.36	0.02-1.79	0.32
BASKETI	BALL			
	Intercept	0.07***	0.05-0.1	0.00
	HP	1.11**	1.03-1.19	0.00
	BASKETBALL	0.85	0.25-2.19	0.764
BODYBU	ILDING			
	Intercept	0.07***	0.05-0.1	0.00
	HP	1.11**	1.03-1.19	0.00
	BODYBUILDING	0.89	0.3-2.12	0.81
BOXING				
	Intercept	0.07***	0.05-0.11	0.00
	HP	1.11**	1.03-1.19	0.00
	BOXING	0.30	0.05-0.99	0.09
CLIMBIN	G			
	Intercept	0.07***	0.05-0.1	0.00
	HP	1.11**	1.03-1.18	0.00
	CLIMBING	0.79	0.04-4.05	0.81
CYCLINC	i			
	Intercept	0.07***	0.05-0.1	0.00
	HP	1.11**	1.03-1.18	0.004
	CYCLING	1.50	0.42-4.16	0.47
DANCING	5			
	Intercept	0.07***	0.05-0.11	0.00
	HP	1.1**	1.03-1.18	0.00
	DANCING	0.72	0.33-1.42	0.38
FITNESS				
	Intercept	0.07***	0.04-0.1	0.00
	HP	1.11**	1.03-1.19	0.00
	FITNESS	1.88	0.53-5.14	0.264
GYMNAS	TICS			
	Intercept	0.07***	0.04-0.1	0.00
	HP	1.11**	1.03-1.19	0.00
	GYMNASTICS	3.18	0.7-10.72	0.084
HANDBA	LL			
	Intercept	0.07***	0.04-0.1	0.00

Additional file 3. Table 2. Odds-ratio and 95% confidence interval adjusted for HP, describing the MTI odds of each sport compared to all the other sports, at the lowest level of play

	HP	1.1**	1.03-1.18	0.005
	HANDBALL	3.16*	1.1-7.95	0.020
H	ORSE RIDING			
	Intercept	0.07***	0.05-0.1	0.000
	HP	1.11**	1.03-1.19	0.003
	HORSE RIDING	1.28	0.37-3.37	0.656
Л	IDO			
	Intercept	0.07***	0.05-0.1	0.000
	НР	1.11**	1.03-1.18	0.003
	JUDO	NA	NA	NA
М	ARTIAL ARTS			
111		0.07***	0.05-0.1	0.000
	Intercept HP	1.11**	1.03-1.18	0.000
		0.74	0.12-2.57	0.687
O	MARTIAL ARTS THERS	0.74	0.12-2.37	0.087
0		0.07***	0.05-0.1	0.000
	Intercept	0.07**** 1.11**		0.000
	HP		1.03-1.18	0.003
	OTHERS	0.38	0.02-1.82	0.341
R	JGBY FOOTBALL			0.000
	Intercept	0.07***	0.04-0.1	0.000
	HP	1.11**	1.03-1.19	0.003
	RUGBY FOOTBALL	2.08	0.47-6.56	0.260
R	UNNING			
	Intercept	0.07***	0.05-0.1	0.000
	HP	1.11**	1.03-1.18	0.004
	RUNNING	0.61	0.1-2.07	0.506
SH	KIING			
	Intercept	0.07***	0.05-0.1	0.000
	HP	1.11**	1.04-1.19	0.003
	SKIING	NA	NA	NA
SC	DCCER			
	Intercept	0.06***	0.04-0.09	0.000
	HP	1.1**	1.03-1.18	0.006
	SOCCER	1.83*	1.03-3.14	0.033
SU	JRFING/WINDSURFING			01000
	Intercept	0.07***	0.05-0.1	0.000
	НР	1.11**	1.03-1.18	0.000
	SURFING/WINDSURFING		NA	0.004 NA
CI	VIMMING	147 X	147 1	INA
5		0.07***	0.05-0.1	0.000
	Intercept	1.11**	1.03-1.18	0.000
	HP			0.003
	SWIMMING	0.92	0.22-2.67	0.899
T	ENNIS			0.000
	Intercept	0.07***	0.05-0.11	0.000
	HP	1.1**	1.03-1.18	0.005
	TENNIS	0.34	0.06-1.13	0.142

