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L2-HYPOCOERCIVITY AND LARGE TIME ASYMPTOTICS OF THE LINEARIZED
VLASOV-POISSON-FOKKER-PLANCK SYSTEM

LANOIR ADDALA, JEAN DOLBEAULT, XINGYU LI, AND M. LAZHAR TAYEB

ABSTRACT. This paper is devoted to the linearized Vlasov-Poisson-Fokker-Planck system in
presence of an external potential of confinement. We investigate the large time behaviour
of the solutions using hypocoercivity methods and a notion of scalar product adapted to
the presence of a Poisson coupling. Our framework provides estimates which are uniform
in the diffusion limit. As an application in a simple case, we study the one-dimensional case
and prove the exponential convergence of the nonlinear Vlasov-Poisson-Fokker-Planck sys-
tem without any small mass assumption.

1. INTRODUCTION AND MAIN RESULTS

The Vlasov-Poisson-Fokker-Planck system in presence of an external potential V is
atf+ V'va_ (VXV+Vx(P) 'Vyf: Ayf‘l_vl)' (l/f),

(VPER) ~Ap=pr= [ fav.
R4
In this paper, we shall assume that (¢, x, v) € R* x R? x R? and that ¢ is a self-consistent po-
tential corresponding to repulsive electrostatic forces and that V is a confining potential in
the sense that (VPFP) admits, up to a multiplicative constant, a unique stationary solution
L
fulx,v) = e V=0 gy, —Axpy = eV and H()=——,
(zn)d/z

with associated potential ¢, according, e.g., to [6, 27]. We denote by M = [J] Rdxpd Jx dxdv
the mass. System (VPFP) is of interest for understanding the evolution of a system of
charged particles with interactions of two different natures: a self-consistent, nonlinear
interaction through the mean field potential ¢ and collisions with a background induc-
ing a diffusion and a friction represented by a Fokker-Planck operator acting on velocities.
System (VPFP) describes the dynamics of a plasma of Coulomb particles in a thermal reser-
voir (see for instance [10]), but it has also been derived in stellar dynamics for gravitational
models, as in [24], in the case of an attractive mean field Newton-Poisson equation. Here
we shall focus on the repulsive, electrostatic case. Applications range from plasma physics
to semi-conductor modelling. A long standing open question is to get estimates on the
rate of convergence to equilibrium in dimensions d = 2 and d = 3 for arbitrarily large ini-
tial data, away from equilibrium. We will not solve it here but, as an important step in
this direction, we will establish a constructive estimate of the decay rate of the linearized
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problem, which provides us with an upper bound for the convergence rate of the nonlin-
ear (VPFP) problem. A technical but important issue is to decide how one should measure
such a rate of relaxation. For this purpose, we introduce a norm which is adapted to the
linearized problem and consistent with the diffusion limit.

Let us consider the linearized problem around f,. Let h be a function such that f =
fx @ +nh) with [[pa, e fdxdv = M, that is, such that [[pa,ga b fx dxdv = 0. The sys-
tem (VPFP) can be rewritten as

Oth+v-Vih—(ViV+ Vi) -Voh+v-Vywp—Ayh+v-Vyh=0(Vyyy-Vyh—v-Vyiyph)

with —Ayyp = fd hfidv.
R
At formal level, by dropping the €'(n) term in the limit as n — 0., we obtain the linearized
Vlasov-Poisson-Fokker-Planck system around the equlibrium state f given by
6[h+ U'v_xh_ (VXV+Vx(p*) 'th+ U'v_xwh_Ayh+ U'th:(),

—Axwh:fwhf*dv, ffmad IRdhf*dxdvzo.

From now on we shall say that h has zero average if [[pa ga I fx dxdv = 0. Let us define
the norm

) 1h)?:= ff hzf*dxdv+f IV yppl®dx.
R4 x R4 R4

Our main result is devoted to the large time behaviour of a solution of the linearized sys-
tem (1) on R* x R? x R? 5 (¢, x, v) with given initial datum hg at ¢t = 0. For simplicity, we
shall state a result for a simple specific potential, but an extension to more general poten-
tials will be given to the price of a rather long list of technical assumptions that are detailed
in Section 3.

1)

Theorem 1. Let us assume that d = 1, V(x) = |x|* for some a > 1 and M > 0. Then there
exist two constants A > 0 and € > 1 such that any solution h of (1) with an initial datum hy
of zero average with || hy I? < oo is such that

3) lh(t, )2 <€ Ihol? e Vi=0.

The constant € in Theorem 1 is larger than 1 as a typical result of hypocoercivity meth-
ods. Indeed, since the Fokker-Planck operator acts only on the velocity variable v, an ex-
ponential decay with € = 1 cannot be expected for generic x-dependent functions. The
main novelty here is that hypocoercive estimates can be obtained in presence of the non-
local Poisson coupling in (1), and not simply in some perturbative regime. The linearized
problem (1) is at first sight easier than the full nonlinear system (VPFP) but our result gives
two crucial informations which are of importance for the linearized system as well as for
the nonlinear one: 1) we prove an exponential decay rate, 2) we specify an appropriate
functional space and a notion of distance, corresponding to the norm defined by (2), for
measuring the convergence to equilibrium.

Our analysis is consistent with the diffusion limit of the linearized system, as we shall
explain below. For any € > 0, we consider the solution of the linearized problem in the
parabolic scaling given by

1
€0;h+v-Vih—(ViV+Vydi) - Vyh+v-Vyy—=(Ayh—v-V,h) =0,
£

4)
—AxU/h:f hf.dv, ff hfi.dxdv=0.
R4 R4 x R4
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In the regime £ — 0, the parabolic scaling corresponds to a time scale of the order £ ™! with
a collision frequency which is also of the order €1, but cannot be achieved by a simple
scaling in the (¢, x, v) variables in presence of an external potential and a Stokes friction
force. Our decay estimate is uniform with respect to € — 0.

Theorem 2. Let us assume thatd =1, V(x) = |x|% for some a > 1 and M > 0. For anye >0
small enough, there exist two constants A > 0 and € > 1, which do not depend on €, such
that any solution h of (4) with an initial datum hy of zero average and such that | ho||* < oo
satisfies (3).

The result of Theorem 1 will be extended in Theorem 21 to a larger class of external
potentials V: in the technical part of the proof of Theorem 1, we will specify precise but
more general conditions under which the same result holds. A similar extension applies
in the case of Theorem 2. As an application of our method, we establish the exponential
rate of convergence of the solution of the non-linear system (VPFP) when d = 1. For sake of
simplicity, we state the result for the same potential V as in Theorem 2.

Corollary 3. Assume thatd =1, V(x) = |x|* for some a > 1 and M > 0. If f solves (VPFP)
with initial datum fo = (1+ hy) fx such that hy has zero average, | hy I < 0o and (1 + hy) =0,
then (3) holds with h = f/ f, — 1 for some constants A >0 and € > 1.

The diffusion limit of systems of kinetic equations in presence of electrostatic forces has
been studied in many papers. The mathematical results go back at least to the study of a
model for semi-conductors involving a linear Boltzmann kernel by E Poupaud in [65]. The
case of a Fokker-Planck operator in dimension d = 2 was later studied by E Poupaud and
J. Soler in [66], and by T. Goudon in [39], on the basis of the existence results of [61, 70].
There is also a parallel, probabilistic approach of the macroscopic diffusion limit and of
the overdamped regime for the generalized Langevin equation: see [49, 62] and references
therein. With a self-consistent Poisson coupling, we refer to [15] for existence results in
dimension d = 3 and to [35, 27] for steady states, confinement and related issues. Based
on free energy considerations introduced in [17, 27], N. El Ghani and N. Masmoudi were
able in [37] to establish diffusion limits also when d = 3. Altogether, it is proved in di-
mensions d =2 and d = 3 that the Vlasov-Poisson-Fokker-Planck system, with parameters
corresponding to the parabolic scaling,

(5) eatf+v-vxf—(VxV+Vx¢))-vyf:%(Ayf+vv.(yf)), —Ax(p:pf:fwfdv,

has a weak solution (f¢,¢¢) which converges as € — 0, to (f° = p.#,¢) where /4 (v) =
(2m)~%'2 exp(—|v|?/2) is the normalized Maxwellian function and where the charge density
p = Jpa fOdv is a weak solution of the drifi-diffusion-Poisson system

dp
(6) E:vx-(vxpwvx(vw)), ~Axp=p.
Another piece of information is the asymptotic behavior of the solutions of (6) for large
times. As t — +00, it is well known (see for instance [7] in the case of a bounded domain, [3]
in the Euclidean case when V (x) = |x|?, and [9] in R? with a confining external potential V'
for any d = 3) that the solution of (6) converges to a steady state (p«,$«) given by

@ — Ay =pix=e V7

at an exponential rate. The optimal asymptotic rates have been characterized recently
in [54] using the linearized drift-diffusion-Poisson system and a norm which involves the
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Poisson potential. Apart the difficulty arising from the self-consistent potential, the tech-
nique is based on relative entropy methods, which are by now standard in the study of
large time asymptotics of drift-diffusion equations.

