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Institut de Recherche Mathématique de Rennes Dpto. de Ecuaciones Diferenciales y Análisis Numérico
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Abstract

In this paper we study homogenization of a linear system of elastodynamics in an
elastic body with soft inclusions, which is embedded in a highly oscillating magnetic field.
We show two limit behaviors according to the magnetic field. On the one hand, if the
magnetic field has at least two different directions at the interface between the hard phase
and the soft phase, then the limit of the displacement in the hard phase is independent
of time, so that the magnetic field induces an infinite effective mass. On the other hand,
if the magnetic field has a constant direction ξ at the interface, then the limit of the
displacement in the hard phase involves an additional displacement in the direction ξ
which is solution to an elastodynamics equation with a memory mass, a memory stress
tensor and memory external forces depending on the initial conditions, which read as
time convolutions with some kernel. When the magnetic field has the same direction ξ
in the soft phase with smooth inclusions, we prove that the space-average of the kernel is
regular and that the limit of the overall displacement in the direction ξ is solution to a
viscoelasticity equation.

Keywords: elastodynamics, magnetic field, soft inclusions, homogenization, viscoelasticity

AMS subject classification: 74Q10, 74Q15, 35B27, 35L05

1 Introduction

This paper is devoted to the asymptotic behavior as ε → 0 of the following elastodynamic
system posed in a bounded cylinder QT = (0, T )× Ω of R× R3,

∂2
ttuε −Div

(
Aε

(x
ε

)
e(uε)

)
+

1

ε
b
(x
ε

)
× ∂tuε = f in QT

uε = 0 on (0, T )× ∂Ω

uε(0, ·) = u0, ∂tuε(0, ·) = v0 in Ω,

(1.1)

where the symmetric tensor-valued function Aε takes periodically some value A1 in the hard ma-
terial Ωε,1 and the value ε2A2 in the soft material Ωε,2, and b is a periodic vector-valued function
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representing a magnetic field which induces the highly oscillating Lorentz force 1/ε b(x/ε)×∂tuε.
The system of elastodynamics (1.1) is inspired by a coupling magneto-elastodynamics model
of [2, Section 9.3]. Here, assuming that the elastic body is a poor conductor and that the
electric Lorentz force is negligible against the magnetic Lorentz force, the coupling leads us to
the simpler elastodynamics equation (1.1) with the magnetic Lorentz force.

Homogenization of wave equations with varying coefficients was first studied by Colombini,
Spagnolo [7], and extended by Francfort, Murat [8]. In these works, roughly speaking the
varying matrix-rigidity of the material is assumed to be uniformly bounded, coercive and does
not oscillate in time which leads us to a limit wave equation of the same nature. However, when
the above uniformity conditions are not satisfied or when the rigidity coefficients oscillate in
time, the nature of the equation is not in general preserved. On the one hand, in the case of an
elastodynamics system with soft inclusions Ávila et al. [3] have highlighted the appearance at
a fixed frequency of an effective negative mass related to the existence of phononic band gaps.
In the stationary elasticity case with soft inclusions Zhikov and Pasthukova [18] have shown
the existence of gaps in the continuous spectrum of the homogenized operator. Otherwise,
Smyshlyaev [16] (see also [9] for some extension) has studied elastic waves in highly anisotropic
periodic composites. More generally, observing that high-contrast composite materials (mixing
soft and hard phases) may induce an anisotropic mass at a fixed frequency, Milton, Willis [12]
have proposed a modification of Newton’s second law in which the relation between the force
and the acceleration is non-local in time. On the other hand, a nonlocal term was obtained
in [6] for a wave equation with a first order term with periodic coefficients in space and time.
More recently, in the absence of soft inclusions, i.e. Aε = A1, the present authors [5] have
obtained for system (1.1) but in a non-periodic framework a homogenized system involving
both an increase of the effective mass and a nonlocal term due to a time-oscillating Lorentz
force. In this work, the increase of mass is due to a highly space-oscillating magnetic field in the
spirit of homogenization of the hydrodynamic problem studied by Tartar [17]. Moreover, the
presence in [5] of a time-oscillating magnetic field induces a non-local term in the homogenized
system.

In the present work, we consider both a highly space-oscillating magnetic field and soft
inclusions. Moreover, contrary to [3] and [12] rather than fixing the frequency we study ho-
mogenization of the non-stationary elastodynamic system (1.1). We obtain two asymptotic
behaviors for system (1.1) (see Theorem 2.2) according to the following alternative:

• If the magnetic field has two or more different directions at the interface between the soft
and the hard material, then the displacement in the hard phase χΩε,1uε weakly converges
in L2(QT )3 to the stationary function |Y1|u0, where Y1 is the cell period of the hard
phase. From the point of view of the hard phase the strong magnetic field thus induces
an isotropic infinite mass which blocks the displacement.

• If the magnetic field has a fixed direction ξ at the interface between the soft and the hard
material, then the displacement χΩε,1uε weakly converges to |Y1| (u0 + α ξ) in L2(QT )3,
where the scalar function α is solution to an equation of elastodynamics involving a
memory mass, a memory stress tensor and memory external forces depending on the
initial displacement u0, the initial velocity v0 and the force f . The memory terms read
as time-convolutions with a matrix-valued kernel K̄ or its derivative ∂tK̄ defined on
(0, T ) × Y2, where Y2 is the cell period of the soft phase. Contrary to the first case, the
strong magnetic field induces an anisotropic effective mass (in the spirit of [12]) which is
only infinite in the direction perpendicular to the field.

In the second case, assuming that the magnetic field has the same direction ξ in Y2 and the
tensor A2 is constant (see Example 2.7), it turns out that the function α can be expressed with
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some kernel L as the time convolution

α = L ∗t (ū · ξ +G) in QT , (1.2)

where ū is the weak limit of the overall displacement uε in L2(QT )3, and G is a term depending
on the initial conditions u0, v0 and the external force f . Therefore, the homogenized equation
satisfied by α can be regarded as a viscoelasticity type equation{

∂tt(ū · ξ)− divxσ = f · ξ + divx
(
A∗1ex(u

0)ξ
)

in QT

(ū · ξ)(0, ·) = u0 · ξ in Ω,
(1.3)

satisfied by the overall macroscopic displacement ū · ξ in the direction ξ and the stress tensor
σ which are connected by the relation

σ := A∗1∇x

(
L ∗t (ū · ξ +G)

)
in QT , (1.4)

for some homogenized elliptic tensor A∗1 and a positive definite matrix A∗1 depending on A∗1.
Homogenization of an elastodynamics equation of type (1.1) was studied by Sánchez-Palencia

[14, Sect. 4, Chap. 6] (see also [1] for a similar model with time-dependent coefficients) replacing
roughly speaking the first-order derivative term 1/ε b(x/ε)× ∂tuε by the third-order derivative
term div (B(x/ε)ex(∂tuε)), where B is some periodic tensor-valued function. Therefore, starting
from a viscoelastic behavior given by the stress-strain law

σε(t, x) = A(x/ε) ex(uε) + B(x/ε) ex(∂tuε),

Sánchez-Palencia obtained a nonlocal limit viscoelasticity equation with a memory term, which
is similar to equation (1.3). However in our context, we start from the first-order time deriva-
tive Lorentz force 1/ε b(x/ε) × ∂tuε without any a priori viscoelastic behavior, and the limit
viscoelasticity equation (1.3) is only induced by the homogenization process thanks to the com-
bination of the strong oscillating magnetic field and the soft inclusions. Such a derivation by
homogenization of a viscoelastic behavior from an elastodynamic system is original to best of
our knowledge.

The proof of Theorem 2.2 is based on a two-scale convergence result (see Theorem 2.1)
in the sense of Nguetseng-Allaire [13, 4]. Here, the main difficulty is to pass to the two-scale
limit in the highly oscillating Lorentz force, which needs a suitable matrix-valued test function.
Then, we deduce from the variational formulation of the two-scale limit of system (1.1) the
homogenized equation in the direction of the magnetic field. This is the most delicate part of
the proof which involves some matrix-valued kernel K̄ the derivative of which ∂tK̄ is a priori
only in L∞(0, T ;L2(Y2))3×3. We prove (see Proposition 2.6) that the space-average of K̄ belongs
to W 1,∞(0, T )3×3 assuming that the magnetic field b has a constant direction in Y2, the tensor
A2 is constant in Y2 and Y2 has a smooth boundary. This additional regularity of the kernel
allows us to derive the limit viscoelasticity equation (1.3).