URBAN ACTIVITIES			
Intercept	0.07***	0.05-0.1	0.000
HP	1.1**	1.03-1.18	0.005
URBAN ACTIVITIES	1.73	0.38-5.69	0.412
VOLLEY-BALL			
Intercept	0.07***	0.05-0.1	0.000
HP	1.11**	1.03-1.19	0.003
VOLLEY-BALL	1.70	0.26-6.51	0.493

Note. ^areference category: Girls. **Bold values** indicate a significate different injury risk. *p<0.05; **p<0.01; ***p<0.001.

		ORs	95% CI	p-value
ATHLETICS				
Inter	cept	1.18	0.78-1.76	0.431
HP		1.04	0.99-1.1	0.160
ATH	LETICS	1.21	0.49-3.27	0.693
BADMINTON				
Inter	cept	1.18	0.78-1.76	0.436
HP		1.04	0.99-1.1	0.142
BAD	MINTON	NA	NA	NA
BASKETBALL				
Inter	cept	1.08	0.71-1.62	0.725
HP		1.04	0.99-1.1	0.130
BAS	KETBALL	2.41*	1.2-5.29	0.019
BODYBUILDING	Ĵ			
Inter	cept	1.16	0.77-1.75	0.463
HP		1.04	0.99-1.1	0.134
BOD	YBUILDING	NA	NA	NA
BOXING				
Inter	cept	1.16	0.77-1.74	0.483
HP	-	1.04	0.99-1.1	0.135
BOX	ING	1.37	0.47-4.46	0.577
CLIMBING				
Inter	cept	1.19	0.79-1.78	0.407
HP		1.04	0.99-1.1	0.146
CLIN	MBING	NA	NA	NA
CYCLING				
Inter	cept	1.19	0.78-1.78	0.415
HP		1.04	0.98-1.1	0.172
CYC	LING	1.23	0.32-5.93	0.771
DANCING				
Inter	cept	1.25	0.82-1.89	0.303
HP	-	1.04	0.98-1.09	0.194
DAN	ICING	0.67	0.32-1.41	0.289
FITNESS				
Inter	cept	1.19	0.79-1.79	0.390
НР	-	1.04	0.99-1.1	0.159
FITN	IESS	NA	NA	NA
GYMNASTICS				
Inter	cept	1.16	0.77-1.73	0.487
HP		1.04	0.99-1.1	0.143
	INASTICS	1.54	0.6-4.42	0.387
HANDBALL				
_	cept	1.16	0.77-1.75	0.470

Additional file 3. Table 3. Odds-ratio and 95% confidence interval adjusted for HP, describing the ASI odds of each sport compared to all the other sports, at the highest level of play

