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Abstract

A large variety of different descriptors can be employed for describing 3D woven
composites. Each of them is targeted to a specific application, ranging from
design, weaving, molding, impregnation down to non-destructive testing, imag-
ing and numerical modeling of the “actual” micro-structure. In order to relate
these different representations, it is proposed herewith to rely on the inherent
weaving pattern as an intrinsic common feature, and to resort to images as a
common language to guaranty the continuity of information. To connect these
3D images (either “real” or synthesized), Digital Volume Correlation (DVC) is
called for in order to exploit the conservation of topology. A complete test sce-
nario is devised in which different manufactured woven samples are compared
to the theoretical textile arrangement. The results confirm the effectiveness of
the method.

Keywords: woven composites, digital volume correlation

1. Introduction

The ever-increasing interest in composite materials has generated a high
demand for new custom tools. They include tailored modeling strategies [1],

proper characterization methods [2], accurate simulations [3] and adapted non-
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destructive testing (NDT) techniques based on high-resolution X-ray computed
tomography (micro-CT) images [4].

However, these analyses tend to be developed and carried out independently
of each other. Naturally, this occurs mainly due to the fact that each procedure
uses a different “textile descriptor”. Indeed, each of these descriptors conceives
the woven composite in a manner that better suits the target analysis. For ex-
ample, some statistical descriptors extracted from CT images may be best suited
for NDT (such as the structure tensor [5]). On the contrary, textile simulations
may be best served by Finite Element (FE) [6] meshes or even “virtual models”
(CAD) that represent the structure of the textile [7]. As a result, the analyses
cannot (completely) benefit from the results of each other, which also limits
the confrontation between real (experimental) data and modeling (or numerical
simulations) [8].

Nonetheless, all these textile descriptors share a common characteristic: the
weaving pattern. Such pattern defines the relative position of yarns (reinforce-
ment) that is maintained by the polymer resin (matrix). This definition is
intrinsic to the material and always present, even if the target analysis may not
require it (e.g., statistical descriptors). It is noteworthy that this always-present
feature will not be “identical” in all the descriptors. For example, the yarn po-
sitions (in the three-dimensional space) of a given textile will differ between
a “theoretical” representation versus a “real” one, or even simply a “realistic”
one [9]. Thus, relating any pair of descriptors only requires the identification of
these differences.

Moreover, these descriptors can also be expressed under a common language:
that of an image, that is they can generate images looking “alike”. Again, this
similarity comes from the material itself; in particular from the two constitutive
phases of the composite.

As formulated, the inherent problem is actually quite close to that encoun-
tered in Digital Volume Correlation (DVC) [10, 11]: to retrieve the displacement
field relating pairs of configurations. As such, it is possible to consider the ma-

terial as in a so-called deformed or “wrapped” configuration with respect to a



reference one [12]. These configurations can be embodied by any of the con-
sidered textile descriptors. Furthermore, by bridging the gap [13, 14] between
these elements, all the associated analyses are immediately comparable. In like
manner, this allows interpreting the various results obtained from these differ-
ent analyses from a unique standpoint: that of their underlying topology. This
notion is at the origin of the so-called unique topological descriptor.

The advantages of such an approach are many. First, a continuous digital
information chain can be constructed. As such, there is no need for storing
redundant information or coming up (missing) information discarded by previ-
ous processes, encouraging a more conscious use of the data and capitalizing on
previous (potentially costly) efforts. Second, it can be used as a tool for rear-
ranging the data into more convenient representations. For example, aligning
the warp and weft orientations with the image axes should aid in the task of
“correcting” warped yarn structures. In particular, two warping modes are well
known in this field: (i) “high shear angles” which result in non-orthogonal warp
and weft orientations, and (ii) “warped columns” which result in yarn layers
with relative in-plane offset. Such preprocessing can have a profound impact on
the steps that may be followed, as well as for improving the data exploration.
Third, since this framework is relative by nature, any discrepancy is automat-
ically flagged (i.e., NDT). As such, weaving anomalies (e.g., missing yarns or
loops) can be identified without developing custom or additional systems, or
even actively seeking them.

Finally, given that the current study focuses on the weaving pattern, the
meso-scale [15] is chosen henceforth. The concerned descriptors (and a pro-
posed classification system) will be detailed in Section 2. The registration and
discretization procedures will be discussed in Sections 3 and 4 respectively. The
method is then tested on diverse sets of textile descriptors, presented in Sec-
tion 5. Using these descriptors, a numerical test is performed between two
descriptors of the same type. Next, a relatively simple but real scenario is stud-
ied between descriptors of different nature. And finally, a more complex case is

studied by integrating the different aspects of previous tests. These results are



shown in Section 6.

