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Abstract - This paper presents a coordination mechanism for smart homes in com-

munity microgrids (smart neighborhoods) whether photovoltaics (PV), home bat-

tery storage and electric vehicles (EV) are available. The objective of the proposed

method is to reduce the electricity cost of the users, as well as the aggregated peak

load of the area by establishing an energy sharing ability among neighbors. A

decentralized control algorithm deployed by the smart homes is used for battery

control and appliance scheduling. It is assumed that the users are the owners of

these resources and that they are selfish decision-makers who focus on increasing

own benefit. For the neighborhood, a dynamic price model is used, where the price

is associated to the aggregated consumption of the neighborhood area. Numerical

results show that proposed coordination mechanism with energy sharing provides

benefits for both the users and the utility.

Keyword - Energy management, smart homes, neighborhood coordination, multi-

agent systems, electric vehicles.

1 INTRODUCTION

By enabling bi-directional data flow in the power sys-

tem through advanced metering infrastructure (AMI),

the smart grid enables using complex control method-

ologies for more efficient, economical and reliable sys-

tem management [1]. The smart grid offers all users

the ability to participate activity, including for the resi-

dential sector. In this respect, classical houses become

smart homes, so customers can modify their electricity

consumption patterns to increase their social benefit —

mostly to reduce their electricity bills— through mon-

itoring, communication and control capabilities. These

features present an opportunity to customers to value

their participation in a local electricity market, in inter-

action with the utility, and for the benefit of both sides

[2]. For instance, while users can reduce their electric-

ity bills by coordinating their actions, as will be shown

in this paper, the utility can also decrease the aggregated

peak load for secure and economic management of the

power system.

In order to control distributed resources in the power

grid, detailed data must be gathered from all parts

of the power network. However, processing such

large amounts of data will cause a heavy communi-

cation and computation burden for the operator [3].

Especially, the rapid penetration of renewable energy

sources (RES) and electrical vehicles (EV) due to en-

vironmental awareness creates a more complex infras-

tructure that needs to be controlled adequately. More-

over, customers would not be pleased with sharing de-

tailed information about their consumption habits and

fully releasing the control of their electricity resources

to another entity. Therefore, a decentralized approach

where customers are the controllers of their own re-

sources proposes a more practical, secure and privacy-

protecting solution.

However, uncoordinated control can paradoxically re-

duce the performance of the algorithms by causing un-

desired issues (such as: rebound peaks, overloading,

contingencies) [4]Therefore, establishing a coordina-

tion mechanism among smart homes where the action

of a user influences the decision-making of other users

is necessary for achieving efficient and reliable energy

management. Various studies focus on decentralized

coordination among multiple smart homes. For exam-

ple, in [5], an energy management algorithm is pre-

sented for an area with a load-serving-entity and multi-

ple households with RES, storage, and controllable and

non-controllable loads, in order to reduce the electricity

cost of the area. In [6], a scheduling game is presented

for consumption to reduce the electricity cost and peak-

to-average ratio (PAR) of the residential area. In [7],

another game-theoretic approach is used to reduce the

PAR of the area using appliance and EVs scheduling.

In this paper, a coordination mechanism for energy

sharing among smart homes is therefore presented for

the day-ahead energy management in neighborhood ar-

eas. It uses multi-agent systems (MAS), where are a

suitable concept for decentralized management and en-

able dynamic interactions among entities. It is assumed
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that only users own PV and battery systems (not the

utility) and they can share their residual generation as

soon as it is generated (without battery) or at a later

time (with battery). Furthermore, EVs are considered to

provide energy for self-consumption of the smart home

without sharing with neighbors. Both of the battery sys-

tems (home and vehicle) have the same charging princi-

ple where they can charge from self-generation and/or

the main grid. For coordinated control, two types of

entities are designed as home agents and aggregator

agent. Lastly, in this study, dynamic price model is

used for billing users, where the unit price is associated

to the energy drawn from the main grid for the aggre-

gated consumption of the neighborhood area. Note that

grid constraints (e.g., line and transformer capacities)

are not taken into account in this study.