5/

	HP	1.04	0.99-1.1	0.140	
	HANDBALL	1.15	0.54-2.56	0.729	
HORS	SE RIDING				
	Intercept	1.17	0.78-1.77	0.442	
	HP	1.04	0.99-1.1	0.142	
	HORSE RIDING	1.02	0.36-3.11	0.969	
JUDO					
	Intercept	1.14	0.75-1.71	0.541	
	HP	1.04	0.99-1.1	0.125	
	JUDO	1.92	0.64-7.05	0.271	
MAR	TIAL ARTS	1.92	0.017.05	0.271	
		1.16	0.77-1.74	0.468	
	Intercept HP	1.04	0.99-1.1	0.400	
		1.04	0.59-6.48	0.133	
OTHE	MARTIAL ARTS	1.//	0.39-0.48	0.337	
OTH		1.18	0.78-1.77	0.433	
	Intercept		0.78-1.77		
	HP	1.04		0.142	
DUCI	OTHERS	0.98	0.43-2.3	0.952	
RUGI	3Y FOOTBALL	1.10		0.410	
	Intercept	1.19	0.79-1.79	0.410	
	HP	1.04	0.99-1.1	0.146	
	RUGBY FOOTBALL	0.88	0.41-1.94	0.740	
RUNN	NING				
	Intercept	1.17	0.78-1.77	0.440	
	HP	1.05	0.99-1.11	0.101	
	RUNNING	NA	NA	NA	
SKIIN	۱G				
	Intercept	1.17	0.78-1.76	0.443	
	HP	1.05	0.99-1.11	0.101	
	SKIING	0.29*	0.07-0.93	0.045	
SOCC	CER				
	Intercept	1.23	0.81-1.87	0.335	
	HP	1.04	0.99-1.1	0.158	
	SOCCER	0.80	0.48-1.36	0.411	
SURF	FING/WINDSURFING				
	Intercept	1.17	0.77-1.75	0.459	
	HP	1.04	0.99-1.1	0.112	
	SURFING/WINDSURFING	NA	NA	NA	
SWIN	IMING				
	Intercept	1.14	0.76-1.72	0.520	
	HP	1.05	1-1.11	0.062	
	SWIMMING	0.37*	0.15-0.88	0.002	
TENN				0.040	
	Intercept	1.17	0.77-1.76	0.465	
	НР	1.04	0.99-1.1	0.139	
		1.04	0.46-2.88	0.139	
	TENNIS	1.11	0.40-2.00	0.014	

URBAN ACTIVITIES			
Intercept	1.14	0.76-1.72	0.517
HP	1.04	0.99-1.1	0.124
URBAN ACTIVITIES	NA	NA	NA
VOLLEY-BALL			
Intercept	1.13	0.75-1.7	0.543
HP	1.04	0.99-1.1	0.144
VOLLEY-BALL	7.40	1.42-135.89	0.057

Note. ^areference category: Girls. **Bold values** indicate a significate different injury risk. *p<0.05; **p<0.01; ***p<0.001.

at the mane	st level of play			
		ORs	95% CI	p-value
ATHLETIC	CS			
	Intercept	0.02**	0-0.32	0.005
	Age	1.02	0.89-1.18	0.729
	BMI	1.09	1-1.19	0.051
	HP	1.05	0.99-1.12	0.075
	ATHLETICS	0.63	0.18-1.78	0.422
BADMINT	ON			
	Intercept	0.03**	0-0.33	0.006
	Age	1.02	0.89-1.17	0.796
	BMI	1.09*	1-1.19	0.044
	HP	1.05	0.99-1.12	0.081
	BADMINTON	NA	NA N	A
BASKETB.	ALL			
	Intercept	0.02**	0-0.28	0.004
	Age	1.03	0.9-1.19	0.648
	BMI	1.09	1-1.18	0.059
	HP	1.05	0.99-1.12	0.088
	BASKETBALL	1.64	0.81-3.2	0.156
BODYBUI				
	Intercept	0.03**	0-0.32	0.006
	Age	1.02	0.89-1.18	0.753
	BMI	1.09*	1-1.19	0.049
	НР	1.05	0.99-1.11	0.091
	BODYBUILDING	NA	NA N	A
BOXING				
	Intercept	0.03**	0-0.34	0.006
	Age	1.02	0.89-1.17	0.797
	BMI	1.09*	1-1.19	0.04
	HP	1.05	0.99-1.11	0.094
	BOXING	0.49	0.07-1.81	0.348
CLIMBING				
	Intercept	0.03**	0-0.32	0.005
	Age	1.02	0.89-1.18	0.769
	BMI	1.09*	1-1.19	0.043
	HP	1.05	0.99-1.11	0.090
	CLIMBING	NA	NA N	
CYCLING	CERVIDINO			
2102010	Intercept	0.02**	0-0.32	0.005
	Age	1.02	0.89-1.18	0.762
	1.50			0.045
	BMI	1 09*	1-1 19	$v \cdot v =$
	BMI HP	1.09* 1.05	1-1.19 0.99-1.12	0.04