2. Overview of textile descriptors

As discussed earlier, there exist many types of textile descriptors. One can
attribute this plurality to the hierarchical nature of the material, which leads
to a similar “organization” of descriptors. A representation of such often used
descriptors combined into one reference frame is provided in figure 1, such is
one of the outcomes of the present study. The following is a general overview

of some of the descriptors that are of interest for the present study.

Figure 1: Multiple textile descriptors for the same textile architecture.

2.1. Topological encoding

The encoding of the structure of a 3D weave describes the relative positions
of all yarns. It prescribes a topology, but does not consider any geometrical
features (e.g., distance between yarns).

Let us consider a warp-interlaced 3D weave, such as the one shown in figure 2.
Here, the warp yarns undulate around the weft yarns, while the latter remain
“straight” at fixed positions. Then, the topological description of a multi-layered
composite is based on the warp yarn paths. These paths are described as a
sequence of intersection codes.

This description is best organized as a matrix, as shown in figure 3. Each

matrix entry holds the value pertaining to an intersection between a given warp



(a) Horizontal warp (b) Horizontal weft

orientation orientation

Figure 2: Topological encoding of warp-interlaced composite: while the green
(M) weft yarns are modeled straight along their orientation, the red (M) and

blue (M) warp yarns undulate in different planes

yarn and a given weft row. While it is possible to list all possible intersections
(between all warp yarns against all weft yarns), a more succinct matrix can be

obtained if only the “pertinent” intersections are listed.

(a) Using binary codes (b) Using level codes

Figure 3: Topological encoding in the form of a matrix

The former description holds more similarity to the traditional checkerboard
pattern used for 2D composites, in which the path of the warp yarn is described
as being either above or below the corresponding weft row. This limits the pos-
sible matrix values to zero or one, as shown in figure 3a On the other hand, the
latter employs intersection level codes, as shown in figure 3b, that identify the
weft layer situated above the warp yarn at a given intersection. For complete-
ness, the number of warp planes and the number of weft columns need to be

specified.



2.2. Geometrical encoding

A geometrical descriptor [7] builds upon a topological one by placing the
yarns in the three-dimensional space. It places the yarns via their centerlines,
also known as neutral fibers. This one-dimensional curve is defined in the three-
dimensional space using a series of control points (3D coordinates). These can
be limited to a reduced set of “master” points and employ interpolation functions
in-between. Afterwards, the surface of the yarn is defined by sweeping a two-
dimensional shape along the length of the yarn. This cross-section can take the
form of a simple (oriented) parametric curve (e.g., an ellipse) or a list of points

that define a more complex shape.

(a) Yarn neutral fibers (b) Yarn cross-sections

Figure 4: Geometrical encoding for a sample textile

It should be noted that, thanks to the given cross-sections, the yarns can be
considered as “solid” entities. For such a reason, if the target analysis requires it,
the possible yarn inter-penetrations should be dealt with. This involves adapting
the yarn centerlines as well as the yarn cross-sections. Multiple approaches have
been conceived for dealing with this issue. These include textile geometrical
modeling approaches [16], mechanical simulations [17], as well as image-based

techniques [18].

2.3. Finite Element encoding
This descriptor builds upon the previous ones by adding some physical prop-
erties, that is, by endowing each point of the neutral fiber with some material

properties. These include local bending stiffness, frictional and tensile behavior,



fibrous content, fiber orientation, amongst others [19, 20]. This information is
then employed to construct the FE meshes.

In general, a mesh is a discretization of a continuous spatial domain into a
discrete one. As such, any volume can be subdivided into smaller (and simpler)
elements that can be modeled using simple equations. Hence, the volume in
question will vary according to the target analysis. Given that there are two
phases in the material, it is possible to mesh only the yarns or to mesh the yarns
and the resin.

Furthermore, there exists multiple paradigms for designing the mesh, notably
a “conformal” approach and a homogenized one, as shown in figure 5. While the
former aims at presciently meshing the yarn-resin (or yarn-air) and yarn-yarn
interfaces [18], the latter allows more flexibility by considering “mixed” elements

that account for both phases (e.g., the vozel-FE paradigm [21]).