Our goal is to study both regimes € — 0, and ¢ — +oo simultaneously. More precisely,
we aim at proving that each solution (f¢,¢¢) of (5) converges to (fx, ) as t — +oo in a
weighted L? sense at an exponential rate which is uniform in € > 0, small. In the present
paper, we will focus on a linearized regime in any dimension and obtain an estimate of the
decay rate in the asymptotic regime. This allows us to obtain an asymptotic decay rates
in the non-linear regime when d = 1, but so far not in higher dimensions because we are
still lacking some key estimates. Compared to the large time asymptotics of (6), the study
of the convergence rate of the solution of (5) or, in the case € = 1, of the decay rate of the
solution of (1), is much more difficult because the diffusion only acts on the velocities and
requires the use of hypocoercive methods.

T. Gallay coined the word hypocoercivity in the context of convergence without regu-
larization as opposed to hypoellipticity where both properties arise simultaneously. This
concept is well adapted to kinetic equations with general collision kernels and C. Villani
made the hypocoercivity very popular in kinetic theory: see [71, 72]. Understanding the
large time behavior of the kinetic Fokker-Planck equation (without Poisson coupling) is
an interesting problem which has a long history: see [52, 47, 50, 36, 43] for some earlier
contributions. C. Villani [72] proved convergence results in various senses: in H! [72, Theo-
rem 35], in L2 [72, Theorem 37], and in entropy [72, Theorem 39] when Hess(V) is bounded.
His approach is however inspired by hypoelliptic methods, as in [41, 42, 60]. The method
of [2] is based on a spectral decomposition and produces an exponential decay in relative
entropy with a sharp rate. In a somewhat similar spirit, we can also quote [19], which is
based on a Fourier decomposition. Due to the Fokker-Planck operator, smoothing effects
in (5) can be expected as was proved in [16], consistently with hypoelliptic methods: this
will not be exploited in the present paper.

Mean-field couplings add a serious difficulty: see [40, 57] for recent results based on
a probabilistic approach. In presence of a Poisson coupling large time behavior (with-
out rates) of the solutions of (5) has been dealt with in presence of or without an external
potential: cf. [17, 23, 27, 22, 51] for early results. In [48], a result of exponential decay is ob-
tained in dimension d = 3, in presence of a constant neutralizing background but without
confinement: the solution is a smooth perturbation of a stationary distribution function
which is homogeneous in x and Maxwellian in v and the proof relies on remarkable alge-
braic properties. When d =2 and d = 3, E Hérau and L. Thomann [44] proved the trend to
the equilibrium for the Vlasov-Poisson-Fokker-Planck system with a small nonlinear term
but with a possibly large exterior confining potential. More recently, M. Herda and M. Ro-
drigues considered in [45] the two limits as € — 04 and ¢ — +oo, on the 2-dimensional
torus, in the globally neutral regime. By a careful analysis of the trade-off between two pa-
rameters, the mean free path and the Debye length, they establish closed estimates of regu-
larity which allow them to prove an exponential convergence, including in various limiting
regimes, with uniform estimates in the other, fixed parameters. All these approaches are
essentially of perturbative nature. In various papers, the properly linearized system (4)
is not taken into account, in the sense that the non-local term arising from the Poisson
equation is often dropped. In the case of a torus and without an external potential, the
Landau damping provides another mechanism of convergence to equilibrium even with-
out a Fokker-Planck kernel: we refer to [5] for a detailed study by J. Bedrossian on the
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enhancement induced by the Fokker-Planck operator acting on velocities and also to a re-
sult of I. Tristani in [69] for the analysis of the consequences of the Landau damping on
the (properly) linearized Vlasov-Poisson-Fokker-Planck system. So far it is not known how
these properties could be extended from the setting of a torus to the case of the whole Eu-
clidean space in presence of an external potential of confinement. Let us emphasize that,
in the present paper, we consider the properly linearized system, including the non-local
Poisson term, and provide a functional framework which is compatible with hypocoerciv-
ity methods adapted to diffusion limits.

The existence of solutions of (1), which are continous w.r.t. ¢ and take values in L2 for the
norm defined by (2), is out of the scope of this paper. Seen as a perturbation of (VPFP), an
existence result can be deduced from the results of [70, 15] or established directly using the
same methods as in these papers and we will consider it as granted. Alternatively, it is also
possible to consider the non-local term as perturbation and use a fixed point argument
based on the semi-group associated to the Fokker-Planck operator as, e.g., in [44].

In [32], ]. Dolbeault, C. Mouhot, and C. Schmeiser studied the exponential decay in a
modified L? norm for the Vlasov-Fokker-Planck equation (and also for a larger class of
linear kinetic equations). The method was motivated by the results of [41] but the main
source of inspiration came from the analysis of the diffusion limit, as in [8, 58, 30] (also
see [68] in presence of an oscillating external force field): the general idea is to build a
norm which reflects the spectral gap that determines the rate of convergence in (6) by
adding a twist which arises from the coercivity properties, at macroscopic level, of the dif-
fusion limit. Applying [32] to (1) is a natural idea, which is mentioned for instance in [69,
p. 109], but has not been done yet to our knowledge. Inspired by [11, 13, 33], another idea
emerged that asymptotic rates of convergence should be measured in a norm induced by
a Taylor expansion of the entropy around the asymptotic state and that, in presence of
a Poisson coupling, this norm should involve a non-local term: see [20, 54, 55] for drift-
diffusion systems and Remark 1 when applied to (VPFP). The goal of this paper is to mix
these two ideas. It turns out that they combine into a beautiful machinery.

This paper is organized as follows. In Section 2, we expose the strategy for the L2-
hypocoercivity method of [32] in the abstract setting of a general Hilbert space. The notion
of Hilbert space adapted to (1) is exposed in Section 3 with some fundamental considera-
tions on confinement by an external potential and adapted Poincaré inequalities. Section 4
is devoted to the proof of Theorem 1: we have to check that the assumptions of Section 2
hold in the functional setting of Section 3, with the special scalar product for Poisson cou-
pling involving a non-local term associated with the norm defined by (2). In Section 5, we
prove Theorem 2: our estimates are compatible with the diffusion limit as € — 0. Coming
back to the non-linear problem (VPFP) in dimension d = 1, we prove in this latter case that
an exponential rate of convergence as t — +oco can be measured in the hypocoercive norm,
that is, we prove Corollary 3.

We shall adopt the following conventions. If a = (a i)f: and b = (bi)?':1 are two vectors

with values in R4, then a-b = Zle a;b;and|al®=a-a. IfA= (Aij)?jzl and B = (B,-j)?f].=1 are

two matrices with values in R? xR%, then A : B = ijzl A;;jB;jand |A]? = A: A. We shall use
the tensor convention that a ® b is the matrix of elements a; b;. By extension to functions,
V,w is the gradient of a scalar function w while V, - u denotes the divergence of a vector

valued function u = (u ,-);.1:1 and V, ® u is the matrix valued function of elements du;/0x;.
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Hence

d
Hess(w) = (Vy® V) w = ( Fuw )l. j=1

ax,- ax]'

denotes the Hessian of w and, for instance, u® u : Hess(w) = Zd

L Uilj (Hess(w))ij. We

shall also write that |Hess(w)|? = Hess(w) : Hess(w).

2. HYPOCOERCIVITY RESULT AND DECAY RATES

This section is devoted to the abstract hypocoercivity method in general Hilbert spaces
and it is inspired from [32, 19]. Since the methods sets the overall strategy of proof of our
main results, we expose it for the convenience of the reader.

Let us consider the evolution equation

F
8) d—+TF:LF
dat

on a Hilbert space #. In view of the applications, we shall call T and L the transport
and the collision operators and assume without further notice that they are respectively
antisymmetric and symmetric, and both time-independent. On #°, we shall denote by ¢, )
and | - || the scalar product and the norm. As in [32], we assume that there are positive
constants A,;, Ay, and Cy; such that, for any F € ./, the following properties hold:

D> microscopic coercivity

(H1) —(LF,F) = Ay |(Id - IDF|?,

> macroscopic coercivity

(H2) ITIFI = AmITIF)?,

> parabolic macroscopic dynamics

(H3) [ITIIF =0,

> bounded auxiliary operators

(H4) IATId-IDF| + |ALF| < Cy I Id - ID F].

Here Id is the identity, IT is the orthogonal projection onto the null space of L, * denotes
the adjoint with respect to (-,-) and as in [31, 32], the operator A is defined by

A= (1d+ (TID*TI) ™ (TID*.
Since a solution F of (8) obeys to

1d 2 9
EEIIFII =(LF,F) = - Anlldd-IDF|",

this is not enough to conclude that || F(¢,") (12 decays exponentially with respect to t = 0 and
this is why we shall consider the Lyapunov functional

Hs[F]:= | FII* +& (AF, F)

for some 6 > 0 to be determined later. If F solves (8), then

- %Ha[F] =Dg[F]:= — (LF,F)+6 (ATIIF, F)— 6 (TAF,F)+6 (AT(d - I)F, F)— 6 (ALF, F)
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using A =TIA. Let us define

4
6*:min{2, Am AmAu }

4/1M+C§/I(1 +AM)

We recall that the two main properties of the hypocoercivity method of [32] for real valued
operators and later extended in [19] to complex Hilbert spaces go as follows.