The remainder of this paper is organized as follows. In

Section 2, the system model and dynamic pricing mech-

anism are described. In Section 3, the problem formu-

lation is presented. In Section 4, the proposed coordi-

nation mechanism is described. Simulation results are

given in Section 5. Finally, in Section 6, the paper is

concluded.

2 SYSTEM MODEL

The studied neighborhood model consists of U users,

and each user u is connected to an aggregator through

a communication link. Smart homes are connected di-

rectly to the main grid where the aggregator has no au-

thority to control the power system, but acts as an advi-

sor in the neighborhood to help decision-making in the

smart homes. Lastly, smart homes have two-way com-

munication ability only with the aggregator, not with

each other, due to privacy concerns of the end-user.

2.1 SMART HOME ENERGY SYSTEM MODELING

In the considered smart home model, all appliances

are connected to a controller (the home agent) through

smart plugs where the home agent can sense and con-

trol the home appliances. However, based on user

preferences and controllability, home appliances are di-

vided into three groups: non-controllable, controllable–

shiftable, and controllable–interruptible appliances.

Non-controllable appliances must be used whenever

they are turned on, and are not controlled by the home

agent. On the other hand, the consumption profile of

the controllable appliances can be altered based on the

user-defined and appliance operation constraints.

In the smart homes, in total, 14 types of smart ap-

pliances are modeled, where 10 are non-controllable

(TV, lights, etc.), 3 are controllable-shiftable (wash-

ing machine, clothes dryer, dish washer) and one is

controllable-interruptible (EV). The set of appliances is

defined as Lu = {1, 2, l, ...,Lu} where Lu is the total

appliance number of home u, which can be different at

each home. For example, while some users have one

TV, others can have more than one. During the sim-

ulation time set T = {1, 2, t, ..., T }, the consumption

profile of a smart home P c
u(t) is determined as:

P c
u(t) =

Lu
∑

l=1

P l
u(t), ∀t ∈ T (1)

where P l
u(t) is the consumption profile of an appliance

that consumes constant power between the start and end

times t ∈ [tsr, t
e
r], and nothing when t /∈ [tsr, t

e
r].

Regarding generation, residential PV systems are con-

sidered in the smart homes. However, based on the

user economic situation and physical constraints of the

building, users may or may not have a PV system in-

stalled, and the installed capacity is different for each

home. Hence homes generation profiles are different

from home to home. The output of a PV system P g
u (t)

is calculated by:

P g
u (t) = Np

u ·Ns
u · P pv

u · (G(t)/GSTC) (2)

where Np
u and Ns

u are the number of parallel and series-

connected modules of the PV array, and P pv
u is the

rated power of the PV module. It is assumed that all

smart homes are located in same geographic area, thus

all the PV systems in the neighborhood area receive

the same irradiance G(t) (irradiance variations are con-

sidered negligible). GSTC(t) is the irradiance value

(1000 W/m2) in standard test conditions (1000 W/m2,

25 ◦C).

For the energy storage system, batteries are installed

only in smart homes with PV. Generally, batteries are

charged when there is surplus generation, and dis-

charged when consumption is higher than generation.

However, in this study, we assume that a home control

system is able to charge from the main grid, shift dis-

charging operations to high price hours, and discharge

for neighbors’ consumption. Based on the determined

battery injected power (given in Section 3), the battery

powerP b
u(t) and state-of-charge (SOC) SOC(t) are de-

termined as:

P̀ d
u/η

d
u ≤ P i

u(t) ≤ Ṕ c
u · ηcu (3)

P b
u(t) =

{

P i
u(t) · η

c
u : P i

u(t) > 0
P i
u(t)/η

d
u : P i

u(t) ≤ 0

}

(4)

SOCu(t) = SOCu(t− 1) +
(

P b
u(t) · △t

)

/Eb
u (5)

SOCmin
u (t) ≤ SOC(t) ≤ SOCmax

u (t) (6)

where ηdu and ηcu are the charging/discharging efficien-

cies, P̀ d
u and Ṕ c

u are the maximum discharging/charging

injection powers and SOCmin
u (t) and SOCmax

u (t) are

the maximum and minimum SOC levels of the battery,
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and Eb
u is the battery capacity. Lastly, △t is the time

interval between two time steps.