Additional file 3. Table 4. Odds-ratio and 95% confidence interval adjusted for age, BMI and HP, describing the MTI odds of each sport compared to all the other sports, at the highest level of play

Ś

DANCING				
	Intercept	0.03**	0-0.33	0.006
	Age	1.02	0.89-1.18	0.769
	BMI	1.09*	1-1.19	0.047
	HP	1.05	0.99-1.12	0.089
	DANCING	1.01	0.36-2.51	0.976
FITNESS				
	Intercept	0.02**	0-0.3	0.005
	Age	1.02	0.89-1.18	0.744
	BMI	1.09*	1-1.19	0.040
	HP	1.05	0.99-1.11	0.097
	FITNESS	NA	NA NA	
GYMNAST	TICS			
	Intercept	0.02**	0-0.29	0.004
	Age	1.02	0.89-1.18	0.767
	BMI	1.10*	1.01-1.2	0.037
	HP	1.05	0.99-1.12	0.087
	GYMNASTICS	1.59	0.54-4.19	0.370
HANDBAL				
	Intercept	0.03**	0-0.32	0.006
	Age	1.02	0.89-1.18	0.777
	BMI	1.09*	1-1.19	0.045
	HP	1.05	0.99-1.12	0.087
HODGE DH	HANDBALL	1.05	0.42-2.38	0.911
HORSE RII		0.02**	0.0.21	0.005
	Intercept	0.02**	0-0.31 0.89-1.18	0.769
	Age	1.02 1.09 *	0.89-1.18 1-1.19	0.769
	BMI	1.09* 1.05	0.99-1.12	0.083
	HP HODSE DIDING	1.03	0.36-4.1	0.624
JUDO	HORSE RIDING	1.54	0.30-4.1	0.024
JODO	Intercept	0.02**	0-0.31	0.005
	Age	1.02	0.89-1.18	0.779
	BMI	1.02*	1-1.19	0.044
	HP	1.05	0.99-1.12	0.078
	JUDO	1.65	0.5-4.84	0.374
MARTIAL		1.00		
	Intercept	0.03**	0-0.33	0.006
	Age	1.02	0.89-1.17	0.791
	BMI	1.09*	1-1.19	0.043
	HP	1.05	0.99-1.12	0.081
	MARTIAL ARTS	0.70	0.15-2.31	0.591
OTHERS				
	Intercept	0.02**	0-0.27	0.004
	Age	1.01	0.88-1.17	0.867
	BMI	1.11*	1.02-1.22	0.018

	HP	1.05	0.99-1.12	0.081
	OTHERS	0.20*	0.03-0.72	0.036
RUGBY FO				
	Intercept	0.03*	0-0.43	0.011
	Age	1.03	0.9-1.19	0.674
	BMI	1.07	0.97-1.17	0.168
	HP	1.06	1-1.12	0.069
	RUGBY FOOTBALL	2.08	0.88-4.77	0.087
RUNNING				
	Intercept	0.03**	0-0.32	0.005
	Age	1.03	0.89-1.18	0.710
	BMI	1.09	1-1.19	0.055
	HP	1.05	0.99-1.12	0.079
	RUNNING	NA	NA	NA
SKIING				
	Intercept	0.02**	0-0.27	0.004
	Age	1.04	0.9-1.2	0.614
	BMI	1.09	1-1.19	0.058
	HP	1.06	1-1.12	0.068
	SKIING	NA	NA	NA
SOCCER				
	Intercept	0.02**	0-0.31	0.005
	Age	1.02	0.89-1.18	0.754
	BMI	1.09*	1-1.19	0.045
	НР	1.05	0.99-1.12	0.082
	SOCCER	1.17	0.63-2.11	0.600
SURFING/	WINDSURFING			
	Intercept	0.03**	0-0.32	0.005
	Age	1.02	0.89-1.18	0.767
	BMI	1.09*	1-1.19	0.044
	НР	1.05	0.99-1.11	0.093
	SURFING/WINDSURFING	1.29	0.17-6.8	0.774
SWIMMIN				
	Intercept	0.03*	0-0.38	0.008
	Age	1.02	0.88-1.17	0.827
	BMI	1.09	1-1.19	0.056
	HP	1.06	1-1.13	0.057
	SWIMMING	0.51	0.14-1.44	0.246
TENNIS				
	Intercept	0.03**	0-0.33	0.006
	Age	1.02	0.89-1.17	0.812
	BMI	1.09*	1-1.19	0.045
	HP	1.05	0.99-1.12	0.072
	TENNIS	1.62	0.6-4.07	0.316
URBAN AG	CTIVITIES			
	Intercept	0.02**	0-0.31	0.005
	-			