Proposition 4. Assume that (H1)-(H4) hold and take 6 € (0,6 ). Then we have:
() Hs and || - |* are equivalent in the sense that
2-0

2+ 0
9) T||F||25H5[F]STIIF||2 VFe 7.

(ii) For some A > 0 depending on 6, Hs and Ds are related by the entropy — entropy produc-
tion inequality

(10) AHgs[Fl1 <DslF] YFe 7.
As a consequence, a solution F of (8) with initial datum Fj obeys to
Hs[F(t,)] < Hs[Fol e

and
4 4 240
11 F(t,)I1” < ——=Hs[F(t,)] < —=Hs[Fple M < ——— | Rll*e ™ vi=0.
(11) IFCE ) 5.5 s[F(t,-)] 5.5 slFole 2—6” oll“e
Proof. For completeness, we sketch the main steps of the proof, with slightly improved

estimates compared to [19, Theorem 3]. Since ATII can be viewed as z+— (1+ 271z applied
to (TIN)*TII, (H1) and (H2) imply that

oA
—(LF,F>+6<ATHF,F)zAm||(Id—H)F||2+1 M _\IIE|?.

+AM

Our goal is to prove that the r.h.s. controls the other terms in the expression of Ds[F].
By (H4), we know that

|(AT(Ad—IDF, F) + (ALF,Fy| < Cy ITIF| | Ad = TD F|.
Asin [32, Lemma 1],if G=AF, i.e., if (TID*F =G+ (TID*TIIG, then
(TAF,F) ={G,(TID*F) = |GII* + ITOG|* = |AF||* + | TAF|*.
By the Cauchy-Schwarz inequality, we know that
(G,(TI)*F) =(TAF,(Id-IDF) < ||TAF| |dd-TDF| < Lﬂ ITAE|*+ 5 11d - IDF|?
for any pu > 0. Hence
2IAFI? + (2~ ) ITAFI? < pll0d - TDF|1%,
which, by taking either 4 =1/2 or u =1, proves that
(12) IAF| < 10d-IDF|| and |TAF| <|dd-IDF].

Hence
I(AF,F)|<1XY=<1(X*+Y?)

with X := |[Id - IDF| and Y := ||IIF| because A takes values in I[1.7°. This establishes (9)
and, as a side result, also proves that

[(TAF, F)| = KTAF,Id-IDF)| < |Id - ID F|1*.
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Collecting terms in the expression of D [F], we find that

0Am

Y?-6CyXY
1+/1M M

DslF1= (A, — 8) X2 +

with X := ||(Id—IDF| and Y := |[IF||. We know that Hs[F] < 1 (X2 + Y2)+ £ X Y, so that the
largest value of A for which Ds[F] = AHs[F] can be estimated by the largest value of A for
which

0Am

_ 2
X, Y)—-Ap-0)X +1+/1M

A A
Y2-8CuXY - > (X*+Y?) - S 0XY = (X, VIM(X, !
is a nonnegative quadratic form, as a function of (X, Y), where

Am-6-% -3(Cu+4]
M= Sfou+d) -
2 2 T+Ay 2

It is characterized by the discriminant condition

1)2 YY) A
e 82 Al _s_ M A
h(5,A):=6 (cM+2) 4(/1,,, ) 2)(1”]\4 2)50

and the sign condition A,, - 6 —A1/2 > 0. For any 6 € (0,04), A — h(§, ) is a second order
polynomial such that /(6,0) > 0 and lim,_. o, h(0,1) = —co. Hence, the largest possible
value of A can be estimated by the positive root of i(§, 1) =0, for any given § € (0,04). U

Notice that the proof of Proposition 4 provides us with a constructive estimate of the de-
cay rate A, as a function of 6 € (0,0 ). We refer to [1] for a discussion of the best estimate of
the decay rate of Hg, i.e., the largest possible estimate of A when § varies in the admissible
range (0,0 ).

3. FUNCTIONAL SETTING

In this section, we collect a some observations on the external potential V and on the
stationary solution obtained by solving the Poisson-Boltzmann equation. Depending on
growth conditions on V, we establish a notion of confinement (so that (VPFP) admits an
integrable stationary solution) and coercivity properties (which amount to Poincaré type
inequalities). Our goal is to give sufficient conditions in order that:

1) there exists a nonnegative stationary solution f, of (VPFP) of arbitrary given mass M > 0:
see Section 3.2;

2) there is a Poincaré inequality associated with the measure e~ V=¢x dx on R%, and variants
of it, with weights: see Section 3.3;

3) there is a Hilbert space structure on which we can study (1): see Section 3.6.

These conditions on V determine a functional setting which is adapted to implement the
method of Section 2. The potential V(x) = |x|* with a > 1 is an admissible potential in that
perspective.

In [32], without Poisson coupling, sufficient conditions were given on V which were in-
spired by the carré du champ method and the Holley-Stroock perturbation lemma (see [46]
and [28] for related results). These conditions are not well adapted to handle an additional
Poisson coupling. Here we adopt a slightly different approach, which amounts to focus on
sufficient growth conditions of the external potential V' and on tools of spectral theory like
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Persson’s lemma. For sake of simplicity, we require some basic regularity properties of V
and assume that

(V1) veC’nWpl(RY) and liminfV(x) = +oo.

| x|—+00

These regularity assumptions and the growth conditions on V (also see below) could be
relaxed, up to additional technicalities.

3.1. Preliminary considerations on the Poisson equation and conventions. Let us con-
sider the Green function G, associated with —A,. We shall write ¢p = (—~A,) ™! p as a generic
notation for ¢ = G4 * p with G4(x) = ¢4 |x|2~4, c;l =(d-2)|S% Y ifd = 3. Then, ifd = 3,
with no further restriction, by using integrations by parts, we have that

prd)dx:fw (_Ax(p)(de:fRd|vx¢|2dX.

Ifd =2, weuse Gy(x) = —% log|x|. It is a standard observation that ¢ = (—A) ! p is such
that V,¢(x) = —% (frzpdx) ﬁ as |x| — +oo is not square integrable unless g pdx = 0. If
Jrz P dx =0, one can prove that

fp(,bd)Czj IV ¢p|* dx < +00.
R2 R2

If d = 1, we can use G (x) = —|x|/2, but it is sometimes more convenient to rely on the
representation
M X y
(13) (P(x)z—x—f dyf p(2)dz+ g
2 —00 —00

and we shall then write ¢ = (— d?/ clxz)_1 p whenever we use (13). Here ¢y is a free param-
eter that we may fix by assuming that max,eg ¢p(x) = 0. This convention does not coincide
with the representation by G; * p as, in that case, ¢(0) is taken equal to —% Jrlxlp(x)dx,
provided this quantity is well defined. Obviously, the potential is defined up to an additive
constant and this is therefore not an issue. Without further notice, we will rely on (13) for
the solutions when d = 1.

If d = 1, more important is the fact that ¢ = (—clz/dxz)_1 p satisfies ¢’ = —m where m
is defined by m(x) := [* _p(y)dy if M = [ppdx = 0. In that case, if we further assume
that p is compactly supported or has a sufficient decay at infinity, an integration by parts
shows that

(14) fc/)pdx:—‘[qb’mdx:‘[|¢>’|2dx:fm2dx20.
R R R R

Altogether, whenever [pq p dx = 0, we shall write [pa pddx = [pa |Vip|? dx = 0 without
any further precaution, for any d > 1.

3.2. The Poisson-Boltzmann equation. According to [35, 70, 27], stationary solutions of
the (VPFP) system are given by

fx(x,v) = pu(X) M (V)
where 4 (v) = 2m)~4/2 ¢~ 1”12 is the normalized Maxwellian function (or Gaussian func-
tion) and the spatial density p« is determined by the Poisson-Boltzmann equation
~V—y
e

A = =M — .
Ay W
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This equation also appears in the literature as the the Poisson-Emden equation. It is ob-
vious that ¢, is defined up to an additive constant which can be chosen such that M =
Jpa €™V~ dx and therefore solves (7). Here ||px |1 ga) = | fx || ixga) = M is the mass,
which is a free parameter of the problem, which can be adjusted by adding a constant to V.
The critical growth of V such that there are solutions p € L' (R%) of (7) which minimize the
free energy strongly depends on the dimension. Here are some sufficient conditions.

Lemma 5. Let M > 0. Assume that V satisfies (V1) and

Ve V e LY(RY) if d=3,
.. %4 .

(V2) liminfiy . 400 ﬁ >2+ 4 if d=2,
Hminfixj— oo "o >2 i d=1.

Then (7) has a unique solution p« € L'(R%) such that Jra P dx = M and ¢ is the unique
solution of (7). Moreover ¢ is of class C? and liminf|y— 400 Wi (x) = +00, where

Wy=V+¢, and p*:e_w*.