Although EVs are considered as an appliance in this

section, the power profile of EVs shows the same char-

acteristic as home batteries. According to same princi-

ple, the power P v,i
u (t) and SOC SOC(t)vu profiles of

EVs are modeled with:

P̀ v,d
u /ηv,du ≤ P v,i

u (t) ≤ Ṕ v,c
u · ηv,cu (7)

P v,b
u (t) =

{

P v,i
u (t) · ηv,cu : P v,i

u (t) > 0
P v,i
u (t)/ηv,du : P v,i

u (t) ≤ 0

}

(8)

SOC(t)vu = SOCv
u(t−1)+

(

P v,b
u (t) · △t

)

/Ev,b
u (9)

SOCv,min
u (t) ≤ SOC(t) ≤ SOCv,max

u (t) (10)

where ηv,du and ηv,cu are the EV charging/discharging

efficiencies, P̀ v,d
u and Ṕ v,c

u are the EV maximum dis-

charging/charging injection powers, SOCv,min
u (t) and

SOCv,max
u (t) are the maximum/minimum SOC levels

of the EV battery, and Ev,b
u is the EV battery capacity.

2.2 PRICE MODELING

The electric cost of customers in the neighborhood is

determined using a form of dynamic pricing where the

price is related to the aggregated power provided by the

main grid. In this study, the same electricity price is also

used for the reverse power flow from smart homes to the

grid. The neighborhood electricity price is determined

in two parts: a dynamic part, and a combined part. The

dynamic part is modeled using a quadratic function as:

ρ(t,Pn(t)) = a(t)|Pn(t)|
2+ b(t)|Pn(t)|+ c(t) (11)

where a(t) > 0, b(t) ≥ 0 and c(t) ≥ 0 are parame-

ters of the quadratic function, Pn(t) is the aggregated

net consumption of the neighborhood and ρ(t,Pn(t)) is

the dynamic part of the neighborhood electricity price.

After that, the dynamic part is combined with a fixed-

tariff d(t) which represents the wholesale market price

at the upper level:

λ(t,Pn(t)) =

{

d(t) + ρ(t,Pn(t)) : Pn(t) > 0
d(t)− ρ(t,Pn(t)) : Pn(t) ≤ 0

}

(12)

where λ(t,Pn(t)) is the electricity price scheme is used

for billing users in the neighborhood. According to

(12), when there is surplus generation which causes re-

verse flow from the neighborhood to the main grid, the

electricity price will be lower than d(t), which will in-

crease the interest of consumption at these times. Thus,

the same pricing can be used for billing both types of

users (consumers and producers) at the same time when

reverse power flows exist.

3 PROBLEM FORMULATION

Home agents aim to minimize the electricity bills of

their users by scheduling their controllable appliances

and controlling charging/discharging operations of the

home battery and EV battery. This section describes

the optimization problem which is solved by the home

agents.

For controlling shiftable-appliances, a scheduling inter-

val [t̄sr, t̄
e
r] is defined by the user for each appliance. In-

side this interval, the home agent chooses the best time

to run an appliance without jeopardizing user comfort.

It is assumed that when a shiftable appliance starts op-

erating, it cannot be stopped by the home agent until the

end of its cycle. The constraint formulation for shiftable

appliances is given by:

[tsr, t
e
r] ∈ [t̄sr, t̄

e
r] (13)

The operation of some appliances can depend on others,

such as washing machines and clothes dryers. Users,

logically, prefer to use a clothes dryer the after wash-

ing machine has finished its work. Therefore, this con-

straint is formulated by:

tswm < tscd − (tewm − tswm) (14)

t̄swm < t̄scd − (tewm − tswm) (15)

where wm and cd are used for indexing the washing

machine and the clothes dryer.