Figure 5: Multiple Finite Element encodings for a sample textile: (a) only
yarns or (b)-(c) both phases can be meshed, using (a)-(b) pyramid or (c) cube
FE element types

3. Registration method

This section will detail the elements required for the development of the so-
called “correlation framework”. Such approach will allow the relative analysis
of different textile descriptors using DVC. Given that these descriptors may
not have a rich texture (i.e., binary images) a strategy will be presented so

as to overcome this issue. Furthermore, the scope of this framework includes



descriptors of different types and sources. Hence the need for a “translation”

step that provides an intermediate representation common to all descriptors.

3.1. Correlation procedure

Digital Volume Correlation [22] is a widely used technique for measuring
the internal displacement field between volume pairs, generally obtained from
tomography. For a reference image f(x) and a test image g(x), DVC minimizes

the Lo norm of residuals

n=f(®) - g(x+u(x)) vi(e) @ (1)

with the optimal displacement field u(x) and intensity level corrections vg(x)
and vy (x). The continuous transformation defined by w(x) implicitly includes
an assumption of invariant topology between the analyzed volumes (i.e., the
yarns are assumed to be organized in the same fashion). On the other hand, the
corrections vg(x) and vy (x) explain all phenomena alien to such a hypothesis
(e.g., tomographic reconstruction artifacts).

Given that the problem is ill-posed, well-posedness can be achieved and
conditioning may be tuned when the displacement and correction fields are
restricted to a space of low dimension. A global variational formulation [11] is
used to determine the unknown fields u(x), vo(x) and vy (z). As such, any field
w(x) will be expressed as a function of the degrees of freedom {a} associated
with it:

w(z) ~ Zai¢i(9¢) (2)

This decomposition is used to describe the fields w(x), vo(x) and vi(x). A
convenient choice for the kinematic basis ¢;(x) is one provided by the Finite
Element (FE) method [6]. It should be noted that each of these fields could be
decomposed differently (e.g., different meshes for each one) but, for the sake of
simplicity, they will be expressed under the same formalism. As such, all the
degrees of freedom associated to the three fields of interest can be grouped into

a single vector of parameters {a}.



The overall solution is given by the minimization of the squared Lo-norm of
the residuals over the entire region of interest. Such optimization problem can
be solved with classical iterative Newton-Raphson routine. This leads to the

following linear system
[M] {da} = {b} 3)

with the “update” vector {da}, the (positive) stiffuess matrix M and the vector
b

M;j = (i, ;) (4)
bi = (i, n) (5)

where (-, ) denotes the inner product (i.e., a contraction over x), and the field
¥i(x)

Y(z) = p(x) @ s(x) (6)
that translates to

Yi(x) = @i, () 84, () (7)

with the “sensitivity” field s;,

Siy, = (vxfa vyfa vZfa fv 1) (8)

and the “super-index” i = (i1, i2) that relates i1 € [1, N,,], which points to a node
(with N,, the number of nodes), and i € [1,5], which denotes the associated

degree of freedom.

3.2. Longer correlation length

One of the advantages of “classical” DVC is its high measurement accu-
racy [11]. Such extreme sensitivity to displacements is a result of the (well-
contrasted) textures being analyzed. In fact, such rich textures translate to rich
image gradients varying in all directions.

However, the current context calls for images whose texture may be ex-

tremely poor. Any binary image will only contain non-zero gradients on the



boundaries of the individual objects. Additionally, such boundaries are ex-
tremely localized near the phase boundaries. Thus a direct implementation of
the DVC strategy will fail to converge unless the initialization is extremely close
to the solution. For such reason, a relaxation scheme that will spread the gradi-
ents produced by the boundaries is proposed. This relaxation will progressively
increase the correlation length and thus guide DVC to a good solution. It can
be achieved by means of a Gaussian kernel with varying radius that is defined
with respect to the largest displacement sought.

An example of the procedure is shown in figure 6. Here, a tomographic
image of a composite part is recursively filtered by the same Gaussian kernel
(with radius 2px). The widened boundaries extend the effective correlation
length in those regions.

Such procedure hints to the use of a multiresolution isotropic approach [23].
It consists in the use of a Gaussian pyramid on a isotropic version of the input
images. The image pyramid allows to transition from a coarse description of
the problem towards a finer one. This is aided by the subsampling required to
transition between levels. As such, in coarser levels even the “long” displace-
ments (in the original image) can be captured. Then, at each pyramid level,
the correlation problem is initialized with the displacement field found in the
previous one.