As a consequence of Lemma 5, we learn that under Assumptions (V1) and (V2), the po-
tential W, also satisfies (V1). Regularity results on (7) are scattered in the literature. See
for instance [44, Proposition 3.5]. The general strategy is, as usual, to use the fact that the
solution is in the energy space and the equation to obtain uniform estimates by elliptic
bootstrapping. The regularity and decay estimates as |x| — +oo follow respectively from
the regularity of V and from its growth properties, using a representation of the solution
based on the Green function. This is again classical and details will be omitted here.

Proof. The case d = 3 is covered by [27, p. 123]. The free energy

1
g[p]::f plogpdx+f dex+—f pddx
R4 R4 2 Jpa

is bounded from below under the mass constraint [« p dx = M using the fact that

fpgbdx:f IV > dx =0
R R4

and, with u:= p eV, the convexity estimate

Zpl 2[ plogpdx+f dex:f (ulogu—u+leVdx+M—-| e Vdx.
R4 R4 [ A —— R4
>0
A slightly more accurate estimate is obtained using Jensen’s inequality applied to ulogu
with the measure e”V dx/ fpae”" dx. The existence follows by a minimization method.

The Euler-Lagrange equation reads
l1+logp+V+¢p=C

for some C € R which is the Lagrange multiplier associated to the mass constraint. Hence
p = e“ e~ V9 and we deduce from the mass constraint M = Jrapdxthat C=1+logM—
log fRd e~ V*+9) 4 x. As noticed in [38, 26], the uniqueness is a consequence of the convexity
of & . Finally, by standard elliptic regularity, ¢, = (~A;) ! p4 is continuous and has a limit
as | x| — +oo.

In dimension d =1 or d = 2, the same scheme can be adapted after proving that % is
bounded from below. This has been established in [29, Theorem 3.4] (also see [54]) when
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d = 2 under Assumption (V2). The case d = 1 can be dealt with by elementary methods, as
follows. Let us consider the potential

M 1 1
W(x) = > ((x+ 1D T—oo,-1)(x) + > (x+1DA=2)T—1,413 (%) = (x = 1) D51, +00) (X) = 5)

such that, a.e., -V, = % Tj—1,+1) =: po and let ¥ := ¢ — V. We claim that

1 1 1
g[p]:fplogpdx+fp(V+V0)dx——fu/"wdx+—fp0u/dx——fpVde
R R 2 Jr 2 JRr 2 Jr

is bounded from below because the first two integrals can be bounded using Jensen’s in-
equality and we have [, 9"y dx = — [|y'|*dx. The balance between the last to terms
is slightly more subtle. Let xy € R be such that ¢(xp) = M/2. Using (13), we notice that
¢ (x0) = 0 and obtain

x y
<p(x):—f dyf 0(2)dz
X0 X0

because ¢(xy) = o = 0. A crude consequence is the estimate —% |x — Xxo| < ¢p(x) <0 for any
x € R, which shows that

M +1 MZ +1
fpowdxzfpovodx+—f (p(x)dxzfpovodx——f |x—xpldx,
R R 4 J1 R 8 J1

that is, a lower bound of the order of |xy| as |xy| — +o0o. On the other hand, if |xg| > 1, we
have

M [ M?* M
—fpVode——f p(x)dx+f pVodx=——+—Vy(x0),
R 4 Ja |/ xo] 2 2

which is of the order of V;(xp) and dominates |xy| as | x| — +00, by Assumption (V2). Com-
bining these estimates provides us with the lower bound we need. U

3.3. Some non-trivial Poincaré inequalities. Assume that V is such that (V1)-(V2) hold.
Before considering the case of the measure e WrdxonR?, with W, =V + ¢+, we may ask
under which conditions on V the Poincaré inequality

(15) fdIqulze_dez%pfdIulze_vdx VueHl(Rd) such that fdue_vdx:O
R R R

v

is true for some constant 6p > 0. Let us define w = ue~"/? and observe that (15) is equiva-

lent to
flvxwlzdx+f (D|LU|2d.7CZC€pf lezdx
R Rd R

under the condition that fp« we™"/?dx = 0. Here ® = |V, V|* - 1 A,V is obtained by ex-

panding the square in [q W W+ % wV xV|2 dx and integrating by parts the cross-term.
From the expression of the square, we learn that the kernel of the Schrodinger opera-
tor —A;+ ® on Lz(Rd, dx) is generated by e~V/2, According to Persson’s result [63, Theo-
rem 2.1], the lower end o of the continuous spectrum of the Schrédinger operator — A, +®
is such that

o = lim infess ®(x) =:0y.
r—+00 xer

As a consequence, if o is positive, either there is no eigenvalue in the interval (0,0) and
%p = 0, or 6p is the lowest positive eigenvalue, and it is positive by construction. In both
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cases, we know that (15) holds for some é6p > 0 if oy > 0. In order to prove (15), it is enough
to check that

1 1
(V3a) oy:= lim infess(ZIVlez—EAxV)>0 and lim infess|V,V]|>0.

r—+o0 xeB’L: r—+o0o xeB'(f

See for instance [4, 18] for further considerations on Assumption (V3a). Now let us consider
the measure p4 dx = e~""*dx on R? and establish the corresponding Poincaré inequality.

Lemma 6. Assumethatd =1 and considerV such that (V1), (V2) and (V3a) hold. We further
assume that

(V4) lim infess ((M—ZV')2 —2V”) >0 if d=1.

r—+oo |x|>r

If o« solves (7) and W, =V + ¢, then there is a positive constant € such that

(16) f IV ul® pydx = cg*f lul pydx YueH'RY st f Upxdx=0.
R R4 R4

Proof. In order to adapt the result for V to Wy, it is enough to prove that

1 1
ow, := lim infess (Z Vapu +V V| - > (Axps + Axv)) >0.

r—+oo xeB;‘

By Lemma 5 and (V3a), [Axdx| = px = 0(IVxVI*=2A,V). Using Vi, = VG4 * py, we
obtain that |V ¢, | = @ (|x|'~¢) is negligible compared to |V, V| if d > 2. If d = 1, the result
follows from (V4) using the fact that ¢/, (x) ~ + M/2 as x — Foo. U

We shall now replace (V3a) by the slightly stronger assumption that, for some 6 € [0, 1),

7] 1
(V3b) lim infess (Z IVxVI2 - EAXV) =0 and lim infess|V,V|>0.

r—+o0o xEBf r—+o0o xEBf

Corollary 7. Assume that d =1 and consider V such that (V1), (V2), (V3b) and (V4) hold.
If o solves (7) and W, =V + ¢, then there is a positive constant € such that

a7 fIqulzp*dxzcgf IuIZIVxW*Izp*dx VuEHl(IRd) s.t. fup*dx:O.
R4 R4 R4

Proof. By expanding |V (u/px) |2, using V,/px = —3 V. W, ,/p» and integrating by parts,
we obtain that

1 1
05] |V (u p*)|2dx:f Iqulzp*dx—f (—IVxW*IZ——AxW*)Iulzp*dx.
R4 R4 Rrd \ 4 2

Combined with (16), this shows that

\ul®pydx

0 1
fRdIqulzp*dxszd [(1—n)<€*+n(z|vxw*|2—§AxW*)
+g(1—9)fRd|u|2|VxW*|2P*dx

for any 7 € (0,1). With  chosen small enough so that (1 -1) € +1 (2 1V Wi > - 1 A, W, ) is
nonnegative a.e., the conclusion holds with € =n (1 -0)/4. [l

In the same spirit as for Corollary 7, we shall assume that for some 6 € [0, 1),

r—+o00 JCEB,?

0 1
(V5) lim infess ZIVxV|4—EAXVIVXVIZ—Hess(V):VxV®VxV)20

and lim infess|V,V|>0.
r—+o0 xeBﬁ
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Corollary 8. Assume that d =1 and consider V such that (V1), (V2), (V3b) and (V5) hold.
If o solves (7) and W, =V + ¢, then there is a positive constant 6. such that

deVXuIZIVxW*IZp*deC&fd|u|2|VxW*|4p*dx VueHl(Ide) S.t. fdup*dx:O.
R R R

The proof is again based on the expansion of the square in |V (u/px) |2 [V, W, %, in-
tegrations by parts and an IMS (for Ismagilov, Morgan, Morgan-Simon, Sigal) truncation
argument in order to use Lemma 6 in a finite centered ball of radius 2R, on which V,Wj is
bounded and Assumption (V5) outside of the centered ball of radius R. See [59, 67] or [14,
section 2] for details on the IMS truncation method. Compared with Corollary 7, there is
no deeper difficulty and we shall skip further details.

3.4. Further inequalities based on pointwise estimates. If 91 is a d x d symmetric real
valued matrix, let us denote by A(9) the largest eigenvalue of 971. With this notation, let
us assume that

1
(V6)  Ay:= lim supess A (ev(x) (Hess(e_v(x)) -3 Ax(e” V) Id)) < +00.

- x€B¢ IV, V(x)|?

