S. Salerno, E. Curcio, A. Bader, L. Giorno, E. Drioli et al., Gas permeable membrane bioreactor for the co-culture of human skin derived mesenchymal stem cells with hepatocytes and endothelial cells, J. Memb. Sci, vol.563, pp.694-707, 2018.

A. Piscioneri, S. Morelli, M. Mele, M. Canonaco, E. Bilotta et al., Neuroprotective effect of human mesenchymal stem cells in a compartmentalized neuronal membrane system, Acta Biomater, vol.24, pp.297-308, 2015.

A. Di-luca, B. Ostrowska, I. Lorenzo-moldero, A. Lepedda, W. Swieszkowski et al., Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds, Sci. Rep, vol.6, p.22898, 2016.

P. Kasten, I. Beyen, P. Niemeyer, R. Luginbühl, M. Bohner et al., Porosity and pore size of ?-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study, Acta Biomater, vol.4, pp.1904-1915, 2008.

S. Morelli, S. Salerno, H. M. Ahmed, A. Piscioneri, and L. D. Bartolo, Recent strategies combining biomaterials and stem cells for bone, liver and skin regeneration, Curr. Stem Cell Res. Ther, vol.11, pp.676-691, 2016.

S. Salerno, S. Morelli, and L. D. Bartolo, Advanced membrane systems for tissue engineering, Curr. Org. Chem, vol.21, pp.1760-1774, 2017.

H. M. Ahmed, S. Salerno, S. Morelli, L. Giorno, and L. D. Bartolo, 3D liver membrane system by co-culturing human hepatocytes, sinusoidal endothelial and stellate cells, Biofabrication, vol.9, p.25022, 2017.

E. Drioli and L. D. Bartolo, Membrane bioreactor for cell tissues and organoids, Artif. Organs, vol.30, pp.793-802, 2006.

F. J. O'brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials, vol.26, pp.433-441, 2005.

C. M. Murphy, M. G. Haugh, and F. J. O'brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials, vol.31, pp.461-466, 2010.

M. Dufresne, P. Bacchin, G. Cerino, J. C. Remigy, G. N. Adrianus et al., Human hepatic cell behavior on polysulfone membrane with double porosity level, J. Memb. Sci, vol.428, pp.454-461, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00788387

S. Salerno, A. Messina, F. Giordano, A. Bader, E. Drioli et al., Dermalepidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis, Mater. Sci. Eng. C, vol.71, pp.943-953, 2017.

S. Salerno, S. Morelli, F. Giordano, A. Gordano, and L. D. Bartolo, Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers, Colloids Surf. B: Biointerfaces, vol.146, pp.352-362, 2016.

S. C. Neves, L. S. Moreira-teixeira, L. Moroni, R. L. Reis, C. A. Van-blitterswijk et al., Chitosan/poly(?-caprolactone) blend scaffolds for cartilage repair, Biomaterials, vol.32, pp.1068-1079, 2011.

S. Mitragotri and J. Lahann, Physical approaches to biomaterial design, Nat. Mater, vol.8, 2009.

M. A. Meyers, J. Mckittrick, and P. Chen, Structural biological materials: critical mechanics-materials connections, Science, vol.339, pp.773-779, 2013.

S. Morelli, S. Salerno, M. Rende, L. C. Lopez, P. Favia et al., Human hepatocyte functions in a galactosylated membrane bioreactor, J. Memb. Sci, vol.302, 2007.

L. D. Bartolo, A. Piscioneri, G. Cotroneo, S. Salerno, F. Tasselli et al., Human lymphocyte PEEK-WC hollow fiber membrane bioreactor, J. Biotechnol, vol.132, 2007.

J. Aragón, S. Salerno, L. De, S. Bartolo, G. Irusta et al., Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering, J. Colloid Interface Sci, vol.531, pp.126-137, 2018.

J. C. Remigy, M. Meireles, and X. Thibault, Morphological characterization of a polymeric microfiltration membrane by synchrotron radiation computed microtomography, J. Memb. Sci, vol.305, pp.27-35, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00323055

A. D. Olubamiji, Z. Izadifar, J. L. Si, D. M. Cooper, B. F. Eames et al., Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry, Biofabrication, vol.8, p.25020, 2016.

V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves et al., Properties of melt processed chitosan and aliphatic polyester blends, Mater. Sci. Eng. A, vol.403, pp.57-68, 2005.

H. S. Azevedo and R. L. Reis, Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate, Biodegradable Systems in Tissue Engineering and Regenerative Medicine, pp.177-201, 2005.

A. Anitha, S. Sowmya, P. T. Kumar, S. Deepthi, K. P. Chennazhi et al., Chitin and chitosan in selected biomedical applications, Prog. Polym. Sci, vol.39, pp.1644-1667, 2014.

T. Honma, L. Zhao, N. Asakawa, and Y. Inoue, Poly(?-caprolactone)/chitin and poly(?-caprolactone)/chitosan blend films with compositional gradients: fabrication and their biodegradability, Macromol. Biosci, vol.6, pp.241-249, 2006.

R. J. Mondschein, A. Kanitkar, C. B. Williams, S. S. Verbridge, and T. E. Long, Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds, Biomaterials, vol.140, pp.170-188, 2017.

F. He, S. Li, M. Vert, and R. Zhuo, Enzyme-catalyzed polymerization and degradation of copolymers prepared from ?-caprolactone and poly(ethylene glycol), Polymer, vol.44, pp.562-569, 2003.

P. Bacchin, P. Das, A. Van-der-meer, A. Vivas, Y. B. Arik et al., Tunable microstructured membranes in organs-on-chips to monitor transendothelial hydraulic resistance, Tissue Eng. Part A, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02298691

X. Kang, Y. Xie, H. M. Powell, L. J. Lee, M. A. Belury et al., Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds, Biomaterials, vol.28, pp.450-458, 2007.

G. Muschler, C. Nakamoto, and L. Griffith, Engineering Principles of Clinical Cell-Based Tissue Engineering, 2004.

A. Nuschke, M. Rodrigues, A. W. Wells, K. Sylakowski, and A. Wells, Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation, Stem Cell Res. Ther, vol.7, 2016.