Notation

• Y denotes the unit cube (0, 1)3 of R3.

• Ω denotes a regular (satisfying at least the interior cone condition) bounded open set of
R3, and QT the cylinder (0, T )× Ω for T > 0.

• |E| denotes the Lebesgue measure of a measurable set E of R3.
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• · denotes the scalar product in R3, : denotes the scalar product in R3×3, and | · | denotes
the associated norm in both cases.

• (e1, e2, e3) denotes the canonical basis of R3.

• R3×3 denotes the set of the (3× 3) real matrices, and R3×3
s denotes the set of symmetric

matrices in R3×3).

• I denotes the unit matrix of R3×3.

• For ξ, η ∈ R3, ξ⊗η denotes the matrix in R3×3 with entries ξi ηj, and ξ�η the symmetrized
matrix of ξ ⊗ η.

• L (E) denotes the set of linear mappings from a vector space E into itself.

• A denotes any Y -periodic symmetric tensor-valued function in L∞(Y ; L (R3×3
s )) which is

uniformly elliptic, i.e. there exists a constant a > 0 such that

A(y)M : M ≥ aM : M, a.e. y ∈ Y, ∀M ∈ R3×3
s . (1.5)

• e(u) denotes the symmetrized gradient of a vector-valued function u.

• Div denotes the vector-valued divergence operator taking the divergence of each row of a
matrix-valued function.

• C∞c (U) denotes the set of smooth functions with compact support in an open set U of R3.

• Lp] (Y ), resp. W 1,p
] (Y ), denotes the set of the Y -periodic functions defined in R3 which

belong to Lploc(R3), resp. W 1,p
loc (R3).

• → denotes a strong convergence, ⇀ a weak convergence, and
2s
⇀ the two-scale convergence.

• oε(1) denotes a sequence of ε which converges to zero as ε→ 0, and which may vary from
line to line.

• C denotes a positive constant which may vary from line to line.

Recall the definition of the two-scale convergence of Nguetseng-Allaire in the case of an
open cylinder QT = (0, T )× Ω of R× R3.

Definition 1.1 ([13, 4]). A bounded sequence vε(t, x) in L2(QT ) is said to two-scale converge
to the function v(t, x, y) in L2(QT ;L2

] (Y )) if

∀ϕ ∈ C∞c (QT ;C∞] (Y )), lim
ε→0

ˆ
QT

vε(t, x)ϕ
(
t, x,

x

ε

)
dtdx =

ˆ
QT×Y

v(t, x, y)ϕ(t, x, y) dtdxdy,

where C∞c (QT ;C∞] (Y )) denotes the set of functions ϕ(x, y) in C∞(QT×R3) compactly supported
in x ∈ QT and Y -periodic in y. In particular, this implies that

vε(t, x) ⇀

ˆ
Y

v(t, x, y) dy in L2(QT ).
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2 Statement of the result

2.1 Formulation of the problem

Let Y be the unit cube in R3, let Y2 be a smooth open set such that Y2 ⊂ Y , and such that
Y1 := Y \ Y2 is a connected set. Then, for a given regular (satisfying at least the interior cone
condition) bounded open set Ω of R3, define the open sets

Ωε,1 := Ω \
⋃
k∈Z3

ε (k + Y2), Ωε,2 := Ω \ Ωε,1.

For a given T > 0, we also define the cylinder

QT := (0, T )× Ω.

Let A1 ∈ L∞] (Y1; L (R3×3
s )), A2 ∈ L∞] (Y2; L (R3×3

s )) be two uniformly elliptic periodic symmet-
ric tensor-valued functions (see (1.5)), and b ∈ L∞] (Y )3 be a Y -periodic vector-valued function.
Then, for f ∈ L2(QT )3, u0 ∈ H1

0 (Ω)3 and v0 ∈ L2(Ω)3, we consider the problem of elastody-
namics

d2

dt2

ˆ
Ω

uε · v dx+

ˆ
Ωε,1

A1

(x
ε

)
e(uε) : e(v) dx+ ε2

ˆ
Ωε,2

A2

(x
ε

)
e(uε) : e(v) dx

+
1

ε

ˆ
Ω

(
b
(x
ε

)
× ∂tuε

)
· v dx =

ˆ
Ω

f · v dx in Ω, ∀ v ∈ H1
0 (Ω)3

uε = 0 on (0, T )× ∂Ω

uε(0, ·) = u0, ∂tuε(0, ·) = v0 in Ω,

(2.1)

which denoting
Aε := χY1A1 + ε2χY2A2,

can also be written as
∂2
ttuε −Div

(
Aε

(x
ε

)
e(uε)

)
+

1

ε
b
(x
ε

)
× ∂tuε = f in QT

uε = 0 on (0, T )× ∂Ω

uε(0, ·) = u0, ∂tuε(0, ·) = v0 in Ω.

(2.2)

The weak variational formulation (2.1) has a unique solution inW 1,∞(0, T ;L2(Ω))3∩L∞(0, T ;H1
0 (Ω))3

(see, e.g., [11, Chapter 3, Section 8]).

2.2 Statement of the results

The following result provides a variational problem in terms of the two-scale limits of uε, ∂tuε
and e(uε).

Theorem 2.1. Assume that the magnetic field b satisfies the equality

ˆ
Y1

b dy = 0. (2.3)
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Then, we have the following two-scale convergences

uε
2s
⇀ u1 + u2

∂tuε
2s
⇀ ∂tu1 + ∂tu2

χΩε,1e(uε)
2s
⇀ χY1

(
ex(u1) + ey(u3)

)
χΩε,2ε e(uε)

2s
⇀ ey(u2),

(2.4)

where the functions u1, u2, u3 satisfy the conditions
u1 ∈ W 1,∞(0, T ;L2(Ω))3 ∩ L∞(0, T ;H1

0 (Ω))3, u1(0, ·) = u0 in Ω,

u2 ∈ W 1,∞(0, T ;L2(Ω;L2(Y2)))3 ∩ L∞(0, T ;L2(Ω;H1
0 (Y2)))3, u2(0, ·, ·) = 0 in Ω× Y2,

u3 ∈ L∞(0, T ;L2(Ω;H1
] (Y1)))3,

b(y)×
(
u1(t, x) + u2(t, x, y)

)
= b(y)× u0(x) a.e. (t, x, y) ∈ QT × Y2.

(2.5)
The functions u1, u2, u3 are the unique solutions satisfying (2.5), up to a rigid displacement
y 7→ λ(t, x) for u3, to the variational problem

−
ˆ
QT×Y

(∂tu1 + ∂tu2) · (∂tϕ1 + ∂tϕ2) dtdxdy −
ˆ

Ω×Y
v0 · (ϕ1 + ϕ2)(0, x, y) dxdy

+

ˆ
QT×Y1

A1

(
ex(u1) + ey(u3)

)
:
(
ex(ϕ1) + ey(ϕ3)

)
dtdxdy +

ˆ
QT×Y2

A2ey(u2) : ey(ϕ2) dtdxdy

+

ˆ
QT×Y1

(b× ∂tu1) · ϕ3 dtdxdy −
ˆ
QT×Y1

(b× u3) · ∂tϕ1 dtdxdy

=

ˆ
QT×Y

f · (ϕ1 + ϕ2) dtdxdy,

(2.6)
for any functions ϕ1, ϕ2, ϕ3 satisfying

ϕ1 ∈ W 1,1(0, T ;L2(Ω))3 ∩ L1(0, T ;H1
0 (Ω))3, ϕ1(T, ·) = 0 in Ω,

ϕ2 ∈ W 1,1(0, T ;L2(Ω× Y2))3 ∩ L1(0, T ;L2(Ω;H1
0 (Y2)))3, ϕ2(T, ·, ·) = 0 in Ω× Y2,

ϕ3 ∈ L1(0, T ;L2(Ω;H1
] (Y1)))3,

b(y)×
(
ϕ1(t, x) + ϕ2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2.

(2.7)

The next result provides a limit equation for the function u1 which represents the macro-
scopic displacement in the hard material 1.