In other words, Assumption (V6) means that for any € > 0, there exists some R > 0 such
that

eV (Hess(e_v(x)) 1

> Ayx(e”V™) Id) < (Ay—-8)|V,V(®)’Id, xeR?a.e. such that|x|> R,

where the inequality holds in the sense of positive matrices.
Lemma 9. Assume that d = 1 and consider V such that (V1), (V2) and (V6) hold. If ¢
solves (7) and Wy, =V + ¢, then there is a positive constant A, such that

1
fd (Hess(p*)—gAxp*Id):wa®wadeA*fd|vxw|2|vxw*|2p* dx
R R

for any function w € H. _(R%).
Proof. An elementary computation shows that
Hess(px) = (VWi ® VW, —Hess(Wy)) px  and  Axpx = (IVxWil* = Ax W) o

The proofis then similar to the above arguments, up to elementary estimates, that we shall
omit here. U

Similarly, let us assume that

(V7) lim supess’Vx (log(IVxV(x)Iz)) ‘ < 400.

r—+oo JCEB,?

Lemma 10. Assume that d = 1 and consider V such that (V1), (V2) and (V7) hold. If ¢
solves (7) and Wy =V + ¢, then there is a positive constant A, such that

(18) ‘vx (VWi (0)12) ‘ <AV, W), xeR?ae. such that|x| > R.

Here we mean that V, (|Vx W, |?) Viw = 2Hess(Wy) : V, Wy ® Vw for any C! function w.
Inequality (18) follows from the regularity and decay estimates of ¢,. Since the proofrelies
only on elementary but tedious computations, we omit it here. In the same vein, let us
assume that

(V8) [1V.V1 e_V”LOO([Rd,dx) <+oo and ||V, (IV<VI?) |2€_V||L°°(Rd,dx) < +0o.
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Lemma 11. Assume that d = 1 and consider V such that (V1), (V2) and (V8) hold. If ¢
solves (7) and Wy = V + ¢, then || IV x Wy |? pucll coa gy and || [V (IVxWil?) |Zp*||L°°(Rd,dx)
are finite.

3.5. A Bochner-Lichnerowicz-Weitzenbock identity and second order estimates. Alge-
braic computations and a few integrations by parts provide us with the following estimate.

Lemma 12. Let p, = e~"V* be a non-trivial function in LS. NWY2(R4). Then for any smooth
function w on R with compact support, we have the identity

leess(w)lzp*deGf i|Vx-(p*wa)|2dx+8f (VxW*-wa)zp*dx.
Rd RA Pk Rd

Notice that if V satisfies (V1)-(V2), M > 0 and W, = V + ¢, where ¢, is the unique solu-
tion of (7), then p, is an admissible function for Lemma 12.

Proof. Let us start by establishing a Bochner-Lichnerowicz-Weitzenbdck identity as fol-
lows:

1 1
5 B P+ VW) = V- (o4 Hess(w) Vew) + 2 V- (IVxwl* Vi)

1
= p« |Hess(w)[* + py Viw - Vy(Acw) + 5 Aeps IV wl]?
+2Hess(w) : Vxw®V,px
= px [Hess(w)* + Vi Vi (px Axw) — (Vxw - Vip) Axw

1
+ EAxp* Iwa|2+2Hess(w) VxweVyips.
We obtain after a few integrations by parts on R that
f Ax(p«IViwl?)dx =0, f Vew V(o Ayw)dx = —f (Ayw)* pydx,
R4 R R

1
—f Axp*Iwalzdx+f Hess(w) : V,w @ V,p,dx=0,
2 R4 R4

which proves that
f |Hess(w)|? Pxdx
R4

:,[Rd (Axw)zp*dx+fRd (wa~pr*)Axwdx—fRdHess(w):wa®pr*dx.

We deduce from
fd (Vxw-Vyp) Aywdx = —fdAxw(wa'VxW*)P* dx
R R

1 1
SE\[I;d(Axw)zp*dx—'—EA[Rd(VXW*'vxw)zp*dx
and

—deess(w):wa@»pr* dx:deess(w):wa@)VxW*p* dx
R R

1 1
< —f (Hess(w))? px dx+—f (VxW*-wa)zp* dx
2 Jrd 2 Jrd
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that
1 3
—f IHess(w)Izp*dxs—f (Axw)zp*dx+f (VXW*-wa)Zp*dx.
2 R4 2 R4 R4

Since Vypx = —Vi Wi pyx and Ayw py = Vi - (05 Vi w) + (Vx Wi - Viw) py, we have the esti-
mate

1
f(Axw)zp*deZf —|Vx-(p*wa)|2dx+2f (VXW*-wa)zp*dx,
R4 R4 Ox R4
which completes the proof. U

3.6. The scalar product. On R? x R?, let us define the measure
du:= fi(x,v)dxdv

and consider the functional space

(19) Jf::{heleLz(Rded,dp):ff hd,u:Oandf Iwahlzdx<oo},
R4 x R4 R4
where we use the notation pj, = fga h fx dvand yj, = (-Ay) ! pj. We also define

(20) <h1,h2)::ff hlhzdu+f o (A0 top,dx Y hy, hye F.
R4 x R4 R4

Remark 1. This definition deserves an explanation. The whole motivation of this paper is to
understand the large-time asymptotics of the nonlinear system (VPFP) and it is known, see
for instance [17], that the irreversibility and the convergence of a solution f to the stationary
solution f, can be studied using the free energy functional

dexﬁdflog(ﬁ) dXdVJF%fWIVx(/JIde.

Indeed, if (f, ) solves (VPFP) and has sufficient smoothness and decay properties, we have

% (ff%wflog(%) dxdy+%fRd IVx¢>|2dx) = —ff%wf‘l V. fl?dxdv.

However, no rate of decay of the free energy is known for initial data such that f — f, is large.
With f = f (1 +nh) for some h such that [[ga,ga h fx dxdv =0, we can at least investigate
the limitasn — 0. At leading ordern?, the free energy isn? (h, hy, which is the initial reason
for introducing this scalar product.

Lemma 13. Let M > 0. If V satisfies (V1)~(V2), then (#,(-,-)) is a Hilbert space for any
dimensiond = 1.

Proof. Up to an integration by parts, we can rewrite (hy, hy) as

(hbhz):ff h hzd,le (=Ax¥n) ¥n, dx:f h hzd,u+f VW - VxWp, dx
R4 xRd R4 R4 x R4 R4

and observe that this determines a scalar product. This computation has to be justified.
Let us distinguish three cases depending on the dimension d.

Let us assume first that d = 3. We know that v, = G4 * p4 is nonnegative and deduce
that p, is bounded because

0<e V¥ <e Vel ®RY).
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Hence, for any p € (1,2], we have

([ hfodv| dx<|o.l wahlf IhlP dp.

According to [56], we know by the Hardy-Littlewood-Sobolev inequality that

[p1(X)|p2(x)]
Aded |x — y|d-a dXdySCgHLS”plnLP([Rd) ”p2”Lq([Rd)

”ph ”fp([Rd)

if a € (0,d) and p, g € (1,+00) are such that 1+ 4 = %+ %. This justifies the fact that

Jrd Pn (=A%) pp dx is well defined if h e L' 12 (R? x RY, dp). With a=2, p<3/2ifd =3,
p<2ifd=4and p <2ifd =5, we deduce that v € L7 (R%) where q =qllg-1) =
dpl(d—2p). Asimple Holder estimate shows the Gagliardo-Nirenberg type estimate

”VX‘V”?JZ(W) <[ axw||pm ®%) v Lo ®4)
1

and proves for an appropriate choice of (p1, 1) € (1,2) x (2, +00) wr[h o= 1 that V,yp,
is bounded in L2(R%).

The case d = 2 is well known. The boundedness of || pp|; e, for any p € (1,2] follows
by the same argument as in the case d = 3 and we learn that |pj|log|pyl is integrable by
log-Holder interpolation. The boundedness from below of [z p, (—Ax) ™ py, is then a con-
sequence of the logarithmic Hardy-Littlewood-Sobolev inequality, see [21, 29]. Using the
fact that fRd prdx =0, we also know from [12] that Vv, is bounded in L2(R2).

When d = 1, the nonnegativity of the scalar product is a consequence of (14) and holds
without additional condition by a simple density argument. U

The condition [[pa,ps b dp = 01in the definition of & is simply an orthogonality condition
with the constant functions, with respect to the usual scalar product in 12 (Rd xR, d ,u). By
taking the completion of smooth compactly supported functions with zero average with
respect to the norm defined by h — (h, h), we recover ./, which is therefore a Hilbert
space. In the next sections, we shall denote by || - || the norm on # associated with the
scalar product so that

Ihl%=(h,hy Yhe 7.

Whenever another norm is used, this will be explicitly specified.

4. PROOF OF THE MAIN RESULT

In this section, we prove Theorem 1. Our task is to check that the assumptions of Sec-
tion 2 hold in the functional setting of Section 3.

4.1. Definitions and elementary properties. On the space ./ defined by (19) with scalar
product given by (20), let us consider the transport and the collision operators respectively
defined by

(21) Th::v'th_v_xW*'th+ U'v_xw;l, Lh.:Ayh_U'th
where W, =V + ¢,. In the literature, L is known as the Ornstein-Uhlenbeck operator.

