Pooled steganalysis in JPEG: how to deal with the spreading strategy?

Ahmad ZAKARIA1,2, Marc CHAUMONT1,4, Gérard SUBSOL1,3
LIRMM1, Univ Montpellier2, CNRS3, Univ Nîmes4, Montpellier, France

December 11, 2019

WIFS’2019, IEEE International Workshop on Information Forensics and Security,
December 9-12, 2019, Delft, The Netherlands.
Outline

Introduction

Pooled steganalysis architecture

Experimental protocol

Results

Conclusions and perspectives
Steganography / Steganalysis

Pooled steganalysis in JPEG: how to deal with the spreading strategy?

Introduction
Batch steganography / Pooled steganalysis

Alice:

- spreads a message \(m \in \{0, 1\}^{|m|} \),
- in multiple covers,
- using a strategy \(s \in S \).

A. D. Ker, “Batch steganography and pooled steganalysis,” in IH’06
Examples of possible spreading strategies

The 6 evaluated spreading strategies in this paper, \(S = \{ \text{IMS}, \text{DeLS}, \text{DiLS}, \text{Greedy}, \text{Linear}, \text{and Uses} - \beta \} \)
Pooled steganalysis: how to deal with the spreading strategy?

Many possibilities for Alice to spread the message;
What about Eve, the steganalyst?
Many possibilities for Alice to spread the message; What about Eve, the steganalyst?

Recent approaches opt for **pooling** individual scores (more general)
Many possibilities for Alice to spread the message; What about Eve, the steganalyst?

Recent approaches opt for pooling individual scores (more general)
Let us denote, \(f \), a **Single Image Detector (SID)**;
For example a payload predictor (quantitative steganalysis):

\[
f : \mathbb{R}^{r \times c} \rightarrow \mathbb{R}^+
\]
Pooled steganalysis: how to deal with the spreading strategy?

Many possibilities for Alice to spread the message; What about Eve, the steganalyst?

Recent approaches opt for **pooling** individual scores.
Recent studies

- [1] Hypothesis: Eve *does not know* the spreading strategy
 ⇒ best pooling strategy = *averaging* the individual scores

- [2] Hypothesis: Eve *does know* the spreading strategy
 ⇒ knowledge of the strategy = improves steganalysis results.

- [3] Hypothesis: Eve *does know* the spreading strategy
 ⇒ knowledge of the strategy = improves steganalysis results.

The addressed question

Hypothesis: *Eve does not know* the spreading strategy.

Can Eve “do better” than averaging the individual scores?
Outline

Introduction

Pooled steganalysis architecture

Experimental protocol

Results

Conclusions and perspectives
Given a vector of SID scores $z = \{f(x_1), ..., f(x_b)\}$:

$$h = \left[\frac{1}{b} \sum_{f(x_i) \in z} k(f(x_i), c_1), ..., \frac{1}{b} \sum_{f(x_i) \in z} k(f(x_i), c_p) \right],$$

with $\{c_i\}_{i=1}^p$ a set of equally spaced real positive values, and $k(x, y) = \exp(-\gamma \|x - y\|^2)$.
T. Pevny and I. Nikolaev general architecture

- Histogram → can treat a bag of any dimension,
- Histogram → invariant to the sequential order in the bag.
The Single Image Detector (SID)

- Note: Alice embeds using J-UNIWARD (512×512 BossBase1.01 QF=75).
- Quantitative steganalysis in JPEG [1].
- GFR cleaned and normalized:
 - Gabor Features Residuals (GFR) of dimension 17 000 [2],
 - Clean cleaned from NaN values and from constant values → reduced to 16 750,
 - Normalize using random conditioning [3].

Learning: 5 000 covers + 5 000 stego per payload size (\{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1\} bpc).

- Note: M. Chen, M. Boroumand, and J. J. Fridrich, “Deep learning regressors for quantitative steganalysis,” in EI’2018 MWSF, is more efficient.
Outline

Introduction

Pooled steganalysis architecture

Experimental protocol

Results

Conclusions and perspectives
Alice: Batch spreading strategies

1. **Greedy strategy**: spreading into as few covers as possible.
2. **Linear strategy**: spreading evenly.
3. **Uses-β strategy**: spreading evenly across a fraction of covers.
4. **IMS strategy**: spreading in an unique artificial image.
5. **DeLS strategy**: spreading at the same deflection coefficient (MiPod model).
6. **DiLS strategy**: spreading at the same distortion.
Eve: Pooling strategies

- g_{clair}: Eve (clairvoyant) knows the spreading strategy. SVM learned on the known strategy $s \in S$.
- g_{disc}: Eve (discriminative) does not know the spreading strategy. SVM learned on all the strategies S.
- g_{max}: Maximum function AND τ_{max} by minimizing P_e over S.
- g_{mean}: Average function AND τ_{min} by minimizing P_e over S.
Bags for the learning and for the test

g_{clair} (clairvoyant) learning:
- Choose **one** bag size $b \in B = \{2, 4, 6, 10, 20, 50, 100, 200\}$,
- Choose **one** spreading strategies $s \in S$,
- Generate 5 000 cover bags and 5 000 stego bags (0.1 bptc).

g_{clair} testing:
- Choose **the same** bag size b,
- Choose **the same** spreading strategies s,
- Generate 5 000 cover bags and 5 000 stego bags (0.1 bptc).
Bags for the learning and for the test

\(g_{\text{disc}} \) (discriminative), \(g_{\text{max}} \), and \(g_{\text{mean}} \) learning:

- Choose **one** bag size \(b \in B = \{2, 4, 6, 10, 20, 50, 100, 200\} \),
- Choose **all** the spreading strategies from \(S \),
- Generate 5 000 cover bags and 5 000 stego bags. **833 bags per strategy** (0.1 bptc).

\(g_{\text{disc}} \) (discriminative), \(g_{\text{max}} \), and \(g_{\text{mean}} \) testing:

- Choose **the same** bag size \(b \),
- Choose **one** spreading strategies \(s \in S \) (**unknown from Eve**),
- Generate 5 000 cover bags and 5 000 stego bags (0.1 bptc).
Outline

Introduction

Pooled steganalysis architecture

Experimental protocol

Results

Conclusions and perspectives
Alice: Spreading strategies comparison (Eve clairvoyant)

Figure: Spreading strategies comparison in the clairvoyant case (10 runs).
Eve: Pooling function comparisons

Figure: Pooled steganalysis comparison (10 runs).
Outline

Introduction

Pooled steganalysis architecture

Experimental protocol

Results

Conclusions and perspectives
Conclusions

Up-to-date algorithms:

▶ modern embedding (J-Uniward),
▶ 6 spreading strategies (3 moderns),
▶ modern (generic) pooling architecture.

→ Coherent results with past papers.

The take away messages:

▶ For Alice: DeLS is a really interesting spreading strategy.
▶ For Eve: g_{disc} pooling can improve the detectability if Eve does not know the spreading strategy.
To be continued...

Future:

- DeLS with a DCT model,
- Robustness to the bag size variation (learn only once with various size),
- Robustness to the mismatch in the spreading strategy (uses a different strategy in the test; Examples in [1]),
- Minimize the Pe (for g_{disc}) differently for each strategy,
- Use something more powerful than an SVM,
- Extend to deep learning,
- Go toward a simulation of a game (GAN philosophy),