Theorem 2.2. Assume that condition (2.3) holds and that

b 6= 0 a.e. in Y2, b ∈ H1(Y2)3 and
b⊗ b
|b|2

∈ H1(Y2)3×3. (2.8)

Then, we have the following alternative:

• If
dim

(
Span

{
b(y) : y ∈ ∂Y2}

)
≥ 2, (2.9)
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then
u1(t, x) = u0(x) a.e. (t, x) ∈ QT , (2.10)

and there exists a matrix-valued kernel K̄ : (0, T )×Y2 → R3×3 given by (3.22) below, with{
K̄(t, y)(R3) ⊂ R b(y) a.e. (t, y) ∈ (0, T )× Y2,

K̄ ∈ L∞(0, T ;H1
0 (Y2))3×3 ∩W 1,∞(0, T ;L2(Y2))3×3 ∩W 2,∞(0, T ;H−1(Y2))3×3,

(2.11)

such that

u2(t, x, y) = K̄(t, y) v0(x) +

ˆ t

0

K̄(t− s, y) f(s, x) ds a.e. (t, x, y) ∈ QT × Y2. (2.12)

• If b|∂Y2 has a fixed direction ξ with |ξ| = 1, then we have

u1(t, x)− u0(x) = α(t, x) ξ a.e. (t, x) ∈ QT , (2.13)

u2(t, x, y) = K̄(t, y) v0(x) +

ˆ t

0

K̄(t− s, y) f(s, x) ds−
ˆ t

0

∂tK̄(t− s, y) ∂sα(s, x)ξ ds,

−
(
I − b(y)⊗ b(y)

|b(y)|2

)
α(t, x) ξ a.e. (t, x, y) ∈ QT × Y2,

(2.14)
and the function α is the unique solution in W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H1

0 (Ω)) to the
problem

∂tt

[
M∗α−

ˆ t

0

K̄1(t− s) ∂sα(s, x) ds

]
+ λ∗ · ∇x(∂tα)− divx(A

∗
1∇xα)

+ c∗α−
ˆ t

0

(ˆ
Y2

A2(ey∂tK̄(t− s, y) ξ) : ey(b̂) dy

)
∂sα(s, x) ds = µ∗ · f + F in QT

α(0, ·) = 0 in Ω,
(2.15)

where

b̂(y) :=
b(y)⊗ b(y)

|b(y)|2
ξ, for y ∈ Y2, (2.16)

K̄1(t) :=

ˆ
Y2

∂tK̄(t, y) : (ξ � ξ) dy, for t ∈ (0, T ), (2.17)

F is the memory force term acting on the initial displacement u0, the initial velocity v0

and the original force f given by

F (t, x) := − ∂tt
[ˆ

Y2

K̄(t, y) :
(
ξ ⊗ v0(x)

)
dy

]
−
ˆ
Y2

A2ey
(
K̄(t, y) v0(x)

)
: ey(b̂) dy

− ∂tt
[ˆ

Y2

(ˆ t

0

K̄(t− s, y) f(s, x) ds

)
· ξ dy

]
−
ˆ
Y2

A2ey

(ˆ t

0

K̄(t− s, y) f(s, x) ds

)
: ey(b̂) dy + divx

(
A∗1e(u0)ξ

)
,

(2.18)
and M∗, c∗ > 0, λ∗, µ∗ ∈ R3, A∗1 ∈ L (R3×3

s ) which is elliptic, A∗1 ∈ R3×3
s which is positive

definite, are the homogenized quantities defined by (3.31) and (3.32) below.
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Theorem 2.1 and Theorem 2.2 are proved in Section 3.
As a consequence of Theorem 2.1 and Theorem 2.2 we get the weak limits of the displacement

uε in each material.

Corollary 2.3.

• If (2.9) is satisfied, we have
χΩε,1uε ⇀ |Y1|u0(x) L2(QT )3

χΩε,2uε ⇀ |Y2|u0(x) +

ˆ
Y2

u2(t, x, y) dy L2(QT )3,
(2.19)

where u2 is given by (2.12).

• Otherwise, we have
χΩε,1uε ⇀ |Y1|

(
u0(x) + α(t, x) ξ

)
L2(QT )3

χΩε,2uε ⇀ |Y2|
(
u0(x) + α(t, x) ξ

)
+

ˆ
Y2

u2(t, x, y) dy L2(QT )3,
(2.20)

where α is the solution to problem (2.15) and u2 is given by (2.14).

Remark 2.4. The strong magnetic field b induces an effective mass which is:

• Infinite when b has at least two directions at the interface between the two materials.
In this case the macroscopic displacement u1 in material 1 remains equal to the initial
displacement u0.

• Infinite in the vector space ξ⊥ when b has a fixed direction ξ at the interface between the two
materials. In this case, the macroscopic displacement u1 is solution to the homogenized
equation (2.15) in the direction ξ involving, through the kernel K̄, a memory mass, a
memory stress tensor, and memory external forces depending both on the initial velocity
v0 and the original force f .

On the one hand, in the absence of magnetic field and for a fixed frequency Ávila et al. [3]
showed the possible appearance of a negative mass related to phononic band gaps due to similar
soft inclusions in the elastic matrix. On the other hand, in the absence of soft inclusions
the authors [5] showed the increase of mass due to the magnetic field. Here, the simultaneous
presence of a strong magnetic field and soft inclusions leads us to an elastodynamics equation in
the direction of the magnetic field involving various memory effects. In the Example 2.7 below
we study a simpler case where the limit equation reads as a kind of viscoelasticity equation in
the direction of the magnetic field.

Remark 2.5. When b has a fixed direction ξ at the interface between the two materials, by
(2.11) and (2.17) the kernel K̄1 is in L∞(0, T )3×3. If moreover K̄1 belongs to W 1,1(0, T )3×3,
then integrating by parts we get that

ˆ t

0

K̄1(t− s) ∂sα(s, x) ds = K̄1(0)α(t, x) +

ˆ t

0

∂tK̄1(t− s)α(s, x) ds.

Therefore, the entry in square brackets of (2.15)

(M∗ − K̄1(0))α(t, x)−
ˆ t

0

∂tK̄1(t− s)α(s, x) ds (2.21)

8



can be regarded as a product mass × displacement in the direction ξ, where the effective mass is
the difference of the isotropic constant mass M∗ − K̄1(0) and the memory mass induced by the
kernel ∂tK̄1. If we only consider the constant mass in (2.21), then the formula (3.32) for M∗

yields

M∗ − K̄1(0) = |Y1|+m∗ +

ˆ
Y2

|b̂|2dy − K̄1(0).

On the other hand, using the expression (2.17) for K̄1, computing the derivative of the series
expansion (3.22) of K̄ and taking into account the definition (3.20) of hj and h̄j, we get

K̄1(0) =
∞∑
i=1

ˆ
Y2

(
hi(y)⊗ h̄i

)
:
(
ξ ⊗ ξ

)
dy

=
∞∑
i=1

∣∣∣∣ˆ
Y2

hi · ξ dy
∣∣∣∣2 =

∞∑
i=1

∣∣∣∣ˆ
Y2

hi · b̂ dy
∣∣∣∣2 =

ˆ
Y2

|b̂|2dy.

Thus, we have
M∗ − K̄1(0) = |Y1|+m∗,

where by (3.31) m∗ ≥ 0. Actually, we may have m∗ = 0 (see Example 2.7 below) so that

0 < M∗ − K̄1(0) = |Y1| < 1 = the initial mass in equation (2.2). (2.22)

In this case we obtain an apparent decrease of the effective mass contrary to the increase of
mass in [5] in the absence of soft inclusions. However, the presence of soft inclusions in [3] may
induce an arbitrary (possibly negative) mass in some regime but at a fixed frequency. Therefore,
a definition of the effective mass in the limit equation (2.15) seems delicate to specify due to the
memory term in (2.21). In the particular situation of Example 2.7 below we will give another
interpretation of this memory term.

The following result gives a particular case where Remark 2.5 applies.

Proposition 2.6. Assume that the vector-valued tensor A2 is constant in Y2, the vector-valued
function b has a constant direction ξ in Y2, i.e. b̂ = ξ in Y2, and Y2 has a C2 boundary. Then,
the kernel K̄1 is in W 1,∞(0, T ).

The proof of Proposition 2.6 is given in Section 3.