Lemma 14. With the above notation, L and T are respectively symmetric and anti-sym-
metric operators on (€, <,)).
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The operator L is defined on continuous functions with compact support which are of
class C? with respect to v and it is semi-bounded. It can be extended using Friederichs
extension as a self-adjoint operator on .#. Concerning T, we shall define it on the space of
continuous functions with compact support of class C! with respect to x and v and omit
details concerning domain issues and extensions as we need only properties that apply to
solutions of the evolution problem (1).

Proof. If hy and hy are two functions in W»?(R?, 4 dv), then L is such that
f (th)hgﬂdv:—f Vyohi-Vyho M dv
Rd Rd

and as a special case corresponding to h; = h, hy = 1, we find that pj = fpa (L) f dv =0
and also v ;, = 0 for any i € #°. As a consequence, we have that

(LR, o) = —f[ Vohy-Vohsdp = (hy, (L)) .
R4 x R4

Concerning the transport operator, we know that T f, = 0. Hence an integration by parts
shows that

(i = [ w5y = VW Vo) by dp = = (i, (Th))

for function h; and h, in .4 which are smooth enough, because p1y, = fpa (Th) frdv =
wah-fRde*dv:Oandu/Th:O. ]

4.2. Microscopic coercivity. By the Gaussian Poincaré inequality, we know that
fd \V,gl> u dv zfd lg-Ng|> #dv VgeH' (Rd, ﬂdv) ,
R R

where I1g = [ps g # dv denotes the average of g with respect to the Gaussian probability
measure .4 dv. By extension, we shall consider II as an operator on ./ and observe that

Ph _ Jpahfrdv _
Px f[Rd f* dv R
Let us notice first that IT is an orthogonal projector.

(22) Ih=uy:= hittdv VYhed.

Lemma 15. I1 is a self-adjoint operator and 1o I1 = I1.

Proof. It is elementary to check that

(IToIl) h =Muy, = uy, ff (th)hgd/,t:f Up, Up, Px dX
RY x R4 R4
and
f prin (A0 pp, dx = f Py (A0 o, dx
R4 R4
because pp, = px Up, = Px Urihy, = PIiky - ]
Lemma 16. Microscopic coercivity (H1) holds with A,, = 1.

Proof. We already know that — ((Lh), h) = ffRded |V, h|? du and pp—nip = pn— por = 0 so
that

2 _ 2 _ 2
|h~TIh] ‘”h_Hh”LZmded,dm‘ffwxw'h‘nh' dp.

The conclusion is then a consequence of the Gaussian Poincaré inequality. U
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4.3. Macroscopic coercivity.

Lemma 17. Assume that d = 1 and consider V such that (V1), (V2), (V3a) and (V4) hold.
With the notations of Lemma 6, macroscopic coercivity (H2) holds with Ap; = €.

Proof. Using TITh = v+ (Vyuy + Viyp) with uy as in (22), fpa (v-€)? 4 dv =1 for any given
ee $9 1 and (16), we find that

1 2

because fpa uppsdx = [gaprndx = 0. We know from Lemma 13 that fpq up ¥y p« dx =
Jra PrWr dx = 0 and by the Cauchy-Schwarz inequality, we get that

2
(f whp*dx) st Iwhlzp*dx.
R4 R

Altogether, we collect these estimates into

f|quh+Vx1//h|2p*dx2C€*[/ |uh|2,0*dx+f PrYpdx
R R R4

which concludes the proof. U

1T = fR Vot 4Vl py dx =6,

=6y M|lupl?,

4.4. Parabolic macroscopic dynamics.
Lemma 18. The transport operator T satisfies the parabolic macroscopic dynamics (H3).

Proof. Since TI1h = v-(Vyup + V), we obtain that

OTHAps = (quh+Vx1//h)-fd vfedv=0.
R
O

4.5. Bounded auxiliary operators. The point is to prove that (H4) holds, i.e., that for any
F e A, |AT(Id —II)F| and |ALF| are bounded up to a constant by ||(Id — I1)F||. This is
the purpose of Lemma 19 and Lemma 20. The two quantities, |AT (Id — IT) F|| and [|ALF]|,
are needed to control the bad terms in the expression of D, in the abstract formulation
of Proposition 4, namely (TAF, F), (AT(Id - II)F, F) and (ALF, F) (which have no definite
sign), by the two good terms, — (LF, F) and (ATIIF, F) (which are both positive).

Lemma 19. The operators TA and AL satisfy: for all h € L2(R? x RY, dp),
1
IAL k|l < > Id-TDA].

Proof. If we denote the flux by jj, := [ga v h fi dv, we remark that jj , = — j, and
NTh=V,jn—(ViV+Vids) - jn.
Since Ah = g means g+ (TIN*(TIN)g = (TII)* h = —IITh, this implies that
ALh=—-Ah.

The same computation as for (12) shows that IALR|? = ||AR|? = ||g||2 < ;1L||(Id— mh|?,
which completes the proof. U

Lemma 20. Assume that d =1 and consider V such that (V1), (V2), (V3b), (V4), (V5), (V6),
(V7) and (V8) hold. There exists a constant € > 0 such that

IATAd-ID Al <€ 1Ad-ID) Al Yhe .
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Proof. In order to get an estimate of || AT (Id — IT) k||, we will compute [|AT(Id —I1))*k|.

Step 1: Reformulation of the inequality as an elliptic regularity estimate. We claim that
(23) |(AT(d -m)* r|* = ffd |(ATd- m)*h|* du= 2fd |Hess(wg)|*px dx,
RY xR R
where wg := ug + g and —A,y ¢ = pg is computed in terms of
g =(Id+(TI*(Tm)'n
which is obtained by solving the elliptic equation
(24) g_Axwg+VxW*’vXWg:h.

Let up = Ilh and wy, := up + wy. We observe that TIlh = v-Vywy, p1np = 0 and, as a
consequence

(TI*(TM h=-0T(THA) = - Aywy +V Wy - Vewy, = —eV* V(e V,owy)
where W, =V + ¢, is such that p, = e~ Wx_ With g obtained from (24), we compute
(ATAd-1D) h=—-(Ad-IDTA*h = - Ad - IDT(TI) (Id + (TI* (TID) 'k
=—(Id-I)T(TIg=-(Id—-11) (v® v:Hess(wg)) = Axwg — v ® v : Hess(wyg)

where Hess(w) = (V,® V,) w denotes the Hessian of w. Hence, with [Hess(w)|?> = Hess(w) :
Hess(w), we obtain (23) using the following elementary computation
Lets=(s; ]) i j=1 be a symmetric matrix with coefficients which do not depend on v. We

compute S := [pa (s: v® v —Tr(s))* 4 dv as follows. Using

2
(s:1/®v—Tr(s))2 (Zs,]v,v] Zs”)

i,j=1
2 d d d \?
= Z SijViVj -2 Zsii Z SijViVj + Zsii
i,j=1 i=1 i,j=1 i=1

and fpa v; vj M dv = §;j, we obtain
2 2
S ( Z Sl] vl U]) ./%dU-(ZS”) .
RY i,j=1 i=1
Since
d 2 d 2 (a4 , 2 d d ,
Z Sijvivj| = Z SijViVj + Zsiiyi +2 Z Zsijskkvivjvk,
ij=1 i£j=1 i=1 i£j=1k=1
Jga Vi M dv =1, and [pa v} M dv =3, the computation simplifies to

2
fw(z sl]vlvj) Mdv=2 Z s it Z s”s]]+3Zs”

i,j=1 i#j=1 i#Zj=1

=2 Z s7 +(Zs”)2.

i,j=1
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Altogether, this proves that

d
S=2) slz-]-:2|s|2.
ij=1

The result follows with s = Hess(wg). A bound on fRd IHess(wg)Izp* dx will now be ob-
tained by elliptic regularity estimates based on (24).

Step 2: Some H! -type estimates. By integrating (24) against .# (v) dv, we notice that

1
(25) Ug——Vy- (px Viwg) = up
P*
so that
(26) fRdugp*dx:fRduhp*dx:ffwxwhduzo.