Furthermore, the affine transformation employed for removing the geomet-
rical anisotropy accounts for the “flattening” of yarns. Indeed, the yarns cross-
sections are usually conceived as ellipses as a result of the manufacturing pro-
cess. The motivation behind this anisotropy removal is that these regions do
not provide much (relevant) information, especially for the aforementioned bi-
nary images. Thus, the isotropic version provides images that are smaller but
with equivalent relevant information. It should be noted that this discussion
is motivated by the fact that the current study is performed on specimens at
the meso-scale. Moreover, the affinity employed for removing (or reducing) the
anisotropy does not need to be exceptionally “precise”, but rather approximate

since the goal is to obtain in average more isotropic shapes. A similar argument
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Figure 6: An image f recursively filtered by a Gaussian kernel G displays hori-

zontal gradients V, that extend the range of “visibility” for correlation

can be made for textiles with more complex shapes. Whenever a systematic
anisotropy (anisometry) is present, its reduction is beneficial [23].

Finally, a “complete” mechanical regularization technique [24] (based on the
equilibrium gap [25-27]) is employed so as to better condition the problem. This
favors displacement fields locally obeying a prescribed behavior (e.g., linear
elasticity) in the bulk as well as in the surface of the studied samples. This
strategy can be seen as a set of filters that locally dampen steep gradients and

ensure smooth and differentiable fields.

4. Discretization procedure

The chosen intermediate representation for any descriptor is that of an im-
age. As a consequence, a very convenient tool to evaluate differences between
two textile representations is DVC (which deals with 3D images). As such, any
of the previously descriptors needs to be projected into a regularly structured
space. In other words, a discretization procedure is to be used so as to obtain
vozels.

These voxels can be made meaningful by carefully choosing their values.

11



A natural choice is to assign labels according to the structure they originally
belonged to. This results in volumes with as many intensity levels as there are
phases in the material. Since the present analysis considers only two phases,
the obtained images are binary (or ternary if surrounding void is considered as
a phase per se). It should be noted that this “translation” process does not
result in any overall loss of information since it is always possible to retrieve the
information in the original descriptors for any given voxel, and vice versa.

If the concerned descriptor is of topological nature, it needs to be converted
into a geometrical one, this can be achieved via any of widely available textile
pre-processors [28, 29]. Then, the transformation of the geometrical descriptors
into images can be obtained via a FE mesh. In fact, the vozel-FE paradigm is
appropriate for this case, it proposes to construct regular structured (uniform)
meshes composed of cube elements [21]. Then each one of this FE elements can
be interpreted as a voxel, thus creating an image.

These choices were taken into account in the development of a novel ap-
proach. The proposed alternative gracefully transitions from a continuous (para-
metric) description of the yarn towards a discretized (voxel) one. It is capable
of handling the yarn path smoothing, the yarn discretization, and yarn inter-
penetrations under a flexible unified framework. Also, each one of these steps

are easily implemented in parallel.

4.1. Proposed approach

First, the yarns are modeled as a collection of one-dimensional beam ele-
ments, these elements are constructed between every pair of consecutive control
points. Then, a simple elastic behavior is applied on each yarn by means of the
second-order differential Laplacian operator acting on the points coordinates.
This effectively smoothens the yarn path and provides a “continuous” descrip-
tion of the yarn. As such, any point belonging to the i-th yarn centerline can
be written as r;(t) with ¢ € [0, 1] as the curvilinear coordinate along the yarn.

This strategy has the advantage of being easily adaptable to more complex

behaviors (other than linear elasticity). In fact, if a better constitutive law is
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available (e.g., hyper- or hypo-elasticity [18, 30]), it could be applied effortlessly.
Additionally, this (already computed) Laplacian operator can be re-purposed
for the reduction of control points. In fact, the reduced set of master points
are easily identified as those having high Laplacian values. These will be the
points of higher curvature, and thus necessary for describing the yarn path. An

example of the Laplacian operator acting on a yarn is shown in 7.

Figure 7: Laplacian operator acting on the coordinates of a yarn: the control

points of higher curvature are automatically highlighted

Second, each yarn is discretized via its weighted distance function. This
function determines the distance of a given point to the boundary (of the cross-
section), it is maximum (100 %) for the points in the neutral fiber and decreases
in value as the points approach the boundary where the distance attains its
minimum (0 %). It is important to note that the function employs a weighted
euclidean distance, with the weights being given by the aspect ratio of the ellipse
cross-sections. Such distance function is computed for a grid of points (i.e., the
voxel centers) regularly spaced (i.e., desired resolution). Additionally, any voxel
placed outside of the yarn (i.e., negative distance) is discarded from the analysis.
An example of such image is given in figure 8.