Example 2.7. Consider a particular case where there exists a unit vector ξ ∈ R3 and a scalar
function γ ∈ H1

] (Y ) such that

b(y) = γ(y) ξ a.e. y ∈ Y,
ˆ
Y1

γ(y) dy = 0, γ(y) 6= 0 a.e. y ∈ Y2.

From formulas (3.26), (3.31) and (3.32) below we can deduce that

M∗ = 1, c∗ = 0, λ∗ = 0, µ∗ = ξ. (2.23)

Then, by the two-scale convergence (2.4) combined with (2.13) and (2.14) the weak limit ū of
uε in L2(QT )3 is given by

ū(t, x) = u0(x) +

(
α(t, x)−

ˆ t

0

K̄1(t− s) ∂sα(s, x) ds

)
ξ

+ ¯̄K(t) v0(x) +

ˆ t

0

¯̄K(t− s) f(s, x) ds

a.e. (t, x) ∈ QT , (2.24)
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where
¯̄K(t) :=

ˆ
Y2

K̄(t, y) dy for t ∈ (0, T ).

Then, equation (2.15) reduces to{
∂tt(ū · ξ)− divx(A

∗
1∇xα) = f · ξ + divx

(
A∗1ex(u

0)ξ
)

in QT

ū(0, x) · ξ = u0(x) · ξ in Ω,
(2.25)

Moreover, under the assumptions of Proposition 2.6 we have by (2.22) and (2.23)

K̄1(0) = |Y2|.

where by (2.24) the function α satisfies the Volterra equation

α(t, x)−
ˆ t

0

K̄1(t− s) ∂sα(s, x) ds

= (ū · ξ)(t, x)−
(
u0(x) + ¯̄K(t) v0(x) +

ˆ t

0

¯̄K(t− s) f(s, x) ds

)
· ξ.

By virtue of [15, Theorem 16, Chap. 3] there exists a distribution L ∈ D ′(0,∞) such that the
solution α to the above Volterra equation can be expressed with the kernel L as

α(t, x) =

ˆ t

0

L(t− s) (ū · ξ)(s, x) ds

−
ˆ t

0

L(t− s)
(
u0(x) + ¯̄K(s) v0(x) +

ˆ s

0

¯̄K(s− r) f(r, x) dr

)
· ξ ds.

Therefore, noting that the former relation reads as (1.2), equation (2.25) leads us to equa-
tion (1.3) together with the stress law (1.4) which can be regarded as a kind of viscoelasticity
equation satisfied by the limit displacement ū · ξ in the direction of the magnetic field with a
memory term depending on the initial conditions u0, v0 and the force f .

3 Proof of the results

3.1 Proof of Theorem 2.1

Let us start showing some a priori estimate satisfied by the solution uε to equation (2.2). For
this purpose, we firstly assume that for some fixed ε > 0, the functions f , u0 and v0 satisfy the
following regularity conditions:

f ∈ W 1,∞(0, T ;L2(Ω))3, v0 ∈ H1
0 (Ω)3, −Div

(
Aε

(x
ε

)
e(u0)

)
+

1

ε
b
(x
ε

)
×v0 ∈ L2(Ω)3. (3.1)

Then, the solution uε to (2.2) belongs to W 2,∞(0, T ;L2(Ω))3 ∩W 1,∞(0, T ;H1
0 (Ω))3, and ∂tuε is

the unique solution in W 1,∞(0, T ;L2(Ω))3 ∩ L∞(0, T ;H1
0 (Ω))3 to equation

∂2
tt

(
∂tuε

)
−Div

(
Aε

(x
ε

)
e
(
∂tuε

))
+

1

ε
b
(x
ε

)
× ∂t(∂tuε) = ∂tf in QT

∂tuε = 0 on (0, T )× ∂Ω

∂tuε(0, ·) = v0, ∂t
(
∂tuε

)
(0, ·) = Div

(
Aε

(x
ε

)
e(u0)

)
− 1

ε
b
(x
ε

)
× v0 + f(0, ·) in Ω.

10



This allows us to take ∂tuε as test function in (2.2). Hence, integrating on (0, t) × Ω for each
t ∈ [0, T ], we deduce the estimate

‖uε‖W 1,∞(0,T ;L2(Ω))3 + ‖e(uε)‖L∞(0,T ;L2(Ωε,1))3×3 + ε ‖e(uε)‖L∞(0,T ;L2(Ωε,2))3×3

≤ C
(
‖f‖L2(QT )3 + ‖u0‖H1

0 (Ω)3 + ‖v0‖L2(Ω)3

)
,

(3.2)

where C is a positive constant only depending on T , A1, A2. Now, for functions f ∈ L2(QT )3,
u0 ∈ H1

0 (Ω)3 and v0 ∈ L2(Ω)3, consider a sequence (fn)n∈N in W 1,∞(0, T ;L2(Ω))3 converging
strongly to f in L2(QT )3, a sequence (v0

n)n∈N in H1
0 (Ω)3 converging strongly to v0 in L2(Ω)3

and a sequence (gn)n∈N in L2(Ω)3 with

gn → −Div
(
Aε

(x
ε

)
e(u0)

)
+

1

ε
b
(x
ε

)
× v0 strongly in H−1(Ω)3.

Then, defining u0
n for n ∈ N, as the unique solution in H1

0 (Ω)3 to the elasticity equation −Div
(
Aε

(x
ε

)
e(u0

n)
)

+
1

ε
b
(x
ε

)
× v0

n = gn in Ω

u0
n = 0 on ∂Ω,

the functions fn, u0
n and v0

n satisfy conditions (3.1). Also note that for a fixed ε > 0, the
sequence (u0

n)n∈N converges strongly in H1
0 (Ω)3 to u0. Hence, estimate (3.2) holds true for

the solution uε,n to the equation (2.2) with data fn, u0
n and v0

n. Finally, passing to the limit
as n → ∞ in this estimate, we get that estimate (3.2) is still valid for data f ∈ L2(QT )3,
u0 ∈ H1

0 (Ω)3 and v0 ∈ L2(Ω)3.

Thanks to estimate (3.2) the two-scale convergence theory of Nguetseng-Allaire [4, 13] pro-
vides the existence of functions u ∈ W 1,∞(0, T ;L2(Ω;L2

] (Y )))3 ∩ L∞(0, T ;L2(Ω;H1
] (Y )))3 and

u3 ∈ L∞(0, T ;L2(Ω;H1
] (Y )))3 such that u = u(t, x, y) is independent of y in Y1. Then, defin-

ing u1(t, x) := χY1(y)u(t, x, y) for a.e. (t, x, y) ∈ (0, T ) × Ω × Y1, the function u1 belongs to
L∞(0, T ;H1

0 (Ω))3 and

uε
2s
⇀ u, ∂tuε

2s
⇀ ∂tu χΩε,1e(uε)

2s
⇀ χY1

(
ex(u1) + ey(u3)

)
, χΩε,2ε e(uε)

2s
⇀ ey(u).

Taking u2 = u − u1, the functions u1, u2, u3 satisfy the three first conditions of (2.5) and
condition (2.4).

Let us use (2.4) to pass to the limit in (2.2). First, we obtain the initial condition for u1,
u2 at t = 0. For this purpose we take δ > 0 and ϕ ∈ C0(Ω;L2

] (Y ))3. We have

ˆ δ

0

ˆ
Ω

(
uε(s, x)− u0(x)

)
· ϕ
(
x,
x

ε

)
dxds =

ˆ δ

0

ˆ s

0

ˆ
Ω

∂tuε(r, x) · ϕ
(
x,
x

ε

)
dxdrds,

which passing to the limit in ε and using Fubini’s theorem yields

ˆ δ

0

ˆ
Ω

ˆ
Y

(u1 + u2 − u0) · ϕdydxds =

ˆ δ

0

ˆ
Ω

ˆ
Y

(δ − r)∂t(u1 + u2) · ϕdydxdr,

and thus ∣∣∣∣ ˆ δ

0

ˆ
Ω

ˆ
Y

(u1 + u2 − u0) · ϕdydxds
∣∣∣∣

≤ δ

(ˆ δ

0

ˆ
Ω

ˆ
Y

|∂t(u1 + u2)|2 dydxdt
) 1

2
(ˆ δ

0

ˆ
Ω

ˆ
Y

|ϕ|2 dydxdt
) 1

2

.
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Using that u1 +u2 belongs to C0([0, T ];L2(Ω;L2
] (Y )))3, we can divide by δ the former inequality

and take the limit as δ tends to zero, which implies that

u1(0, x) + u2(0, x, y) = u0(x) a.e. (x, y) ∈ Ω× Y.