If we multiply (25) by wg p« and integrate over RY, we get after an integration by parts that

USINg fpa UgWg px dX = Ja|ViWgl>dx and fpa upWgpr dX = Jga ViWp - Vigdx on the
one hand, and the elementary estimates

U[de UpUg Py dx

‘ fR Ve Vg dx

2

1 2 2
S—fRd(Iugl +lupl”) px dx,

1
s—f (IVxwnl® +IViygl®) dx,
2 Jrd

on the other hand, we obtain that

27) fluglzp*dx+f |vxu/g|2dx+2f IV wgl® oy dx < [TTR|I*
R4 R4 R4
where
= [ prdxs |9l dx.
R4 R4
Using |V ug|® = |Viwg — Vigl* < 2(IVywgl? + |V, gl?), we deduce from (27) that
(28) fd Iquglzp*deZfd Iwaglzp*dx-l-Zdewaglzp* dx < |1 h|?
R R R
with £ = 1+2“p*”L°°([Rd,dx)'

Step 3: Weighted Poincaré inequalities and weighted H' -type estimates. The solution Ug
of (25) has zero average according to (26). We deduce from Corollary 7 that

fwwxuglzp*dxz%fw|ug|2|vxw*|2p*dx,
from which we get that

A
2. 2 2 2
(29) X3 .—fRdlugI VWil prdx < — TTH|~.
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Next, we look for a similar estimate for fRd |1,(/g|2 |V W, |? pxdx. The potential ¥, has

generically a non-zero average Eg = A% rd Vg P« dx which can be estimated by

2 2 2
M2|U/g|2 = (‘[[Rd H/gp* dx) = (f[R{d Wg (_Ax(p*) dx) = (‘[[Rd (_Ang) (P* dx)
2
- (fR ug</>*p*dx) wa |</>*|2p*dxfw|ug|2p*dxsx1 T
with k7 := f[Rd |¢>*|2p* dx, using (27). Since V,p, = =V, W, p4, we also have

fRde|VxW*|2P*dx:_fRdU/gva*'VxP*dx:fRd (WgAxW*"‘VxU/g'VxW*)P*dx

and, using the Cauchy-Schwarz inequality,

2
(fRdUJgIVxW*Rp* dx) S[Rd |1Vg|zp* dfod (AxW*)Zp* dx
¥ fR Vgl dx il g fR VWl pda.
By Lemma 6 applied to yg — v/,

2 2 — 2
6, fR gl P dx < 1pshoqpa g fR Vgl dx+ 6T,

and (27), we conclude that

2
(fwwgwxw*ﬁp*dx) <%z |TA|?

where
Kzzz(i f (A Wa)2 py dx+ f |vxw*|2p*dx)||p*||Lded =L f (AW)? pa dx.
€% Jrd R4 ®EAX T M2 Jpa

By applying Corollary 7 to y ¢ — Wg, we deduce from

— 2 2 2
%Ad|wg—wg| IV, W, | ,O*defRdIVxUIgI ps dx

that
Cgfw Iwg|2|VxW*|2p*dxst|Vng|ZP*dx+2C€wgﬁl;dep*|va*|2p*dx'
Hence
loxlly R4, d VvK1K2
(30) fw |u/g|2|vxw*|2p*dxs( Cg‘ Y2 1\14 )||Hh||2.

Now we use (29) and (30) to estimate the weighted H!-type quantity

X2 = fRdwxungxW*Fp* dx.
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Let us multiply (25) by ug [V, W |2 P« and integrate by parts in order to obtain
| P19 W e [ Vg0
+ fRd (Vattg - Vi) IV Wil? pu dx + fRd ug Vi (IVxWil?) (Vyug +Vig) px dx

:[;Qd U Uglva*Izp* dx.

Using Lemma 10, we obtain

f|| Rugvxuva*F)vxugp*dx sAofRd|ug||vxw*|2|vxug|p*dxsonlxz.
X|>

Using (27), (28), Lemma 11 and the fact that 1/p, is bounded on B, we obtain

X|=

< H ||V (VaWo) Pl o5, ITLRI?
and, by similar arguments,

fRd (Vattg Vo) IV Wil2 ps dox < k3 X T,

[, Vs (VW) Vg i < o Xo MR

with

1/2 1/2

5= [ VWl iy and o= |92 (9.0 o

Lo®R4,dx)
because we know from (27) that g |V g|* dx < |ITL h||%. Using Corollary 8, we obtain that

2

2 2 2 2 4 2X2
(fRduhug|va*| p*dx) waluhl p*dxfwlugl IVxWil" pxdx < |[ILR|| %

Summarizing, we have shown that
ITL Al
V Eo

X2+ Xz —x3 X ITL Al — Ao X; Xo—x4 X, ITTR| < X,

+ ||V (VW) |10 g, ITTRIP.

Since X12 is bounded by || 11|12, we conclude that
(31) X2 <« ||ITTh|?

for some x > 0, which has an explicit form in terms quantities involving p, and its deriva-
tives, as well as all constants in the inequalities of Sections 3.3 and 3.4.

Step 4: Second order estimates. After multiplying (25) by V- (p« Vywg), we have

1
Lt - s

1
:\[%d uh p* p* v_x'(p*v_xl/ljg)dx-i"[Rdv_xug'v_xl/ng*dx

IA

1 1
E[I;d (Iuhlzp*+ p_* |Vx-(p*vxwg)|2) dx

1 2 2
+§fRd(|qug| +|Viwgl|”) px dx
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and after using (27) and (28), we obtain that

1 3
(32) f —|Vx-(p*wag)|2de(Jf+—)||l'[h||2.
R4 Px 2

1/2
Let X3 := (f[Rd (Viwg- VxW*)Z O dx) . After multiplying (25) by (Vywg - Vi Wy ) p, we
have that

X3 _fuqed Arxwg (Vewg -V Wy)psdx = fRd (up — ug) (Vxwg - VWi ) px dx.

Using the Cauchy-Schwarz inequality, we know that the right-hand side can be estimated

by X3 (Jpa ltgl® dx)l/2 + X3 (Jpa lunl® px dx)”2 <2 X3 ||IT h| according to (27) and obtain
that

XZ -2 X3 |1 wa Axwg (Viwg-ViWy)pydx.

Let us notice that
‘[RdAXWg(vag'va*)p*dx:_\[RdAxwngWg'pr*dx

1
= fd (Hess(p*) -3 Axpx Id) Viwg®Viwgdx.
R
As a consequence, by Lemma 9 and (27), we arrive at
A
X5 =2Xs IThl < — fw Vxwgl? IV Wal? ps dx < Ax X5 + A fRd IV gl? IV Wil? px dix

where X7 is the quantity that has been estimated in Step 4. Altogether, after taking (27)
and (31) into account and with

N S AAUATN BN §

which is finite by Lemma 11, this proves that

2
33) fd(vxwg-VxW*)zp*de(\/l /1—1) IR
R

Step 5: Conclusion of the proof. We read from Lemma 12, (23) and (32)-(33) that
. 2
I(ATad-m)*h|* < 2fd |Hess(wyg)[*px dx <2 (G(J{+ 3)+8 (\/1 +A- 1) ) ITL A%,
R
which concludes the proof of Lemma 20. U

4.6. Proof of Theorem 1. The potential V' (x) = |x|* satisfies the assumptions (V1), (V2),
(V3b), (V4), (V5), (V6), (V7) and (V8) if @ > 1. The result is then a consequence of Proposi-
tion 4 and Lemmas 14-20. A slightly more general result goes as follows.

Theorem 21. Let us assume thatd =1 and M > 0. If V satisfies the assumptions (V1), (V2),
(V3b), (V4), (V5), (V6), (V7) and (V8), then there exist two constants A > 0 and € > 1 such
that any solution h of (1) with an initial datum hy of zero average such that || holl? < oo
satisfies

Ih(t, )2 <€ holl?> e Yi=0.
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5. UNIFORM ESTIMATES IN THE DIFFUSION LIMIT

The hypocoercivity method of [31, 32] is directly inspired by the drift-diffusion limit, as
it relies on a micro/macro decomposition in which the relaxation in the velocity direction
is given by the microscopic coercivity property (H1) while the relaxation in the position di-
rection arises from the macroscopic coercivity property (H2) which governs the relaxation
of the solution of the drift-diffusion equation obtained as a limit.

5.1. Formal macroscopic limit. Let us start with a formal analysis in the framework of

Section 2, when (8) is replaced by the scaled evolution equation
dF 1

(34) e—+TF=-LF
dat €

on the Hilbert space . We assume that a solution F; of (34) can be expanded as
Fe=Fy+eF +e*F,+0(e)

in the asymptotic regime corresponding to € — 0; and, at formal level, that (34) can be
solved order by order:

el LE=0,

80 . TF() = LFl ,

el TR =LER.
The first equation reads as Fy = I1F, that is, Fj is in the kernel of L. Assume for simplicity

that L~} (TII) = — TII on an appropriate subspace, so that the second equation is simply
solved by F; = — (TII) Fy. Let us consider the projection on the kernel of the & ehH equation:

% (IIFy) — TIT (TM) Fo = TILF, = 0.

If we denote by u the quantity Fy = I[1F and use (H3), then — (ITT) (TII) = (TID)* (TTI) and
the equation becomes
Oru+ (TID* (TIHu=0,
which is our drift-diffusion limit equation. Notice that if u solves this equation, then
d
ol = =201 (T ull® < =2 A lul®

according to (H2). This program applies in the case of the scaled evolution equation (4).
Let us give a few additional details.

Let us assume that a solution %, of (4) can be expanded as h = ho + € hy + €2 hy + O (%),
in the asymptotic regime as € — 0,.. Solving (4) order by order in €, we find the equations

el Ayhg—v-V,hyg=0,
el v-Vyiho— VWi -Vyho+v-Vewp, =Ayhy —v-Vyhy,
el: 0tho+v-Vihy =V Wy -Vyhy+v-Vowp =Ayhy—v-Vyhy.

Let us define u = IThy, ¥ = yj, such that —A,y = up«, w = u+1y and observe that the first
two equations simply mean

u=hy, v-Vew=A,h1—v-V,hy,
from which we deduce that h; = — vV w. After projecting with II, the third equation is

al‘u_Axw'l'VxW*'wa:O,
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using f[Rd v v (v)dv =1d. If we define p = u p4, we have formally obtained that it solves

0,0 =Axp+Vy- (p (VxV+Vx(,b*)) + Vs (02 Vaw), —Acy=p.