Age	1.02	0.89-1.18	0.767
BMI	1.09*	1-1.19	0.042
HP	1.05	0.99-1.12	0.083
URBAN ACTIVITIES	NA	NA NA	Δ
VOLLEY-BALL			
Intercept	0.03**	0-0.32	0.005
Age	1.02	0.89-1.18	0.770
BMI	1.09*	1-1.19	0.044
HP	1.05	0.99-1.12	0.087
VOLLEY-BALL	1.08	0.23-3.74	0.914

 Note. ^areference category: Girls. Bold values indicate a significate different injury risk. *p<0.05;</td>

 p<0.01; *p<0.001.</td>

Additional file 4. Table 1 Nature and numbers of injuries by sport
--

	Sprain	Overuse	Tendon strain	Muscle strain	Fracture	Dislocation	All
ATHLETICS	17.1% (6)	17.1% (6)	17.1% (6)	40.0% (14)	8.6% (3)	0.0% (0)	100.0% (35)
BADMINTON	33.3% (5)	33.3% (5)	13.3% (2)	13.3% (2)	0.0% (0)	6.7% (1)	100.0% (15)
BASKETBALL	53.4% (78)	11.0% (16)	11.6% (17)	11.6% (17)	9.6% (14)	2.7% (4)	100.0% (146)
BODYBUILDING	29.7% (11)	18.9% (7)	21.6% (8)	16.2% (6)	8.1% (3)	5.4% (2)	100.0% (37)
BOXING	47.8% (33)	24.6% (17)	8.7% (6)	10.1% (7)	8.7% (6)	0.0% (0)	100.0% (69)
CLIMBING	12.5% (1)	37.5% (3)	37.5% (3)	12.5% (1)	0.0% (0)	0.0% (0)	100.0% (8)
CYCLING	27.5% (11)	17.5% (7)	20.0% (8)	15.0% (6)	10.0% (4)	10.0% (4)	100.0% (40)
DANCING	26.6% (25)	24.5% (23)	20.2% (19)	24.5% (23)	3.2% (3)	1.1% (1)	100.0% (94)
FITNESS	33.3% (5)	20.0% (3)	26.7% (4)	13.3% (2)	6.7% (1)	0.0% (0)	100.0% (15)
GYMNASTICS	38.5% (15)	17.9% (7)	15.4% (6)	23.1% (9)	5.1% (2)	0.0% (0)	100.0% (39)
HANDBALL	49.6% (60)	14.0% (17)	13.2% (16)	15.7% (19)	6.6% (8)	0.8% (1)	100.0% (121)
HORSE RIDING	26.9% (7)	19.2% (5)	23.1% (6)	11.5% (3)	19.2% (5)	0.0% (0)	100.0% (26)
JUDO	50.0% (16)	3.1% (1)	15.6% (5)	12.5% (4)	9.4% (3)	9.4% (3)	100.0% (32)
MARTIAL ARTS	23.5% (8)	26.5% (9)	17.6% (6)	11.8% (4)	11.8% (4)	8.8% (3)	100.0% (34)
OTHERS	34.2% (13)	15.8% (6)	10.5% (4)	15.8% (6)	18.4% (7)	5.3% (2)	100.0% (38)
RUGBY FOOTBALL	46.8% (22)	8.5% (4)	0.0% (0)	12.8% (6)	17.0% (8)	14.9% (7)	100.0% (47)
RUNNING	40.0% (6)	40.0% (6)	0.0% (0)	20.0% (3)	0.0% (0)	0.0% (0)	100.0% (15)
SKIING	27.3% (3)	9.1% (1)	18.2% (2)	18.2% (2)	9.1% (1)	18.2% (2)	100.0% (11)
SOCCER	37.3% (75)	11.4% (23)	9.5% (19)	27.4% (55)	10.9% (22)	3.5% (7)	100.0% (201)
SURFING/WINDSURFING	30.0% (6)	10.0% (2)	25.0% (5)	25.0% (5)	10.0% (2)	0.0% (0)	100.0% (20)
SWIMMING	24.2% (8)	24.2% (8)	27.3% (9)	21.2% (7)	3.0% (1)	0.0% (0)	100.0% (33)
TENNIS	47.3% (26)	10.9% (6)	27.3% (15)	9.1% (5)	3.6% (2)	1.8% (1)	100.0% (55)
URBAN ACTIVITIES	33.3% (3)	11.1% (1)	0.0% (0)	44.4% (4)	11.1% (1)	0.0% (0)	100.0% (9)
VOLLEYBALL	37.5% (15)	12.5% (5)	22.5% (9)	15.0% (6)	2.5% (1)	10.0% (4)	100.0% (40)
All	38.8% (458)	15.9% (188)	14.8% (175)	18.3% (216)	8.6% (101)	3.6% (42)	100.0% (1180)