Hence, recalling that u2 belongs to L∞(0, T ;L2(Ω;H1
0 (Y2)))3, we obtain

u1(0, x) = u0(x), u2(0, x, y) = 0 a.e. (x, y) ∈ Ω× Y. (3.3)

First, we take ε ϕ2(t, x, x/ε) with ϕ2 ∈ C1
c ([0, T );H1

0 (Y2;C1(Ω)))3 as test function in (2.2).
By virtue of [4, Remark 1.5] ϕ2 is an admissible test function for two-scale convergence. Note
that we make no regularity assumption with respect to the variable y in order to preserve the
pointwise condition (2.7) for the regularization final step. Then, passing to the limit in (2.2)
with the two-scale limits (2.4) we get that

ˆ
QT×Y2

b× (∂tu1 + ∂tu2) · ϕ2 dtdxdy = 0,

or equivalently,

b(y)×
(
∂tu1(t, x) + ∂tu2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2, (3.4)

which is the last equality in (2.5).
Now, for{
ϕ1 ∈ C1

c ([0, T )× Ω)3, ϕ2 ∈ C1
c ([0, T );H1

0 (Y2;C1(Ω)))3, ϕ3 ∈ C1
c ([0, T );H1

] (Y ;C1(Ω)))3,

with b(y)×
(
ϕ1(t, x) + ϕ2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2,

(3.5)
we put

ϕε(t, x) = ϕ1(t, x) + ϕ2

(
t, x,

x

ε

)
+ εϕ3

(
t, x,

x

ε

)
as test function in (2.2), and we pass to the limit. The main difficulty comes from the term

1

ε

ˆ
QT

(
b
(x
ε

)
× ∂tuε

)
·
(
ϕ1(t, x) + ϕ2

(
t, x,

x

ε

)
+ εϕ3

(
t, x,

x

ε

))
dtdx.

First, using (2.4) and (3.4), we have

ˆ
QT

(
b
(x
ε

)
× ∂tuε

)
· ϕ3

(
t, x,

x

ε

)
dx =

ˆ
QT×Y

(
b× (∂tu1 + ∂tu2)

)
· ϕ3 dtdxdy + oε(1)

=

ˆ
QT×Y1

(b× ∂tu1) · ϕ3 dtdxdy + oε(1).

For the remaining term, note that by virtue of Lax Milgram’s theorem combined with Korn’s
inequality, condition (2.3) implies that there exists a unique vector-valued function U i in
H1
] (Y1;R3)/R3 (i.e., up to an additive constant vector) solution to the Neumann elasticity

problem whose variational formulation is

∀V ∈ H1
] (Y1;R3)/R3,

ˆ
Y1

e(U i)(y) : e(V )(y) dy =

ˆ
Y1

(b(y)× ei) · V (y) dy,

12



where (e1, e2, e3) is the canonical basis of R3. Hence, the symmetric matrix-valued function
Gi := e(U i) ∈ L2

] (Y1;R3×3
s ) for i = 1, 2, 3, is solution to the equation{

b× ei = −Div (Gi) in Y1

Gi ν = 0 on ∂Y2.
(3.6)

Then, by (3.5) and (2.1) we can write

1

ε

ˆ
QT

(
b
(x
ε

)
× ∂tuε

)
·
(
ϕ1(t, x) + ϕ2

(
t, x,

x

ε

))
dtdx

=
1

ε

ˆ
(0,T )×Ωε,1

(
b
(x
ε

)
× ∂tϕ1

)
· uε dtdx+

1

ε

ˆ
Ωε,1

(
b
(x
ε

)
× ϕ1(0, x)

)
· u0 dx

= −
3∑
i=1

ˆ
(0,T )×Ωε,1

Divx

[
Gi
(x
ε

)]
· uε ∂tϕ1,i dtdx−

3∑
i=1

ˆ
Ωε,1

Divx

[
Gi
(x
ε

)]
· u0 ϕ1,i(0, x) dx

=
3∑
i=1

ˆ
(0,T )×Ωε,1

Gi
(x
ε

)
: e(uε) ∂tϕ1,i dtdx+

3∑
i=1

ˆ
(0,T )×Ωε,1

Gi
(x
ε

)
:
(
uε �∇x∂tϕ1,i

)
dtdx

+
3∑
i=1

ˆ
Ωε,1

Gi
(x
ε

)
: e(u0)ϕ1,i(0, x) dx+

3∑
i=1

ˆ
Ωε,1

Gi
(x
ε

)
:
(
u0 �∇xϕ1,i(0, x)

)
dx

=
3∑
i=1

(ˆ
QT×Y1

Gi :
(
ex(u1∂tϕ1,i) + ey(u3)∂tϕ1,i

)
dtdxdy +

ˆ
Ω×Y1

Gi : ex(u
0ϕ1,i) dxdy

)
+ oε(1),

which using the definition (3.6) of G, (3.3) and (2.3) yields

lim
ε→0

1

ε

ˆ
QT

(
b
(x
ε

)
× ∂tuε

)
·
(
ϕ1(t, x) + ϕ2

(
t, x,

x

ε

))
dtdx = −

ˆ
QT×Y1

(
b× u3

)
· ∂tϕ1 dtdxdy.

Then, taking into account this equality we have for any functions ϕ1, ϕ2, ϕ3 satisfying (3.5),

−
ˆ
QT×Y

(∂tu1 + ∂tu2) · (∂tϕ1 + ∂tϕ2) dtdxdy −
ˆ

Ω×Y
v0 · (ϕ1 + ϕ2)(0, x, y) dxdy

+

ˆ
QT×Y1

A1

(
ex(u1) + ey(u3)

)
:
(
ex(ϕ1) + ey(ϕ3)

)
dtdxdy +

ˆ
QT×Y2

A2ey(u2) : ey(ϕ2) dtdxdy

+

ˆ
QT×Y1

(b× ∂tu1) · ϕ3 dtdxdy −
ˆ
QT×Y1

(b× u3) · ∂tϕ1dtdxdy

=

ˆ
QT×Y

f · (ϕ1 + ϕ2) dtdxdy,

where u1, u2 satisfy (3.4).
Finally, recall that the convolution by a sequence of mollifiers in C∞c (R× R3) with respect

to the variables (t, x) of a function ϕ(t, x, y) in L1(0, T ;L2(Ω;H1
] (Y )))3 gives a sequence of

functions in C1([0, T ];H1
] (Y ;C1(Ω)))3 (also taking into account the interior cone property of Ω

combined with a partition of unity for the convolution with respect to the variable x) which
strongly converges to ϕ(t, x, y). Hence, by a density argument based on such a regularization the
previous equation which holds for regular functions satisfying (3.5) also holds for any functions
ϕ1, ϕ2, ϕ3 satisfying (2.7), which yields the desired variational problem (2.6). Note that the
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regularization with respect to the variables (t, x) applied to functions ϕ1, ϕ2, ϕ3 satisfying (2.7)
preserves the pointwise condition of (2.7) in (3.5), since this pointwise condition involves the
sole variable y through the vector field b(y).