These operations can be expressed under a continuous formalism via the

convolution operator
Ip, (x) = (hsign 0 di)(x — 1) ® 6(x — 137) (9)

with Ip, as the function containing all distances for the i-th yarn, §(z — ;) as
its neutral fiber, hy;g, as the sign truncation function
1—s, fors<1

hsign(s) = (10)
0, for s <1
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Figure 8: Different views for a sample image I'p

and d; as the weighted distance function

di({u}) = \J{w)TIC)T [C)] {u) (1)

with the matrix [C;] defining the cross-section shape for the i-th yarn. For
example, in the case of an elliptical cross section aligned with the image axes,
the diagonal elements of this matrix are given by the inverse of the ellipse radii.

Third, all considered voxels (with non-zero distances) for all yarns are “as-
sembled” so as to form the complete image Iy, as show in figure 9. As such,
all points considered only once are given the appropriate label (gray level) cor-
responding the yarn ID. Then, any voxel belonging to a region on yarn inter-
penetration (more than one yarn) will be assigned to the yarn to which it is
“closest” (i.e., the one with greater Ip). While simple, this handling of yarn
interpenetration via the weighted distance function has proven extremely satis-
factory.

Finally, the proposed approach outputs two volume images: a chart of dis-
tances Ip and a chart of yarns Iy. While the former contains floating point
values contained between zero and one, the latter contains as many integer
intensity values as there are yarns in the textile (plus the resin/air at zero).

Then, “thresholding” Iy provides the aforementioned binary image Ig. At

this point, it is important to acknowledge that the image Iz can also be written
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Figure 9: Different views for a sample image Iy

in a similar fashion as Ip
I, (x) = (hpin o d;)(® — 7)) ® 6( — ;) (12)

with I, as the function containing the i-th yarn, and hy;y, as the binary trun-
cation function

hyin(s) = (N1 — No) - H(s —t) + Ny (13)

with the Heaviside function H(-), the desired intensity levels Ny and Ny, and a
threshold 0 <t < 1.

In the current context (tomography), the values of Ny and N represent the
attenuation levels of the corresponding phases (i.e., the polymer resin and the
carbon fiber yarns). An estimate of this values can be easily obtained from the
histogram of a micro-CT image, which usually is bi-modal. The estimation of
these values can be performed manually, or via a mixture model (e.g., Gaussian
mixture model). It should be noted that, in the simplest scenario, they can
simply take the values of Ny = 0 and N7 = 1. Then, it falls upon the correlation
procedure to “adapt” these values by means of the intensity level corrections
vo(x) and vy ().

Similarly, the threshold parameter ¢ allows defining the distance (from the
yarn centerline) at which the yarn surface is located. Hence, for ¢ = 0, the entire

yarn is discretized; on the contrary, as ¢ tends to 1, only the yarn centerline is

15



considered.
Finally, such formulation has the added advantage of not needing to handle
specifically overlapping yarns since the possibly superimposed yarn will provide

the same value of Nj.

4.2. Consequences for the registration procedure
As it was previously introduced, the correlation strategy consists in “widen-
ing” the gradient lengths via filtering operations. This can be seen as a bank of

Gaussian filters G; acting on the binary image I.

s, (x)} ® Gj = {6(x — 1) ® (hpin o di)(x — 1)} ® G (14)
=6(z — 7i) ® {(hpin o di)(x — 1) ® G} (15)
=d(x—7r)® éij (16)

with the kernel C;’ij as the custom j-th filter for the i-th yarn. This filter can
be seen as a “wide” Gaussian filter acting on the yarn centerline.

Furthermore the pyramidal approach evoked earlier allows, through a mere
recursion, obtaining any filter G having a 2™ radius. This is coupled with an

iterative subsampling of twice the blur radius.

5. Setup

Two sets of descriptors are available, each one of them will be employed in

progressively more complex analyses.

5.1. Awailable descriptors

The first group consists in a tomographic scan and a geometrical descriptor
of the same textile. This latter was extracted via a careful exploration of the 3D
image, hence, it constitutes a good and close description of the observed sample.
In the following, the image and the geometrical descriptor will be referred to as
I1 and G1, respectively; they are illustrated in figure 10.