Note. Bold values indicate a significant higher injury nature risk compared to all the other sports, according to ORs and 95% CI available in additional file 2, table 2

Additional file 4. Table 2 ORs and 95% CI describing the relationship between injury nature and sport played	

	Sprain	Overuse	Tendon strain	Muscle strain	Fracture	Dislocation
ATHLETICS	0.3 (0.22-0.49)	1.1 (0.73-1.64)	1.2 (0.79-1.79)	3.0 (2.33-3.80)	1.0 (0.48-2.09)	0.4 (0.01-21.39)
BADMINTON	0.8 (0.43-1.43)	2.6 (1.45-4.81)	0.9 (0.28-2.77)	0.7 (0.22-2.15)	0.4 (0.01-20.79)	1.9 (0.23-16.59)
BASKETBALL	1.8 (1.70-1.92)	0.6 (0.56-0.75)	0.8 (0.66-0.87)	0.6 (0.51-0.68)	1.1 (0.95-1.35)	0.8 (0.44-1.33)
BODYBUILDING	0.7 (0.51-0.87)	1.2 (0.86-1.76)	1.6 (1.14-2.19)	0.9 (0.58-1.29)	0.9 (0.45-1.96)	1.5 (0.52-4.58)
BOXING	1.4 (1.28-1.63)	1.7 (1.46-2.04)	0.5 (0.38-0.79)	0.5 (0.36-0.70)	1.0 (0.70-1.49)	0.2 (0-10.55)
CLIMBING	0.2 (0.02-2.13)	3.2 (1.10-9.12)	3.4 (1.20-9.93)	0.6 (0.07-6.06)	0.7 (0.01-43.7)	1.7 (0.02-113.04)
CYCLING	0.6 (0.46-0.77)	1.1 (0.79-1.59)	1.4 (1.04-1.98)	0.8 (0.53-1.17)	1.2 (0.67-2.09)	3.0 (1.66-5.45)
DANCING	0.6 (0.51-0.64)	1.7 (1.51-1.94)	1.5 (1.26-1.68)	1.4 (1.28-1.64)	0.4 (0.18-0.71)	0.3 (0.04-2.22)
FITNESS	0.8 (0.43-1.43)	1.3 (0.58-3.02)	2.1 (1.06-4.13)	0.7 (0.22-2.15)	0.8 (0.09-6.37)	0.9 (0.01-53.78)
GYMNASTICS	1.0 (0.79-1.23)	1.2 (0.81-1.64)	1 (0.70-1.56)	1.3 (1.00-1.80)	0.6 (0.20-1.66)	0.3 (0.01-19.09)
HANDBALL	1.6 (1.44-1.67)	0.9 (0.74-1.00)	0.9 (0.75-1.02)	0.8 (0.73-0.95)	0.8 (0.57-1.00)	0.2 (0.03-1.71)