At this point, we can notice that the solution p converges to p, according to the results of,
e.g., [54], at an exponential rate which is independent of €.

5.2. Hypocoercivity. Let us adapt the computations of Section 2 to the case € € (0,1) as
in [19]. If F solves (34), then

d
— e¢—Hgs[F] =D .[F],
Edta[] 5, F]

1
DselF]:= ~ (LF,F)+6 (ATIIF,F)— 6 (TAF,F)+ 6 (AT(d - II)F, F) —g (ALF,F).

The estimates are therefore exactly the same as in Proposition 4, up to the replacement
of A, by A,/ and Cy; by Cy/e. Hence, for € > 0 small enough, we have that

4 A€
AAMmE2+C2 (1+Ay)

o(g):= min{Z, A?m, g}t*(g)} =

We may notice that lim,_.q, @ =2({ with

(= omM
CM(1+/1M)
and, for € > 0 small enough,
2-(¢ 2+(¢
4C IFII> < Hye[Fl < 4( IFI> VFe .
By revisiting the proof of Proposition 4, we find that with 6 = (e and A =ne with
AmAa,
T A a2’
the quadratic form
A oA C A A
(X,Y)H(—’”—a)x%r M oy2 M xy-Z (x*+Y?)-26XY
& 1+AM & 2 2

is a nonnegative quadratic form for € > 0 small enough. In the regime as € — 0., the result
of Proposition 4 can be adapted as follows.

Corollary 22. Assume that (H1)—-(H4) hold and take( as above. Then for e > 0 small enough,
neHe[F1<D¢eelFl VFe 7.
Proof. The range for which the quadratic form is negative is given by the condition
A7 K'e* +KCy (4K Am +3Cp (K +4)) e —2C5, <0.

It follows that the above condition is satisfied if € is taken small enough which, for the same
reasons as above in this paper, guarantees that the entropy-entropy production inequality
of Corollary 22 holds. 0

As an easy consequence, if F; solves (34), we have that
Hee[F(5,)]1 <H g [F(0,)]1e™ " VYi=0.

Proof of Theorem 2. With the abstract result on (34) applied to (4), the estimate (11) holds
with 6 = { €. We conclude with A =1, for some ¢ > 1, which do not dependone —0,. [J
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6. THE NONLINEAR SYSTEM IN DIMENSION d =1

With the notation (21), we can rewrite the Vlasov-Poisson-Fokker-Planck system (VPFP) as
0th+Th=Lh+Q[h], —-Ayyj= fd hfidv, with Q[h]:=V,y,-(V,h—vh).
R
Here we assume that d = 1 and prove Corollary 3. Using the representation (13), so that

X
w'h(x):—f uppxdx VYxeR,

(e9)

and the convergence of h(t,-,-) — 0in L'(R x R, du) as t — +oo, as a consequence of [17],
we learn that ¢ — [ly/}, (£, ") 1w is bounded uniformly w.r.t. # > 0. In fact, we have a slightly
more precise estimate that goes as follows.

Lemma 23. Assume V satisfies (V1) and (V2) and let p4 € L' (R?) be the solution of (7) such
that fpa pxdx = M. Let f = (1+h) fx € LL®R? x RY) such that [[, 5 f log(f/ fx) dxdv < co.
Under the assumption [[p. ph fx dxdv =0, v, as defined above satisfies the estimate

f

Wil =M [ flo (— dxdv.
Vil ) RXRJC 8 7.

Additionally, under the assumptions of Corollary 3, if h solves (VPFP), then
tﬁgloollw;l(t, Ilreew) = 0.

Proof. We deduce from Jensen’s inequality

Lflog(%) dvzpplogpn

that f/ fi = 1+ his such that the free energy satisfies the bound

ff (1+h)log(1+h) frdxdv = f On log(@) dx = f (1+ up) log(1+ up) pxdx
RxR R P* R
and get according to [25, 53, 64] from the Csiszdr-Kullback-Pinsker inequality that
2
1 i)
4M

Concerning the evolution problem (VPFP), we recall that the free energy decays accord-

ing to
i(ff (1+h) log(1 + h) f. dxdu+1f| ’Izdx)——ff £|vulo (i)
dt \JJrxr 8 * 2 [Rewh B RxR vio8 I

where the right-hand side is, up to the sign, a Fisher information. As stated in [17, Theo-
rem B], this shows the strong convergence of f(¢+n,-,-) to fx in LI(R* xR xR%) as n — +oo
because f; is the unique solution of (VPFP) with mass M and a Maxwellian velocity dis-
tribution. By the logarithmic Sobolev inequality, this also proves that the limit of the free
energy is 0, which concludes the proof of Lemma 23. O

1
fR(1+uh)log(1+uh)p*dx2mul;luhlp*dx) =

2
dxdv,

Proof of Corollary 3. With the notations of Section 3.6 and the functional Hs defined as in
the linear case by

Hslhl := 3 [ hl* +6 (Ah, h,
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we obtain that

%Hg[h] +(Lh, h)— 6 (ATI1h, h) + 6 (TAh, h) — 6 (AT(d - II)h, h) + 6 (ALh, h)
=(Qlhl, h) +6 (AQ[h], h) + 6 (QLh],Ah) .

Let us give an estimate of the three terms of the right hand side.

1) In order to estimate

(Q[h],h):f w’h(avh—vh)hf*dxdv+f1/f’hp*(f(6yh—vh)J%dv vrdx,
RxR R R

we notice that [(0,h— vh) # dv =0 and also that [, |0,k fx dxdv = —(Lh, h). From
the improved Poincaré inequality [34, Ineq. (4)], we also learn that || v h||? < 2(d+2) ||V, h||%.
Simple Cauchy-Schwarz inequalities show that

[<QLAL by | < clly) e | (LR, BY |

because IIhIILz(RdXWM <|hl,withc=1++v2(d+2).
2) Let us consider g = Ah = ug given by

Y2 mny

1 1
ug——Vx-(p*wag):—p—Vx-jh with jhiZfRthf*dV-
*

Px

With v such that —wg = Ug px, we have to estimate

(Q[h],Ah):f v, @yh—vh) ugf*dxdv+fw'hp* (f(avh—vh)/%dv) Ygdx.
R R R

Exactly as above, we have on the one hand that

Rx

UR Wy Ouh=vI) g frdxdv| < | e 12110, v R

< |y, o IAd =D R | (LR, By |2

because ||g||L2(RdXW,dm <ligll=1IAhll < ||dd —I1) k||, and on the other hand that

2
fwlwglzp*dxs‘é;lfmlwélzp*dx+(wagp*dx)

”P*”L"O(R)f /2 f 2 f 2

S — dx+ | lu dx dx

€. le‘gl R| g| [ R|(P*| 0%

by Lemma 6 again, from which we conclude that
|(QLRLARY| < ¢l liLom | (LR, B |

3) With g given in terms of h by (24), A*h=v wﬁo, and we learn from (27) that |A* k|| < |I1A].
Hence

Y2 1ad-mhl.

1/2

|(AQIR1, 1y | = [{QLA], A*R)| < clly) llie@ | (LT, BY | ITTA].

Summing up all these estimates and using — (Lh, h) = 1,,, || (Id - mh|? by Lemma 16, we
obtain as in the proof of Proposition 4 that

d
%H§[h] < —A,Hﬁ[h]
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for the largest value of A for which
0 Am
1+A7 M

A A
(X,Y)— Apm—8) X*+ Y- 6CuXY -3 (X*+Y?) - Z XY —eX(X+2Y)
is a nonnegative quadratic form, as a function of (X, Y). Here X :=||(Id - II) k|, Y := || I1A]|,
and

e:=cly) e
can be taken as small as we wish, if we assume that ¢ > 0 is large enough. This completes
the proof of Corollary 3. U

Let us conclude this section by some remarks.

(i) Itis clear from the proof of Corollary 3 that the optimal rate is as close as desired
of the optimal rate in the linearized problem (1) obtained in Theorem 1. Up to
a change of the constant €, we can actually establish that these rates are equal
because we read form the above proof that €(¢) = 0 (e"“) and the result follows
from a simple ODE argument. This is a standard observation in entropy methods,
which has been used on many occasions: see for instance [11].

(ii) Corollary 3 is written for V(x) = |x|* but it is clear that it can be extended to the
setting of Theorem 21. Similarly, our estimates are compatible with the diffusion
limit, as in Section 5.

(iii) Results in higher dimensions, i.e., for d = 2 as in [48, 44, 45, 5] rely on smallness
conditions, special properties of the potential V (typically, V = 0 or V(x) = |x]?),
or closure conditions on regularity estimates which do not allow to handle the de-
cay of generic solutions of (VPFP) based on the properties of the free energy, as
we do above in the case d = 1. This is so far an important open question, which
deserves attention. The understanding of the mechanism should go through a de-
tailed description of the smoothing and decay properties of the solutions for large
time asymptotics.
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