The second group of descriptors is composed of two tomographic images

and a FE mesh, all corresponding to the same textile. They will be referred
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(a) T1 (b) 61

Figure 10: First group of textile descriptors: (a) a CT scan of a composite

sample, and (b) its “equivalent” geometrical descriptor

to as I2, I3 and M1, accordingly. These observed samples I2 and I3 were
used in a previous study. In reference [23], we have employed this pair for the
identification of the so-called “metric differences” and “topological differences”.
Such study was capable of automatically detecting a voluntary alteration of
sample I2: the removal of two yarns. The geometrical descriptor M1 can be
expressed as the images M1p, M1y and M1z. They correspond to the different
discretized representations discussed earlier (the distance functions, the yarns
and the binary image), all three descriptors are shown in figure 11.

It is worth mentioning that the CT scans are obtained using classical recon-
struction algorithms (FDK [31]) and under acquisition conditions that favors

the differentiation of the different phases [23].

Figure 11: Second group of descriptors: (a) reference and (b) test samples

observed through CT, and (c) FE mesh with the same textile definition

17



5.2. Proposed analyses

The first analysis is performed between the geometrical descriptor G1 and a
numerically deformed version of itself, called G2 (i.e., model-model). This “ar-
bitrary” deformation is obtained by applying a known Lagrangian displacement
field u to G1. Such displacement was obtained from a previous study on known
yarn deformations on this type of fabrics [32], so as to be representative of a
plausible distortion. Then, the correlation procedure is performed as previously
detailed with the descriptor G1 as reference, and ground truth is known for
validating the result.

The second analysis is performed between the geometrical descriptor G1 and
the image I1 (i.e., model-real). As previously stated, the descriptor was built
from the image in question. Then, this correlation analysis should allow aligning
the observed sample to the reference model G1.

The next group of analyses is performed in three steps. First, the pair of
tomographic volumes I2 and I3 is analyzed [23]. Next, the pair of descriptors I2
and M1 is analyzed in a similar fashion as previously. In both cases the sample
I2 is chosen as the reference configuration and both remaining descriptors are
used as the test (deformed) configurations in each step. These third and fourth
analyses are analogous to the first two, but implemented on a different set of
descriptors. The final fifth step integrates both previous results (i.e., combined
analysis).

A schematic representation of the proposed analyses is shown in figure 12

18
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Figure 12: Proposed sets of analyses combining the available descriptors

6. Results

6.1. Model-model registration results

The different pyramid levels can be seen in figures 13 and 14. For visual-
ization purposes, the warp and weft yarns were assigned different gray levels.
As it can be seen, this strategy does help in widening structures boundaries or
interfaces (i.e., the image gradients).

The correlation procedure is performed using 6885 kinematic degrees of free-
dom represented using cube elements with length 16 px. This length approx-
imates the radius of the circular cross-section of the yarns (in the isotropic
space).

A good agreement can be observed between the imposed and measured dis-
placement fields, as shown in figure 15. Furthermore, the image of residuals,
testifies of a good alignment between both virtual models, as seen in figure 16.
These results are encouraging: correlation performs extremely well in spite of a

complex deformation, a poor texture, and a relatively poor chosen kinematics.

19



(a) Pyramid level 1 (b) Pyramid level 2

&

(¢) Pyramid level 3 (d) Pyramid level 4

Figure 13: Volume representation of the different pyramid levels for G1

a) Pyramid level 1 b) Pyramid level 2
¢) Pyramid level 3 d) Pyramid level 4

Figure 14: (z-z) mid-plane representation of the different pyramid levels for G1
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Figure 15: Components of the displacement fields for G1 and G2: (a)-(c) known
field, and (d)-(f) measured field (in px)
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(a) (z-z) mid-plane (b) (y-z) mid-plane

(¢) (z-2z) mid-plane (d) (y-z) mid-plane

Figure 16: Different mid-planes for the residuals for G1 and G2: (a)-(b) before

and (c)-(d) after correlation
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Figure 17: (z-z) mid-plane of I1 before and after correlation, the model G1
is shown with outlined yarn borders, the ellipses highlight some regions of
improved alignment; for visualization purposes the images in (a) and (b) are

“zoomed” and shown in the isotropic configuration in (c) and (d) respectively

6.2. Model-real registration results

The correlation results are analyzed by comparing the reference model G1
with the sample I1. This is achieved by superimposing the yarn boundaries
(as described by the model) on top of the sample in the “test” configuration
I1(x) and the sample in the “corrected” configuration I1(x + u(x)), as shown
in figure 17. These images showcase a slight improvement over the already good
alignment between both descriptors. Some regions in which the tomographic
image is “unwrapped” so as to better fit the model are highlighted.