It remains to prove the quasi-uniqueness of the solutions to problem (2.6). Due to the
linearity of (2.6) it is enough to prove that if functions z1, z2, z3 satisfying

z1 ∈ W 1,1(0, T ;L2(Ω))3 ∩ L1(0, T ;H1
0 (Ω))3, z1(0, ·) = 0 in Ω,

z2 ∈ W 1,1(0, T ;L2(Ω;L2(Y2)))3 ∩ L1(0, T ;L2(Ω;H1
0 (Y2)))3, z2(0, ·, ·) = 0 in Ω× Y2,

z3 ∈ L1(0, T ;L2(Ω;H1
] (Y1)))3,

b(y)×
(
z1(t, x) + z2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2,

(3.7)

are solutions to problem

−
ˆ
QT×Y

(∂tz1 + ∂tz2) · (∂tϕ1 + ∂tϕ2) dtdxdy

+

ˆ
QT×Y1

A1

(
ex(z1) + ey(z3)

)
:
(
ex(ϕ1) + ey(ϕ3)

)
dtdxdy +

ˆ
QT×Y2

A2ey(z2) : ey(ϕ2) dtdxdy

+

ˆ
QT×Y1

(b× ∂tz1) · ϕ3 dtdxdy −
ˆ
QT×Y1

(b× z3) · ∂tϕ1 dtdxdy = 0,

(3.8)
for any functions ϕ1, ϕ2, ϕ3 satisfying

ϕ1 ∈ W 1,∞(0, T ;L2(Ω))3 ∩ L∞(0, T ;H1
0 (Ω))3, ϕ1(T, ·) = 0 in Ω,

ϕ2 ∈ W 1,∞(0, T ;L2(Ω× Y2))3 ∩ L∞(0, T ;L2(Ω;H1
0 (Y2)))3, ϕ2(T, ·, ·) = 0 in Ω× Y2,

ϕ3 ∈ L∞(0, T ;L2(Ω;H1
] (Y1)))3,

b(y)×
(
ϕ1(t, x) + ϕ2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2,

(3.9)

then we have

z1(t, x) = z2(t, x, y) = 0 a.e. (t, x, y) ∈ QT × Y, ey(z3) = 0 a.e. (t, x, y) ∈ QT × Y1. (3.10)

Indeed, the last equality combined with the periodicity in y shows that

z3(t, x, y) = λ(t, x) a.e. (t, x, y) ∈ QT × Y1,

for some λ(t, x) ∈ R3.
To prove this we consider the following dual problem. For any g ∈ L2(QT×Y )3, let functions

ψ1, ψ2, ψ3 satisfying
ψ1 ∈ W 1,∞(0, T ;L2(Ω))3 ∩ L∞(0, T ;H1

0 (Ω))3, ψ1(T, ·) = 0,

ψ2 ∈ W 1,∞(0, T ;L2(Ω;L2(Y2)))3 ∩ L∞(0, T ;L2(Ω;H1
0 (Y2)))3, ψ2(T, ·, ·) = 0,

ψ3 ∈ L∞(0, T ;L2(Ω;H1
] (Y1)))3,

b(y)×
(
ψ1(t, x) + ψ2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2,

(3.11)
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be solutions to the dual problem to (2.6)

−
ˆ
QT×Y

(∂tψ1 + ∂tψ2) · (∂tϕ1 + ∂tϕ2) dtdxdy

+

ˆ
QT×Y1

A1

(
ex(ψ1) + ey(ψ3)

)
:
(
ex(ϕ1) + ey(ϕ3)

)
dtdxdy +

ˆ
QT×Y2

A2ey(ψ2) : ey(ϕ2) dtdxdy

+

ˆ
QT×Y1

(b× ∂tψ1) · ϕ3 dtdxdy −
ˆ
QT×Y1

(b× ψ3) · ∂tϕ1 dtdxdy

=

ˆ
QT×Y

g · (ϕ1 + ϕ2) dtdxdy,

(3.12)
for any functions ϕ1, ϕ2, ϕ3 satisfying

ϕ1 ∈ W 1,1(0, T ;L2(Ω))3 ∩ L1(0, T ;H1
0 (Ω))3, ϕ1(0, ·) = 0 in Ω,

ϕ2 ∈ W 1,1(0, T ;L2(Ω× Y2))3 ∩ L1(0, T ;L2(Ω;H1
0 (Y2)))3, ϕ2(0, ·, ·) = 0 in Ω× Y2,

ϕ3 ∈ L1(0, T ;L2(Ω;H1
] (Y1)))3,

b(y)×
(
ϕ1(t, x) + ϕ2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2.

(3.13)

Using the change of variables s = T − t, the existence of solutions ψ1, ψ2, ψ3 to problem (3.12)
follows from the existence of solutions z1, z2, z3 to problem (3.8) which is given by the two-scale
convergence.

Then, taking ψ1, ψ2, ψ3 as test functions in (3.8) and taking z1, z2, z3 as test functions in
(3.12), we get that

ˆ
QT×Y

g · (z1 + z2) dtdxdy = 0, ∀ g ∈ L2(QT × Y )3,

which implies that
z1(t, x) + z2(t, x, y) = 0 a.e. (t, x, y) ∈ QT × Y.

This combined with z2 ∈ L1(0, T ;L2(Ω;H1
0 (Y2)))3 yields the two first equalities of (3.10).

Moreover, taking ϕ1 = ϕ2 = 0 in (3.8) we get that

ˆ
QT×Y1

A1ey(z3) : ey(ϕ3) dtdxdy = 0, ∀ϕ3 ∈ L∞(0, T ;L2(Ω;H1
] (Y1)))3,

which implies the last equality of (3.10).
This concludes the proof of Theorem 2.1.

3.2 Proof of Theorem 2.2

Let us solve problem (2.6). First, we take ϕ1 = ϕ3 = 0, then we get

−
ˆ
QT×Y2

(∂tu1 + ∂tu2) · ∂tϕ2 dtdxdy −
ˆ

Ω×Y
v0 · ϕ2(0, x, y) dxdy

+

ˆ
QT×Y2

A2ey(u2) : ey(ϕ2) dtdxdy =

ˆ
QT×Y

f · ϕ2 dtdxdy,

(3.14)

where ϕ2 is such that b× ϕ2 = 0.
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Under assumption (2.8) define the spaces

H2 :=
{
ψ ∈ L2(Y2)3 : ψ × b = 0

}
, V2 := H2 ∩H1

0 (Y2)3.

Then, ϕ2 ∈ W 1,1(0, T ;L2(Ω;H2)) ∩ L1(0, T ;L2(Ω;V2)). Moreover, observe that condition (3.4)
can be written as

∂tu1 + ∂tu2 ∈ H2 a.e. (t, x) ∈ [0, T )× Ω,

which taking into account (3.3) implies that

u1 + u2 − u0 ∈ V2. (3.15)

Then, define the functions v1(t, x, y) :=
b(y)⊗ b(y)

|b|2
u1(t, x), v2(t, x, y) :=

b(y)⊗ b(y)

|b(y)|2
u2(t, x, y)

a.e. (t, x, y) ∈ QT × Y2,

(3.16)

i.e. v1 and v2 are the orthogonal projections of u1 and u2 on the direction of b, and note that
by (3.15) v2 still belongs to L∞(0, T ;L2(Ω;H1

0 (Y2)))3. This allows us to write (2.6) as

−
ˆ T

0

ˆ
Y2

(∂tv1 + ∂tv2) · ∂tϕ2 dtdy −
ˆ
Y2

v0 · ϕ2(0, y) dy

+

ˆ T

0

ˆ
Y2

A2ey(v2) : ey(ϕ2) dtdy =

ˆ T

0

ˆ
Y2

f · ϕ2 dtdy

a.e. x ∈ Ω, ∀ϕ2 ∈ W 1,1(0, T ;H2) ∩ L1(0, T ;V2).

(3.17)

Choosing ϕ2 with ϕ2(0, ·) = 0, this shows that v1, v2 satisfy

d2

dt2

ˆ
Y2

(v1 + v2) · ψ2 dy +

ˆ
Y2

A2ey(v2) : ey(ψ2) dy =

ˆ
Y2

f · ψ2 dy, ∀ψ2 ∈ V2, (3.18)

which combined with (3.17) yields the initial condition

(∂tv1 + ∂tv2)(0, x, y) =
b(y)⊗ b(y)

|b(y)|2
v0(x) a.e. (t, x, y) ∈ Ω× Y2. (3.19)

Now, let hj, j ≥ 1, be an orthonormal basis in H2 of eigenvectors in V2 associated with the
eigenvalues µ2

j of the spectral problem
hj ∈ V2, with h̄j :=

ˆ
Y2

hj dy

ˆ
Y2

A2ey(hj) : ey(ψ2) dy = µ2
j

ˆ
Y2

hj · ψ2 dy, ∀ψ2 ∈ V2.

(3.20)

Such an orthonormal basis does exist, since H2 and V2 are closed subspaces of L2(Y2)3 and
H1

0 (Y2)3 respectively and V2 is dense in H2 (recalling that by (2.8) b is a non-vanishing function
in H1(Y2)3, the subspace of V2 composed of functions α b with α ∈ C1

c (Y2), is dense in H2).
Hence, the embedding of V2 intoH2 remains compact so that the discrete spectral decomposition
of a self-adjoint compact operator applies.
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Since v2 ∈ V2, we have

v2(t, x, y) =
∞∑
j=1

φj(t, x)hj(y) a.e. (t, x, y) ∈ QT × Y2.