To model the control of charging/discharging actions

of the home battery system, home agents determine

P b
u(t) for each time interval. However, before giving

the formulation, we need to mention several important

assumptions. Firstly, we considered that a home bat-

tery system is able to be charged by self-generation,

neighborhood generation, and the main grid. However,

it cannot be charged to sell energy to the main grid

while saved energy can be used for self-consumption

and neighborhood consumption. Secondly, based on

the modeling of the electricity profiles, the time reso-

lution can be chosen equal to very short values (such

as 1-min. resolution) for more detailed simulation. In

such a model, the controller has to use a high number of

inputs (such as 1440 for 1-min.) to determine the bat-

tery output at each time step, which is computationally

expensive. Therefore, in this study, we define a battery

control interval Z which has a lower resolution than the

actual profile to reduce the battery input number in the

optimization problem from T to T /Z , without chang-

ing the actual profile resolution. Based on that, P b
u(t) is

determined with logical inputs γu ∈ {0, 1, 2} by:

Ru(t) = Pa(t)− Pn
u (t) (16)
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P b
u(t) =















f .charge · ηc
u : γb

u(z) = 0

n.charge · ηc
u : γb

u(z) = {1, 2}, P g
u (t) > P c

u(t)

idle · ηc
u : γb

u(z) = 1, P g
u (t) ≤ P c

u(t)
b.discharge/ηd

u : γb
u(z) = 2, P g

u (t) ≤ P c
u(t)















(17)

where Rn
u(t) is the aggregated net profile, except the

net profile of user u, and Pa(t) is the aggregated profile

of the neighborhood. f .charge refers to full charging

with P g
u (t) + P o

u (t) (P o
u(t) is the charged power from

the main grid), p.charge refers to normal charging

with P g
u (t), idle refers to zero power, and b.discharge

refers to battery discharging with P c
u(t) + Rn

u(t) −
P g
u (t). After that, the power sold by the battery dis-

charge P s
u(t) is determined with:

P s
u(t) = P b

u(t)− P c
u(t) (18)

Based on the above formulation, the discharged battery

power is used firstly for self-consumption, then sold for

the neighbors consumption.

Lastly, the EV battery power is determined by using

the same principle defined for the home battery sys-

tem, but with two exceptions. Although EV charging is

typically based on a constant current / constant voltage

method, advanced methods can be implemented for EV

battery control [8]. First, we assume that an EV battery

is only allowed to discharge for self-consumption of a

smart home (vehicle-to-home: V2H), neglecting neigh-

borhood consumption (vehicle-to-grid: V2G). Second,

there should be some energy left in the battery of the

EV for the next day morning travel. According to that,

EV constraints and battery power P v
u (t) are determined

using the same logical inputs γv
u(z) = {0, 1, 2} by:

tvarr < tvdep ≤ T (19)

SOC
v

u ≤ SOC(tvdep) ≤ SOCv,max
u (20)

P v
u (t) =















f .charge · ηv,c
u : γv

u(z) = 0
n.charge · ηv,c

u : γv
u(z) = {1, 2}, P g

u (t) > P c
u(t)

idle · ηv,c
u : γv

u(z) = 1, P g
u (t) ≤ P c

u(t)

v.discharge/ηv,d
u : γv

u(z) = 2, P g
u (t) ≤ P c

u(t)















(21)

where tvarr and tvdep are the arrival and departure times

of the EV, and SOC
v

u is minimum required SOC for

next day travel when t = tvdep. f .charge, p.charge,

and idle have the same meanings and formulations than

above. v.discharge refers to vehicle discharge with

P c
u(t) − P g

u (t). The home net power profile Pn
u (t) is

calculated by:

Pn
u (t) = P c

u(t)− P g
u (t) + P b

u(t) + P s
u(t) + P v

u (t) (22)

Finally, the objective function solved by the home agent

to minimize the daily electricity bill of the user is for-

mulated as:

min

(

Cu =
T
∑

t=1

(Pn
u (t)− P s

u(t)) · λ(t,Pn(t))

)

s.t. eqs. (3), (6), (7), (10), (13), (14), (15), (19), (20)
(23)

It can be noted that P s
u(t) is removed in (21) and added

in (22), on purpose. They are needed separately during

the data exchange described in Section 4 for establish-

ing the coordination among smart homes. Note that Z
is only used to ease the battery optimization problem,

and not for appliances.