Furthermore, thanks to the relazed brightness conservation formulation, the
intensity values of the micro-CT image are also “corrected”. This translates into
yarns with more ellipsoid cross-sections and a better contrast between phases,
as imposed by the binary image issued from the model G1. As figure 18 shows,
the improved separation of classes becomes clear in the corresponding histogram

for the image I1, where its bi-modal nature becomes more pronounced.
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Figure 18: Histograms before and after correlation for the micro-CT image

6.3. Combined results

This final collection of results will present a three-part analysis.

The results for the first step are the so-called “metric differences” and “topo-
logical differences” between of both samples [23]. On the one hand, the “metric
differences” inform on the relative strains € between the observed textiles I2
and I3, as obtained from the measured displacement field uz(x). The trace
of this relative strain tensor (i.e., an invariant reflecting the local change in
volume), shown in figure 19a, is localized around the missing yarns (due to a
re-arrangement of the remaining yarns). On the other hand, the “topological
differences” highlight the missing yarns (they break the assumption of conserved
topology). They are obtained by means of the semi-residual due to displace-
ment only, which does not account for the brightness and contrast corrections, as
shown in figure 19b. It is important to note that the registration is performed
correctly despite the sizable “topological differences” induced by the missing
yarns.

The second step consists in adapting the (theoretical) model M1 onto the
sample I2. The necessary intermediate representation of M1 as a binary image
is shown in figure 20a. After registration, the found displacement field is ap-
plied onto the corresponding geometrical descriptor so as to obtain an “aligned”
version of M1. This result, shown in figure 20b, leads to the “segmentation” and
identification of yarns.

Finally, the results of the two preceding calculations are combined. More
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I (b) Semi-residual due to displacement

(a) Trace of the relative strain tensor only

Figure 19: The signature of the missing yarns is clear in (a) the “metric dif-
ferences”, as well as in (b) the “topological differences” between the analyzed

volumes I2 and I3

(a) Mi5(z) (b) Miy (@ + ua(x))

Figure 20: The different representations of M1: (a) as a (discretized) binary

image, and (b) as a model aligned with the reference sample.

precisely, the “topological differences” from I2 and I3, and the “aligned” model
from I2 and M1. Since all results are expressed under the same reference con-
figuration, they can be swiftly compared.

As such, it is possible to query the “amount” of topological differences per

yarn
Cy= Y Mip(@+us(x)) (I3(z +us(z)) — 12(x)) (17)
x GN,,
where NV, represents the (neighborhood of) voxels that correspond the y-th yarn

Ny ={z [Mly(z +us(z)) =y} (18)
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From this tally C,, shown in figure 21a, two yarns are clearly distinguished
from the rest. A new virtual model which only considers these yarns is shown
in figure 21b. Clearly, these yarns correspond to the missing ones, which (in this
particular ordering) correspond to the yarns with ID numbers 20 and 26. These
ID numbers are extremely relevant because (if the weaving patter is known) it

is possible to identify their role in the textile architecture.

Counts

0 20 40 60 80 100
Yarn 1D

(a) (b)

Figure 21: (a) The amount of topological differences per yarn helps identify (b)

the missing yarns.

At this point, the obtained results can be further exploited if a precise seg-
mentation of the yarns is desired. Since the goal of this study is to “align the
yarns”, the kinematic decomposition (i.e., the degrees of freedom) is not detailed
enough so as to precisely (i.e., voxelwise) conform to the yarn boundaries (oth-
erwise, it would lead to ill-conditioning), and as such the proposed registration
is not by itself a substitute to segmentation.

However, it does offer an excellent “initialization” for appropriate segmen-
tation techniques [33, 34], and only minor adjustments of boundaries remain
to be determined. In such sense, one could image employing algorithms based
on graphs [35, 36|, on some form of energy minimization [37], on some a priori
information [38] or, even better, based a combination of all of those [39].

For example, the alignment of the model to the sample provides sufficient

seeds (e.g., the yarn centerlines) for correctly segmenting the yarns in the CT
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image. This helps to overcome the challenge faced when, two (or more) yarns
are so heavily compressed against each other, that they become visually indis-
tinguishable (at the meso-scale). Alternatively, the yarns could be formulated as
“attractors” (or “repulsors”) that would minimize (or maximize) a certain energy
functional.