HORSE RIDING	0.6 (0.39-0.86)	1.3 (0.76-2.07)	1.7 (1.11-2.67)	0.6 (0.28-1.23)	2.5 (1.53-4.22)	0.5 (0.01-29.36)
JUDO	1.6 (1.23-2.03)	0.2 (0.02-1.30)	1.1 (0.66-1.71)	0.6 (0.36-1.13)	1.1 (0.53-2.32)	2.8 (1.30-6.05)
MARTIAL ARTS	0.5 (0.35-0.67)	1.9 (1.40-2.59)	1.2 (0.82-1.85)	0.6 (0.34-1.05)	1.4 (0.80-2.54)	2.6 (1.22-5.63)
OTHERS	0.8 (0.65-1.04)	1.0 (0.66-1.48)	0.7 (0.39-1.18)	0.8 (0.56-1.25)	2.4 (1.68-3.47)	1.5 (0.51-4.45)
RUGBY FOOTBALL	1.4 (1.17-1.65)	0.5 (0.28-0.85)	0.1 (0-3.24)	0.7 (0.44-0.96)	2.2 (1.6-3.01)	4.7 (3.25-6.92)
RUNNING	1.1 (0.61-1.82)	3.5 (2.02-6.14)	0.2 (0-11.11)	1.1 (0.49-2.55)	0.4 (0.01-20.79)	0.9 (0.01-53.78)
SKIING	0.6 (0.24-1.46)	0.5 (0.06-4.61)	1.6 (0.47-5.34)	1.0 (0.30-3.32)	1.1 (0.12-9.42)	6.0 (1.73-20.94)
SOCCER	0.9 (0.89-0.99)	0.7 (0.61-0.76)	0.6 (0.53-0.68)	1.7 (1.58-1.79)	1.3 (1.16-1.48)	1 (0.70-1.37)
SURFING/WINDSURFING	0.7 (0.42-1.08)	0.6 (0.19-1.76)	1.9 (1.12-3.27)	1.5 (0.87-2.54)	1.2 (0.39-3.6)	0.7 (0.01-39.04)
SWIMMING	0.5 (0.36-0.70)	1.7 (1.21-2.36)	2.2 (1.58-2.94)	1.2 (0.83-1.73)	0.3 (0.04-2.57)	0.4 (0.01-22.76)
TENNIS	1.4 (1.22-1.64)	0.6 (0.44-0.94)	2.2 (1.78-2.61)	0.4 (0.29-0.69)	0.4 (0.14-1.14)	0.5 (0.06-3.88)
URBAN ACTIVITIES	0.8 (0.29-2.11)	0.7 (0.07-6.06)	0.3 (0.01-20.2)	3.6 (1.46-8.72)	1.3 (0.14-12.37)	1.5 (0.02-97.78)
VOLLEYBALL	0.9 (0.76-1.17)	0.8 (0.48-1.19)	1.7 (1.24-2.24)	0.8 (0.53-1.17)	0.3 (0.04-2.09)	3.0 (1.66-5.45)

Note. Injured rugby football players were 2.2 times more likely to report a fracture than the entire sample; Bold values indicate a significant higher injury nature risk compared to all the other sports