4 COORDINATION MECHANISM

In this section, the coordination mechanism is de-

scribed by presenting the communication structure

among neighborhood entities. Due to privacy concerns

of the users, we assume that, first, home agents do not

communicate with each other, and second, they use

averaged data while communicating with the aggrega-

tor. We define a communication interval L where home

agents can calculate the average of the actual electricity

profile for each L time interval. Based on that, when

home agents send a message, they convert a matrix of

electricity profiles as [1× T → 1× T /L]. Oppositely,

when home agents receive the data, they re-convert it

back as [1×T /L → 1×T ] (messages are denoted using

“̂ ” to represent the difference between communicated

data and actual data, such that P̂n
u (l) is the communica-

tion data of the home net electricity profile Pn
u (t), and

l is the time index of the communication data).

At the beginning of the coordination, the aggregator

agent determines the neighborhood price, the aggre-

gated net and sold battery power profile as λ̂(l, P̂n(l) =

d̂(l), P̂n(l) = 0 and P̂s(l) = 0. With the received in-

formation, home agents minimize their objective func-

tion simultaneously, then determine and send the home

net electricity profile P̂n
u (t) and the home sold battery

power P̂ s
u(t) to the aggregator. After that, the aggre-

gator agent calculates the aggregated profile P̂a(l) =
∑U

u=1
P̂n
u (l) and the aggregated battery sold power

profile P̂s(l) =
∑U

u=1
P̂ s
u(l), and determines the ag-

gregated net electricity profile with:

P̂n(l) =

{

P̂a(l)− P̂s(l) : P̂a(l) > P̂s(l))

0 : P̂a(l) ≤ P̂s(l))

}

(24)

Next, the aggregator agent determines the neighbor-

hood price and sends λ̂(l, P̂n(l), P̂n(l) and P̂s(l) to

home agents. After that, home agents run the optimiza-

tion again and send the determined data back to the

aggregator agent. This process continues until change

in total neighborhood cost between iterations becomes

negligible Ctotal(k)−Ctotal(k − 1) ∼= 0.

Ctotal(k) = P̂n(l) · λ̂(l, P̂n(l)) (25)
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where Ctotal(k) is the total neighborhood cost and k is

the iteration index.

Lastly, the aggregator agent determines the sold bat-

tery powers in real-time (t − domain) for the users,

according to the final decision of the home agents

when system reaches convergence. This results from

simultaneous optimization and communication on the

l − domain, as there is a possibility of mismatch ex-

istence in the t − domain with the occurrence of the

condition Pa(t) < Ps(t). To eliminate these mis-

matches, the aggregator agent appliesthe proportional-

source-matching method described in [9]:

P s
u(t) = Pa(t) ·

(

P s,d
u (t)/Pd

s(t)
)

(26)

where P s,d
u (t) is the battery sold power and Pd

s(t) is

the aggregated battery sold power at the final iteration

of the decision-making process. In (26), the battery sold

power of the smart homes are determined based on the

ratio between Pd
s(t) and P s,d

u (t).

5 RESULTS

5.1 SYSTEM SETUP

In this section, performance results of the studied case

are given and compared with a baseline case where

users are modeled as classic passive consumers with no

communication, no coordination and no energy sharing

abilities. Therefore, home batteries charge when gener-

ation is higher than consumption with self-generation,

and discharge when consumption is higher than gen-

eration for self-consumption. Also, EV batteries can-

not provide energy for self-consumption in the smart

home. However, we assume that EV battery charging

stops when the minimum required SOC is reached for

next day travel in the baseline case, for a fair compari-

son with coordinated control.

For the simulation setup, the studied neighborhood area

consists of U = 20 users, where two have a home bat-

tery, PV and an EV, one has a home battery and PV,

three have PV and an EV, four have just PV and one

has just an EV. Electricity profiles are modeled with

a 1-minute time resolution (T = 1440, △t = 1/60).