Finally, the proposed correlation framework represents a novel paradigm
for the “segmentation” of yarns. Indeed, this method presents itself as a top-
down approach, much unlike most “classical” bottom-up approaches. The latter
bottom-up methods start from the smallest feature of interest (i.e., the intensities
at each voxel) in order to “build-up” towards a sought structure (e.g., the yarns,
the textile). Such process is mostly of local nature (i.e., the yarns) and the
notion of a textile is faint. On the contrary, the proposed top-down method
starts with the global notion of a textile model, which is then aligned towards
a given descriptor. This constitutes a major advantage of the technique since
it is capable of robustly handling local discrepancies thanks to the information
provided elsewhere by the (global) model. This is to be contrasted with most
segmentation approaches based on local features, that may suffer from local
indeterminations leading to topological violations (such as wrong pairing of

yarn segments).

7. Conclusions

The use of Digital Volume Correlation for the dialog between various textile
descriptors was presented. This technique, applied to 3D woven composites, is
based on the key concept of the conservation of topology. The robustness of
this approach comes from the use of a reference configuration that provides the
algorithm with a vast amount of information with a considerably low effort.

Different scenarios involving different descriptors were explored, and by com-
bining the different steps, an automatic nondestructive testing (NDT) procedure
for 3D woven composites was achieved. It should be noted that the detection

of missing yarns (or any other anomaly) was not the intended target of the
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analysis. However, given that they do not conform to the reference or to the
assumption of constant topology, they appeared naturally. In addition, these
missing yarns were identified (i.e., by ID number) thanks to the relationships
established with a model of the textile.

This technique allows the use of a single topological descriptor for the many
different analyses that are involved in the study of the woven composites. As
such, it has many applications on different fields.

For example, in the domain of mechanical simulation and validation of form-
ing models using architectures extracted from micro-CT images [40, 41]. Usu-
ally, these techniques call for a meshing procedure per each analyzed sample.
This results in as many meshes as samples, which in turn, encumbers the com-
parative analysis between the results of these many simulations. However, if
only one topological descriptor is considered, only one mesh and potentially
only one (base/reference) simulation would be needed. The mesh could sim-
ply be adapted to each new sample, as shown in the examples here with the
geometrical descriptors and the tomographic images. Even more interestingly,
the reference simulation could be “adapted” to the new “deformed” sample be-
cause the displacement field relating both configurations is known. Evidently,
this form of transfer learning necessitates an appropriate description of the phe-
nomena to be studied. Some simulations have been planned with this purpose.

Additionally, the technique can be used as a tool for non-destructive testing;:
it can be performed either on the “metric differences”, on the “topological differ-
ences”, or on both. The former could inform on “typical” modes of deformation,
which would allow defining novel and appropriate metrics [42]. These could then
enable the identification of anomalous strain patterns. Clearly, this implies a
multitude of comparative analyses on multiple woven composite samples so as
to build a “proper” database of such modes. Similarly, the “topological differ-
ences”’ could be analyzed for the identification of patterns or structures that
would indicate weaving anomalies using machine learning techniques.

Furthermore, it should be noted that the Gaussian filter employed alongside

the discretization procedure for descriptors other than images leads to a mod-
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erate “loss of information” (since it erases high frequency features). The most
important property of this filter is that even if the synthetic image generated
by the model is too sharp or too contrasted, the mollifying nature of the Gaus-
sian filter will bring both images of interest (the reconstructed CT scan and the
synthetic image) closer together.

Moreover, these operations (discretization and convolution) occur only once:
before the correlation procedure. That means that they are not updated, un-
like the displacement field which does evolve during the iterations. This could
be considered as a limitation of the current proposition since the convolution
and the distortion of the fabric do not commute. As such, a good registration
may not be possible for cases of extreme distortions. For such a reason, it is
proposed to alternate between both operations during iterations. That is, to ap-
ply the estimated displacement to the original descriptor, filter the discretized
image, and determine the additional correction to the displacement field; as
is done with multi-modality registration [43]. Repeating this operation itera-
tively would permit a better estimation of the correction fields. In fact, the
proposed discretization procedure aligns perfectly with this goal. The approach
is currently being explored.

This proposed extension to the technique could also have an impact on the
discretization and convolution operations. The construction of the binary image
from the model involves the definition of the binary levels which could be pro-
gressively adapted by using smooth indicator functions blurred along the fiber
direction [44]. Similarly, the parameters for the convolution operation (Gaus-
sian radii) could become additional degrees of freedom (besides displacement
and intensity levels). As such, the yarns would be modeled after their yarn cen-
terline locally filtered by the appropriate kernel. Such approach was alluded to
when discussing the consequences of registration in the discretization procedure
(i.e., a “wide” Gaussian filter) [45].

Finally, this technique could also benefit from the inherent periodicity of the

fabric and further integrate elements so as increase its efficiency.
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