Putting this series in (3.18) with the test function ψ2 = hi, i ≥ 1, adding the term µ2
i v1 · h̄i in

both sides and taking into account the initial conditions (3.3) and (3.19), we get that
∂2

∂t2
(v1 · h̄i + φi) + µ2

i (v1 · h̄i + φi) = (f + µ2
i v1) · h̄i in (0, T ) a.e. x ∈ Ω

(v1 · h̄i + φi)(0, x) = u0(x) · h̄i, ∂t(v1 · h̄i + φi)(0, x) = v0(x) · h̄i.
(3.21)

which leads us to

(v1 · h̄i + φi)(t, x) =

ˆ t

0

sin(µi(t− s))
µi

(
f(s, x) + µ2

i v1(s, x)
)
· h̄i ds

+ cos(µit)u
0(x) · h̄i +

sin(µit)

µi
v0(x) · h̄i.

Integrating by parts and again using (3.3) yields

φi(t, x) =
sin(µit)

µi
h̄i · v0(x) +

ˆ t

0

sin(µi(t− s))
µi

h̄i · f(s, x) ds

−
ˆ t

0

cos(µi(t− s)) h̄i · ∂sv1(s, x) ds

Hence, by summing with respect to i we get that

v2(t, x, y) =
∞∑
i=1

sin(µit)

µi

(
hi(y)⊗ h̄i

)
v0(x) +

∞∑
i=1

ˆ t

0

sin(µi(t− s))
µi

(
hi(y)⊗ h̄i

)
f(s, x) ds

−
∞∑
i=1

ˆ t

0

cos(µi(t− s))
(
hi(y)⊗ h̄i

)
∂sv1(s, x) ds

Finally, defining the kernel

K̄(t, y) :=
∞∑
i=1

sin(µit)

µi
hi(y)⊗ h̄i, for (t, y) ∈ (0, T )× Y2, (3.22)

we obtain v2(t, x, y) = K̄(t, y) v0(x) +

ˆ t

0

K̄(t− s, y) f(s, x) ds−
ˆ t

0

∂tK̄(t− s, y) ∂su1(s, x) ds

a.e. (t, x, y) ∈ QT × Y2.
(3.23)

We have replaced in (3.23) the function v1 by the function u1 which are connected by (3.16),
since that for a.e. (t, y) ∈ (0, T ) × Y2 the range of K̄(t, y) is contained in the space spanned
by b(y). On the other hand, note that using the series expansion (3.22) and

∞∑
i=1

|h̄i|2 <∞,
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we can check that

K̄ ∈ L∞(0, T ;V2)3 ∩W 1,∞(0, T ;H2)3 ∩W 2,∞(0, T ;V ′2)3.

Moreover, since V2 ⊂ H1
0 (Y2)3 and the range of K̄ is contained in the space spanned by b, the

kernel satisfies the regularity (2.11). Formula (3.23) also gives an expression of u2, since by
(3.15) and (3.16) we have

u2 = v2 +

(
I − b⊗ b

|b|2

)
(u0 − u1) (3.24)

which gives the desired expression (2.14).
Let us now compute the function u3 in problem (2.6). We choose ϕ1 = ϕ2 = 0. We get

ˆ
QT×Y1

A1

(
ex(u1) + ey(u3)

)
: ey(ϕ3) dtdxdy +

ˆ
QT×Y1

(b× ∂tu1) · ϕ3 dtdxdy = 0.

Let wjk and ϑj, 1 ≤ j, k ≤ 3, be the vector-valued functions defined by the cell problems
wjk ∈ H1

] (Y1)3

ˆ
Y1

A1

(
Ejk + ey(wjk)

)
: ey(ψ) dy = 0, ∀ψ ∈ H1

] (Y1)3,
(3.25)

where (Ejk)1≤j,k≤3 is the canonical basis in R3×3
s ,

ϑj ∈ H1
] (Y1)3

ˆ
Y1

A1ey(ϑj) : ey(ψ) dy +

ˆ
Y1

(b× ej) · ψ dy = 0, ∀ψ ∈ H1
] (Y1)3.

(3.26)

Then, defining W(y) : R3×3 → R3 and V (y) ∈ R3×3 by

W(y)M :=
3∑

j,k=1

mjk wjk(y), V (y)η :=
3∑
j=1

ηj ϑj(y), ∀M ∈ R3×3, ∀ η ∈ R3, (3.27)

the function u3 is given by

u3(t, x, y) = W(y) ex(u1)(t, x) + V (y) ∂tu1(t, x) a.e. (t, x, y) ∈ QT × Y1. (3.28)

Case where magnetic field has one direction on the boundary of the inclusion

Assume that b|∂Y2 has a fixed direction ξ with |ξ| = 1. Then, by (2.5) and (2.8) there exists
a scalar function α ∈ W 1,∞(0, T ;L2(Ω)) × L∞(0, T ;H1

0 (Ω)) such that (2.13) holds. For any
β ∈ W 2,∞(0, T ;L2(Ω))3 ×W 1,∞(0, T ;H1

0 (Ω))3 with β(0, x) = β(T, x) = 0, we define
ϕ1(t, x) := β(t, x) ξ for (t, x, y) ∈ QT × Y

ϕ2(t, x, y) := −
(
I − b(y)⊗ b(y)

|b(y)|2

)
ϕ1(t, x) for (t, x, y) ∈ QT × Y2

ϕ2(t, x, y) := 0 for (t, x, y) ∈ QT × Y1.

(3.29)
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Taking ϕ3 = 0 in (2.6) we have

−
ˆ
QT×Y

(∂tu1 + ∂tu2) · (∂tϕ1 + ∂tϕ2) dtdxdy

+

ˆ
QT×Y1

A1

(
ex(u1) + ey(u3)

)
: ex(ϕ1) dtdxdy +

ˆ
QT×Y2

A2ey(u2) : ey(ϕ2) dtdxdy

−
ˆ
QT×Y1

(b× u3) · ∂tϕ1 dtdxdy =

ˆ
QT×Y

f · (ϕ1 + ϕ2) dtdxdy.

Since by (2.13) u1 = u0 + α ξ and by (3.15)

u1 + u2 − u0 =
b⊗ b
|b|2

(u1 + u2 − u0),

by the definitions (3.16) of v2 and (2.16) of b̂ we also have

u1(t, x) + u2(t, x, y) = u0(x) + v2(t, x, y) + α(t, x) b̂(y) a.e. (t, x, y) ∈ QT × Y2. (3.30)

Then, using the expressions (3.28) of u3 and (3.29) of ϕ1, ϕ2, and (2.17) we get that

−
ˆ
QT

(
|Y1|+

ˆ
Y2

|b̂|2 dy
)
∂tα ∂tβ dtdx+

ˆ
QT

(ˆ
Y2

v2 · b̂ dy
)
∂2
ttβ dtdx

+

ˆ
QT

A∗1ex(u
0 + α ξ) : ex(β ξ) dtdx+

ˆ
QT

∂tαV
∗

1 : ex(β ξ) dtdx

+

ˆ
QT×Y2

A2ey(α b̂+ v2) : ey(β b̂) dtdxdy

−
ˆ
QT

(
w∗ex(α ξ) +m∗ ∂tα

)
∂tβ dtdx =

ˆ
QT

f ·
(
|Y1| · ξ +

ˆ
Y2

b̂ dy

)
β dtdx,

where A∗1 ∈ L (R3×3
s ), V ∗1 ∈ R3×3

s , w∗ : R3×3 → R, m∗ are the homogenized quantities defined
by

A∗1Ejk :=

ˆ
Y1

A1

(
Ejk + ey(wjk)

)
dy, 1 ≤ j, k ≤ 3,

V ∗1 :=
3∑
j=1

ξj

ˆ
Y1

ey(ϑj) dy.

w∗Ejk := ξ ·
ˆ
Y1

b× wjk dy 1 ≤ j, k ≤ 3

m∗ := ξ ·
ˆ
Y1

b× (V ξ) dy =
3∑

j,k=1

(ˆ
Y1

A1ey(ϑj) : ey(ϑk) dy

)
ξj ξk.