Battery control and communication intervals are chosen

equal to 60 minutes Z = L = 60, and price coefficients

are assumed constant and taken as a(t) = 5 × 10−5,

b(t) = 8× 10−4, c(t) = 0 and d(t) = 0.16 e/kWh.

Lastly, a co-simulation platform with JAVA Agent DE-

velopment Framework (JADE) and MATLAB is used

for agent modeling and performance evaluation. Data

is exchanged between JADE and MATLAB through

TCP/IP ports, by defining a unique port for each agent.

Simulations are performed on a desktop computer with

an Intel Core i7-3770 CPU @ 3.4 Ghz, 7.8 GB RAM

and a 64-bit Ubuntu 14.04 LTS operating system.

Fig. 1. Daily Electricity Bills of the Smart Homes and

Types (A = home battery + PV + EV, B = home battery

+ PV, C = PV + EV, D = PV, E = EV, F = None).

5.2 NUMERICAL RESULTS

The daily electricity bills of users are given for the base-

line and the coordinated control scenarios in Fig. 1.

With the proposed coordination mechanism, all users

in the neighborhood area can reduce their electricity

bills compared to the baseline scenario, although they

have different types of equipments. It is a vital outcome

of the coordination mechanism, because if some users

cannot earn some benefit in exchange for their effort

and participation, they would lose interest in control-

ling their resources and would turn the controller off.

Hence, this situation may lead to consumer disengage-

ment.

In Fig. 2, the neighborhood power profile from the per-

spective of the main grid is given. From the results,

firstly, it can be seen that coordinated control achieves

decreasing the aggregated peak demand of the neigh-

borhood area by shifting the consumption of the con-

trollable appliances to low price hours and discharging

the batteries during high price hours. Especially, the ef-

fect of energy sharing can be observed around 20:00.

While the home battery system is used to discharge

energy for self-consumption before 20:00 in the base-

line scenario, home agents kept the stored energy and

discharge for self-consumption and share energy with

neighbors to reduce the neighborhood consumption un-

der the purpose of reducing the area price. Secondly,

Fig. 2. Neighborhood Electricity Profile (Provided and

sold energy from/to main grid).



ELECTRIMACS 2017, 4th-6th July 2017, Toulouse, France

Fig. 3. Neighborhood aggregated (a) costs and (b) peak

demand powers.

some smart homes with batteries, rather than charging

with self-generation, fully charge with the aggregated

surplus generation of the neighbors around 11:00, while

this energy is fed back in the baseline scenario. There-

fore, locally generated energy is kept inside the neigh-

borhood area and utilized more efficiently due to the

sharing capability.

Lastly, numerical results for consumption costs and

peak demand powers of the neighborhood are given for

both algorithms in Fig. 3. According to the total re-

sults for the neighborhood, the proposed coordination

mechanism achieves 14.36% cost and 17.55% peak re-

duction compared to the baseline scenario.

5.3 NEXT STEPS

Although the presented coordination mechanism

achieves reducing the peak consumption of the neigh-

borhood area from the main grid, distribution system

constraints are not considered in the proposed coordi-

nation and problem formulation. The effect of central

generation resources (wind turbine, central battery,

etc.) on the decision-making of the home agents will

be investigated in future works.

6 CONCLUSION

In this paper, we proposed a coordination mechanism

with a decentralized approach, where home agents are

the decision-makers and the aggregator is the advisor

in the neighborhood area. The main idea of the pre-

sented algorithm is to reduce the aggregated peak de-

mand power of the neighborhood in addition to reduc-

ing the daily electricity bill of the users by schedul-

ing household appliances and controlling battery (both

home and EV) charging/discharging operations through

a form of dynamic pricing. Agent-based modeling is

used to design home and aggregator agents. Simu-

lations results showed that the proposed coordination

mechanism achieves reducing the total electricity cost

and the aggregated peak consumption of the neigh-

borhood. Moreover, all types of home users bene-

fit from participating in the coordination mechanism,

hence their receive a return for their efforts.
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