(3.31)
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This can also be written as

−
ˆ
QT

(
|Y1|+

ˆ
Y2

|b̂|2 dy
)
∂tα ∂tβ dtdx+

ˆ
QT

(ˆ
Y2

v2 · b̂ dy
)
∂2
ttβ dtdx

+

ˆ
QT

A∗1(ex(u
0) +∇xα� ξ) : (∇xβ � ξ) dtdx+

ˆ
QT

∂tαV
∗

1 : (∇xβ � ξ) dtdx

+

ˆ
QT

(ˆ
Y2

A2ey(b̂) : ey(b̂) dy

)
αβ dtdx+

ˆ
QT

(ˆ
Y2

A2ey(v2) : ey(b̂) dy

)
β dtdx

−
ˆ
QT

(
w∗(∇xα� ξ) +m∗ ∂tα

)
∂tβ dtdx =

ˆ
QT

f ·
(
|Y1| ξ +

ˆ
Y2

b̂ dy

)
β dtdx.

Defining 

M∗ := |Y1|+m∗ +

ˆ
Y2

|b̂|2 dy

c∗ :=

ˆ
Y2

A2ey(b̂) : ey(b̂) dy

λ∗ · ζ := w∗(ξ � ζ)− V ∗1 ξ · ζ, for ζ ∈ R3

µ∗ := |Y1| ξ +

ˆ
Y2

b̂ dy

A∗1ζ := A∗1(ζ � ξ) ξ, for ζ ∈ R3,

(3.32)

and using the representation (3.23) of v2 the previous variational formulation leads us to the
following distributional equation

∂tt(M
∗α)− ∂tt

[ˆ t

0

(ˆ
Y2

∂tK̄(t− s, y) : (b̂(y)� ξ) dy
)
∂sα(s, x) ds

]
+λ∗ · ∇x(∂tα)− divx

(
A∗1∇xα

)
+ c∗α−

ˆ
Y2

A2ey

(ˆ t

0

∂sα(s, x) ∂tK̄(t− s, y) ξ ds

)
: ey(b̂) dy

= − ∂tt
[ˆ

Y2

K̄(t, y) :
(
b̂(y)⊗ v0(x)

)
dy

]
−
ˆ
Y2

A2ey
(
K̄(t, y) v0(x)

)
: ey(b̂) dy

+µ∗ · f − ∂tt
[ˆ t

0

(ˆ
Y2

K̄(t− s, y) f(s, x) dy

)
· b̂(y) ds

]
−
ˆ
Y2

A2ey

(ˆ t

0

K̄(t− s, y)f(s, x) ds

)
: ey(b̂) dy + divx

(
A∗1ex(u

0)ξ
)
,

which by the definition (2.11) of the kernel K̄ also can be written as

∂tt

[
M∗α−

ˆ t

0

(ˆ
Y2

∂tK̄(t− s, y) : (ξ � ξ) dy
)
∂sα(s, x) ds

]
+λ∗ · ∇x(∂tα)− divx

(
A∗1∇xα

)
+ c∗α−

ˆ
Y2

A2ey

(ˆ t

0

∂sα(s, x) ∂tK̄(t− s, y) ξ ds

)
: ey(b̂) dy

= − ∂tt
[ˆ

Y2

K̄(t, y) :
(
ξ ⊗ v0(x)

)
dy

]
−
ˆ
Y2

A2ey
(
K̄(t, y) v0(x)

)
: ey(b̂) dy + µ∗ · f

− ∂tt
[ˆ

Y2

(ˆ t

0

K̄(t− s, y) f(s, x) ds

)
· ξ dy

]
−
ˆ
Y2

A2ey

(ˆ t

0

K̄(t− s, y) f(s, x) ds

)
: ey(b̂) dy

+ divx
(
A∗1ex(u

0)ξ
)
.
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This provides the homogenized equation (2.15) satisfied by u1(t, x) = u0(x) + α(t, x) ξ.

Case where magnetic field has two directions on the boundary of the inclusion

Finally, assume that b|∂Y2 has at least two independent directions. Due to the regularity of b
equality (3.4) yields

b(y)× ∂tu1(t, x) = 0 a.e. (t, x, y) ∈ QT × ∂Y2,

which clearly implies (2.10). Moreover, the proof of formula (2.12) is quite similar to the proof
of (2.14) in the previous case.

It remains to prove the uniqueness of the solution α to equation (2.15). To this end, consider
a solution ω ∈ W 1,∞(0, T ;L2(Ω))∩L∞(0, T ;H1

0 (Ω)) of equation (2.15) with nul right-hand side,
i.e. 

∂tt

[
M∗ω −

ˆ t

0

K̄1(t− s) ∂sω(s, x) ds

]
+ λ∗ · ∇x(∂tω)− divx(A

∗
1∇xω)

+ c∗ω −
ˆ
Y2

A2ey

(ˆ t

0

∂sω(s, x) ∂tK̄(t− s, y) ξ ds

)
: ey(b̂) dy = 0 in QT

ω(0, ·) = 0 in Ω.

Then, going back up the former calculations, the functions z1, z2, z3 given respectively from
the definitions (2.13), (2.14), (3.28) of u1, u2, u3, by

z1(t, x) = ω(t, x) ξ,

z2(t, x, y) = −
ˆ t

0

∂tK̄(t− s, y) ∂sz1(s, x) ds−
(
I − b(y)⊗ b(y)

|b(y)|2

)
ω(t, x) ξ,

z3(t, x, y) = W(y) ex(z1)(t, x) + V (y) ∂tz1(t, x),

a.e. (t, x, y) ∈ QT × Y2,

are solutions to the homogeneous variational problem (3.8) whose solutions are given by (3.10).
Hence, we obtain that ω(t, x) = 0 a.e. (t, x) ∈ QT .

The proof of Theorem 2.2 is now complete.

3.3 Proof of Proposition 2.6

By (3.20) and the series expansion (3.22) of K̄, the scalar function k̄ := K̄ : (ξ ⊗ ξ) is solution
to the equation 

∂2
ttk̄ − div (A2∇k̄) = 0 in (0, T )× Y2

k̄(t, ·) = 0 on (0, T )× ∂Y2

k̄(0, ·) = 0, ∂tk̄(0, ·) = 1 in Y2,

(3.33)

where A2 is the positive definite symmetric matrix of R3×3 defined by

A2ζ := A2(ζ � ξ) ξ, for ζ ∈ R3.

By a regularization procedure we may put identical unity as test function in the equation (3.33),
which after an integration by parts leads us to the formula

∂2
tt

(ˆ
Y2

k̄(t, y) dy

)
=

ˆ
∂Y2

A2∇k̄ · n dσ(y).

21



Then, using the estimate of [10, Theorem 4.1]:

A2∇k̄ · n ∈ L∞(0, T ;L2(∂Y2)),

we get that

∂2
tt

(ˆ
Y2

k̄(t, y) dy

)
∈ L∞(0, T ).

This combined with definition (2.17) implies that

K̄1(t) =

ˆ
Y2

∂tk̄(t, y) dy ∈ W 1,∞(0, T ). (3.34)

�
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enization and correctors for the wave equation with periodic coefficients”, Math. Mod.
Meth. Appl. Sci., 24 (2014), 1343-1388.

[7] F. Colombini & S. Spagnolo: “On the convergence of solutions of hyperbolic equa-
tions”, Comm. Partial Differential Equations, 3 (1) (1978), 77-103.

[8] G.A. Francfort & F. Murat: “Oscillations and energy densities in the wave equa-
tion”, Comm. Partial Differential Equations, 17 (1992), 1785-1865.

[9] I.V. Kamotski & V.P. Smyshlyaev: “Two-scale homogenization for a general class
of high contrast PDE systems with periodic coefficients”, Applicable Analysis, 98 (2019),
64-90.

22
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[17] L. Tartar: “Homogénéisation en hydrodynamique”, in Singular Perturbation and Bound-
ary Layer Theory, Lecture Notes in Mathematics, 597, Springer, Berlin-Heidelberg 1977,
474-481.

[18] V.V. Zhikov & S.E. Pastukhova: “On gaps in the spectrum of the operator of elas-
ticity theory on a high contrast periodic structure”, J. Math. Sci. (N.Y.), 188 (3) (2013),
227-240.

23


